AUTHOR=Kárpáti Éva , Kremlitzka Mariann , Sándor Noémi , Hajnal Dávid , Schneider Andrea E. , Józsi Mihály TITLE=Complement Factor H Family Proteins Modulate Monocyte and Neutrophil Granulocyte Functions JOURNAL=Frontiers in Immunology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.660852 DOI=10.3389/fimmu.2021.660852 ISSN=1664-3224 ABSTRACT=
Besides being a key effector arm of innate immunity, a plethora of non-canonical functions of complement has recently been emerging. Factor H (FH), the main regulator of the alternative pathway of complement activation, has been reported to bind to various immune cells and regulate their functions, beyond its role in modulating complement activation. In this study we investigated the effect of FH, its alternative splice product FH-like protein 1 (FHL-1), the FH-related (FHR) proteins FHR-1 and FHR-5, and the recently developed artificial complement inhibitor mini-FH, on two key innate immune cells, monocytes and neutrophilic granulocytes. We found that, similar to FH, the other factor H family proteins FHL-1, FHR-1 and FHR-5, as well as the recombinant mini-FH, are able to bind to both monocytes and neutrophils. As a functional outcome, immobilized FH and FHR-1 inhibited PMA-induced NET formation, but increased the adherence and IL-8 production of neutrophils. FHL-1 increased only the adherence of the cells, while FHR-5 was ineffective in altering these functions. The adherence of monocytes was increased on FH, recombinant mini-FH and FHL-1 covered surfaces and, except for FHL-1, the same molecules also enhanced secretion of the inflammatory cytokines IL-1β and TNFα. When monocytes were stimulated with LPS in the presence of immobilized FH family proteins, FH, FHL-1 and mini-FH enhanced whereas FHR-1 and FHR-5 decreased the secretion of TNFα; FHL-1 and mini-FH also enhanced IL-10 release compared to the effect of LPS alone. Our results reveal heterogeneous effects of FH and FH family members on monocytes and neutrophils, altering key features involved in pathogen killing, and also demonstrate that FH-based complement inhibitors, such as mini-FH, may have effects beyond their function of inhibiting complement activation. Thus, our data provide new insight into the non-canonical functions of FH, FHL-1, FHR-1 and FHR-5 that might be exploited during protection against infections and in vaccine development.