
Frontiers in Immunology | www.frontiersin.

Edited by:
Falko Steinbach,

University of Surrey, United Kingdom

Reviewed by:
Sung Hyen Lee,

National Institute of Agricultural
Science, South Korea

Xianyong Liu,
China Agricultural University, China

*Correspondence:
Lonneke Vervelde

Lonneke.vervelde@roslin.ed.ac.uk

†Deceased

Specialty section:
This article was submitted to

Comparative Immunology,
a section of the journal

Frontiers in Immunology

Received: 13 January 2021
Accepted: 08 March 2021
Published: 25 March 2021

Citation:
Bremner A, Kim S, Morris KM,
Nolan MJ, Borowska D, Wu Z,

Tomley F, Blake DP, Hawken R,
Kaiser P and Vervelde L (2021)

Kinetics of the Cellular and
Transcriptomic Response to Eimeria
maxima in Relatively Resistant and

Susceptible Chicken Lines.
Front. Immunol. 12:653085.

doi: 10.3389/fimmu.2021.653085

ORIGINAL RESEARCH
published: 25 March 2021

doi: 10.3389/fimmu.2021.653085
Kinetics of the Cellular and
Transcriptomic Response to Eimeria
maxima in Relatively Resistant and
Susceptible Chicken Lines
Abi Bremner1, Sungwon Kim1,2, Katrina M. Morris1, Matthew John Nolan2,
Dominika Borowska1, Zhiguang Wu1, Fiona Tomley2, Damer P. Blake2,
Rachel Hawken3, Pete Kaiser1† and Lonneke Vervelde1*

1 Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom,
2 Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom, 3 Cobb-Vantress
Inc., Siloam Springs, AR, United States

Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge
economic impact on poultry production. Knowledge of immunity to E. maxima and the
specific mechanisms that contribute to differing levels of resistance observed between
chicken breeds and between congenic lines derived from a single breed of chickens is
required. This study aimed to define differences in the kinetics of the immune response of
two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12)
or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were
infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4,
6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity
and magnitude of cytokine transcription responses post-infection between the two lines.
In particular, IFN-g and IL-10 transcript expression increased in the jejunum earlier in line
C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of
IFNG and IL10mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed
but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the
transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima
replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early
induction of the IFN-g and IL-10 responses, as well as immune-related genes including
IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.

Keywords: Eimeria, immune response, genetic resistance, interleukin-10, interferon
INTRODUCTION

Coccidiosis, which in poultry is caused by apicomplexan parasites of the genus Eimeria, causes huge
economic losses to the global poultry industry through decreased feed efficiency, reduced weight
gain, increased mortality, and the cost of prophylaxis and therapy. It is the most economically
important parasitic condition of poultry (1, 2). One of seven Eimeria species that can infect
chickens, Eimeria maxima, is commonly diagnosed in commercial chicken flocks (3, 4) and
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specifically invades and parasitizes enterocytes of the jejunum
where it can cause pathological lesions, resulting in villus
destruction and malabsorptive disease symptoms (5).
Currently, control of Eimeria is primarily achieved through in-
feed prophylaxis with anticoccidial drugs or by vaccination with
live or live-attenuated parasites. However, resistance to
anticoccidial drugs is common (6) and vaccination is complex,
requiring the preparation and administration of admixtures of
between three and eight different lines of parasite to confer
adequate protection against field challenge (7). A potential
alternative method of control could be to selectively breed
chickens that have enhanced resistance to Eimeria; however,
this requires knowledge of natural host immunoprotective
responses to Eimeria and the identification of biomarkers
of resistance.

Understanding the immunological basis of resistance to
Eimeria is an important step towards identifying biomarkers of
resistance for the selection of relatively resistant individuals
within commercial breeding stocks. Inbred lines 15I (MHC
type B15) and C.B12 (MHC type B12) are White Leghorn
chickens which display differential resistance and susceptibility
to E. maxima based on oocyst output (parasite replication).
Following primary infection line C.B12 chickens shed fewer
oocysts compared to line 15I, but both lines display complete
immune protection against homologous secondary infection
after which no oocysts are produced (8, 9). In line with this,
two-fold higher levels of E. maxima DNA have been detected in
the intestinal tissue of line 15I compared to line C.B12 chickens
at 5 days post-infection (dpi) (10). Another study reported that
line FP (MHC type B15/B21) chickens produce more oocysts than
line SC (MHC type B2) chickens after infection with E. maxima
(11). All these chicken lines were bred for specific MHC types,
however the immunological basis underlying resistance and
susceptibility to E. maxima is not well characterized.

Following E. maxima infection, cell-mediated immunity and
variation in T-cell responses appear to be central to the induction
of protective immunity (8, 12). Although parasite-specific
antibodies can protect against E. maxima infection, (13–15),
bursectomized (B-cell deficient) chickens were no more
susceptible to E. maxima challenge than non-bursectomized
control birds (16), suggesting that antibodies are not necessary
for elimination of the parasite. An array of cell-mediated
responses are a prominent feature of coccidiosis and attempts
have been made to correlate these responses with immunity.
Primary E. maxima infection leads to increased percentages of
CD8 (from 7 to 23 dpi) and gd T cells (from 14 to 28 dpi) in
peripheral blood leukocytes (PBL) in relatively resistant (line C)
chickens compared to relatively susceptible (line 15I and 61)
chickens, whereas there was no significant difference in CD4 and
ab2 T cells between these lines of chickens (8). Increased
numbers of CD4 lamina propria lymphocytes (LPL), but not
intraepithelial lymphocytes (IEL), were observed in relatively
susceptible Light Sussex chickens at 3 dpi (17), while CD8 LPL
and IEL were increased at 4 dpi (18). During E. maxima
infection, significantly increased gd and ab1 T cells were
reported in the epithelium at later time points (11 dpi), while
Frontiers in Immunology | www.frontiersin.org 2
ab2 T cells in the lamina propria increased at 4 and 11 dpi (18,
19), although there was induction-time variation dependent on
the genetic background of the chickens and the nature of the
challenge dose.

Interferon (IFN)-g, a key signature cytokine of Th1-
controlled immune responses, is a major cytokine that
mediates immune responses against many intracellular
pathogens including viruses (20, 21), Salmonella spp. (22) and
Eimeria spp. (23, 24). Early studies showed that increased serum
IFN-g protein and gut IFNGmRNA levels are strongly associated
with E. acervulina (24, 25), E. maxima (15) and E. tenella (26)
infection. During E. maxima infection, significantly increased
IFN-g protein was observed in both the gut and serum of
relatively susceptible (line SC) chickens, and serum IFN-g
levels are positively correlated with fecal oocyst shedding (15).
Additionally, E. maxima infection leads to induction of IFNG
mRNA levels in the IEL population of relatively susceptible (line
SC) chickens during primary infection, but not secondary
infection (19), suggesting IFN-g is involved in the response to
primary Eimeria spp. infection.

Interleukin (IL)-10 is an anti-inflammatory and regulatory
cytokine and is important in balancing inflammatory responses
to pathogens. During the characterization of biological roles of
chicken IL-10, its potential role as a biomarker for Eimeria spp.
infection was suggested. Increased IL10 mRNA levels were
observed in the spleen and the small intestine of relatively
susceptible (line 15I) chickens during E. maxima infection
compared to non-infected chickens, but not in relatively
resistant (line C.B12) chickens (27). Moreover, uninfected
relatively susceptible chickens had significantly higher IL10
mRNA levels in the spleen compared to relatively resistant
chickens (27), suggesting that levels of constitutive IL-10
expression may be dependent on host genetics. Further studies
showed increased IL10 mRNA levels in the liver and cecum (28)
and IL-10 protein in the serum (29) during E. tenella infection.
Furthermore, antibody-mediated depletion of luminal IL-10
reduced oocyst shedding in broilers given an attenuated
Eimeria spp. vaccine (30).

The present study aimed to characterize in detail the kinetics
of the immune responses of relatively resistant (line C.B12) and
susceptible (line 15I) inbred chickens to E. maxima infection. To
identify phenotypes that associate with resistance to E. maxima,
we investigated differences in gene expression and the systemic
and local kinetics of the IFN-g, and IL-10 response between the
two lines. Transcriptomic analysis revealed that interferon-
mediated immune responses were induced in line C.B12
chickens at 4 dpi compared to the relatively susceptible line
15I chickens at 6 dpi. Both IFNG and IL10 were expressed in
similar patterns during the course of infection in each line. Line
C.B12 chickens produced higher levels of IFN-g and IL-10
proteins in the jejunum and serum until 5 dpi compared to
line 15I chickens, whereas by 6-8 dpi line 15I chickens produced
higher levels of both. We also found that IFN-g and IL-10 protein
expression and mRNA transcription was highly correlated with
parasite burden, with the strongest correlation between
parasitemia and serum IL-10 in line 15I chickens.
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Furthermore, IL21 was identified as a novel gene linked to
resistance in line C.B12, with an expression pattern following
that of IL10 and IFNG during the course of E. maxima infection.
MATERIALS AND METHODS

Ethics Statement
Animal work was carried out in strict accordance with the
Animals (Scientific Procedures) Act 1986, an Act of Parliament
of the United Kingdom, following approval by the Royal
Veterinary College Animal Welfare Ethical Review Body
(AWERB) and the United Kingdom Government Home Office.
Animals and Parasites
Chickens of two inbred White Leghorn lines were used in this
study. Inbred line 15I, relatively susceptible to E. maxima
infection, originate from the Regional Poultry Research
Laboratory (East Lansing, MI). Reaseheath C (line C, C.B12)
chickens, relatively resistant to E. maxima infection, originate
from the University of Cambridge (Cambridge, UK). Both flocks
were maintained at the National Avian Research Facility (NARF;
The Roslin Institute, UK).

The Weybridge (W) strain of E. maxima was used (31).
Parasites were passaged at frequent intervals through dosing
and fecal recovery as described previously (32), and used less
than one month after sporulation.

Experimental Design, Sampling,
and Data Collection
Line C.B12 and 15I chickens were supplied at day-of-hatch
without prior vaccination to the Royal Veterinary College,
where chickens were reared in coccidia-free, environmentally
enriched conditions with feed and water provided ad libitum.
Chickens were housed following Defra stocking density
guidelines and raised under industry-standard conditions.
Prior to inoculation, chickens (n = 60 and n = 62 for lines
C.B12 and 15I, respectively) were randomly allocated to four
different pens corresponding to the two lines and two different
experimental treatments: control and infected. The absence of
prior coccidian infection was confirmed by fecal flotation. Three-
week-old chickens were orally infected with 100 sporulated E.
maxima oocysts (test) or sterile water (control).

In order to analyze differential kinetic immune responses
elicited by E. maxima infection, blood and small intestine
(jejunum) were collected from 3 chickens in the control groups
and a minimum of 5 chickens in the infected groups at 2, 4, 5, 6,
7, 8 and 13 dpi. Body weight was recorded individually two days
prior to infection and prior to culling at each sampling point and
the percentage weight gain calculated. Chickens were culled by
cervical dislocation following the Schedule 1 method, and death
confirmed by permanent cessation of circulation. Blood was
collected from the jugular vein immediately after culling. For
serum, blood samples were allowed to clot at room temperature,
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followed by centrifugation at 1,500 x g for 3 min and the
separated serum stored at -20°C.

Approximately 10 cm of small intestine, spanning 5 cm
anterior and posterior to the Meckel’s diverticulum (the mid-
point of the intestinal area infected by E. maxima) was excised
(32), and parasite-related lesions scored as described by
Johnson and Reid (33). Approximately 0.5 cm of jejunum,
1 cm anterior to the Meckel’s diverticulum, was collected into
RNAlater® Stabilization solution (Life Technologies, CA,
USA) for gene expression analysis and by snap-freezing in
liquid nitrogen for analysis of tissue protein levels. For
histology, 1 cm of jejunum tissue was snap frozen in
optimum cutting temperature (OCT) compound on liquid
nitrogen and stored at -80°C until use. For parasite
quantification, the remaining excised tissues were stored in
RNAlater® Stabilization solution at 4°C overnight then at -20°
C after removal of the reagent.

Isolation of Genomic DNA and Quantitative
PCR (qPCR) for E. maxima Replication
Total genomic DNA (gDNA) was isolated from the excised small
intestine as described previously (34). Briefly, tissue samples were
weighed and suspended in an equal volume (w/v) of tissue lysis
buffer (Buffer ATL, Qiagen, Crawley, UK), and homogenized
employing a TissueRuptor (Qiagen). Subsequently, the
equivalent of ≤ 25 mg of the homogenate was used to carry out
the gDNA isolation using a DNeasy® Blood and Tissue kit
(Qiagen) according to the manufacturer’s instructions. The
gDNA was stored at -20°C, until further investigation.

Quantitative PCR (qPCR) was performed as previously
described (34) using a CFX96 Touch® Real-Time PCR
Detection System (Bio-Rad Laboratories, CA, USA). For the
quantification of E. maxima total genome copy numbers, we
used the primers EmMIC1_For (forward: 5’-TCG TTG CAT
TCG ACA GAT TC-3’) and EmMIC1_Rev (reverse: 5’-TAG
CGA CTG CTC AAG GGT TT-3’) (10). The chicken
cytoplasmic b-actin (actb) gene was used for data normalization,
amplified using the primers actb_FW (forward: 5’-GAG AAA
TTG TGC GTG ACA TCA-3’) and actb_RV (reverse: 5’-CCT
GAA CCT CTC ATT GCC A-3’) (35). Briefly, each sample was
amplified in triplicate in a 20 µL volume containing 1 µL of total
gDNA, 300 nM of each primer, 10 µL of SsoFast™ EvaGreen®

Supermix (Bio-Rad Laboratories), and 8.8 µL of nuclease-free
water (Life Technologies) with qPCR cycling conditions that
consisted of 95°C for 2 min as initial denaturation, followed by
40 cycles of denaturation at 95°C for 15 sec and annealing/
extension at 60°C for 30 sec. Dissociation curves were generated
to analyze individual PCR products after 40 cycles. Each qPCR
assay included the relevant gDNA dilution series as standards (34)
and no template controls. The genome copy numbers from the
chicken (actb) and the E. maxima parasites (EmMIC1) were
estimated by comparison with the gDNA dilution series.
Triplicate data arising from each test sample were averaged and
standardized by comparison with the concentration of chicken
genome as a ratio of E. maxima genomes/chicken genomes.
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Total RNA Preparation and Quantitative
Real-Time PCR (qRT-PCR)
Total RNA was extracted from the jejunum using the RNeasy®

Mini Spin Column Kit (Qiagen) following the manufacturer’s
instruction. Briefly, approximately 25 mg of tissues were
homogenized in 2 mL tubes containing 600 mL of Buffer RLT
with 2% b-mercaptoethanol and a stainless steel bead (5 mm,
Qiagen) using a TissueLyser II system (Qiagen). The
supernatant was collected and applied to a QIAshredder
column (Qiagen) to improve the quality of total RNA. The
flow-through was mixed with an equal volume of 70% ethanol
and applied to an RNeasy® Spin column (Qiagen).
Contaminating gDNA was digested by on-column DNase
treatment using RNase-free DNase (Qiagen) and total RNA
was eluted with 80 mL of nuclease-free water (Qiagen). The
absorbance at 230, 260 and 280 nm was measured using a
NanoDrop 1000 spectrophotometer (Thermo Scientific). For
the transcriptomic study, the quantity and quality of total RNA
was assessed using a Qubit® RNA BR assay kit (Life
Technologies) by Qubit® 3.0 fluorometer (Life Technologies)
and an RNA ScreenTape (Agilent Technologies, USA) by 2200
TapeStation System (Agilent Technologies), respectively.

The mRNA levels of target cytokines were quantified by
TaqMan® real-time quantitative PCR (RT-qPCR) as described
previously (36) (Table 1). TaqMan assays were performed using
the One-Step RT-PCR Master Mix reagent, and amplification
and detection were performed using the TaqMan Fast Universal
PCR Master mix in the AB 7500 FAST Real-Time PCR System
(Applied Biosystems). Standard curves for each target gene were
generated as previously described (37). Each RT-qPCR assay
contained triplicate no-template controls, test samples and a
log10 dilution series of standard RNA. Relative gene expression
of the infected birds to control birds was calculated using the
Pfaffl method as described by Sutton et al. (36) and the results
were presented as log10 fold-change of target gene in each line at
each time point.
Frontiers in Immunology | www.frontiersin.org 4
RNA-Seq Library Construction,
Sequencing, and Data Analysis
The total RNA of 64 samples were submitted to Edinburgh
Genomics, where libraries from each of the 64 individuals were
generated using automated TruSeq stranded mRNA-Seq library,
and the individual jejunum transcriptomes were sequenced by
150 cycles generating paired-end reads using Illumina HiSeq
4000 technology to yield at least 290M reads. The 64 samples
included 3 control and 5 E. maxima infected samples from lines
C.B12 and 15I at 2, 4, 6 and 8 dpi.

Reads were trimmed using Trimmomatic (ver. 0.36) (38) to
remove adaptor sequences of the TruSeq Stranded mRNA kit
and for quality. After trimming, reads were required to have a
minimum length of 75 bases. The RNA-seq reads were mapped
to the reference genomes using the STAR aligner software
package (ver. 2.5.1b) (39). The reference genome used for
mapping was the Gallus gallus (Gallus_gallus-5.0) and Eimeria
maxima (EMW001) genomes from Ensembl (https://www.
ensembl.org/index.html). The annotation used for counting
was derived from the Gallus gallus genome only, such that
reads mapping to E. maxima were not counted in downstream
analysis. Raw counts for each annotated gene were obtained
using the featureCounts software (ver. 1.5.2) (40).

Differential gene expression analysis was performed using the
Bioconductor edgeR package (ver. 3.16.5) (41). Statistical
assessment of differential expression was carried out with the
likelihood-ratio test. Differentially expressed genes were defined as
those with FDR <0.05 and logFC > 1.6. Heatmaps were constructed
in R using the pheatmap package. Overrepresentation of GO terms
was investigated using the PANTHER Overrepresentation Test
(released December 5, 2017) using Fisher’s Exact test with FDR
correction for multiple testing. Network analysis for both sample-
sample and gene-gene networks was performed using BioLayout 3D
(42) which performs a Pearson correlation to obtain a matrix
calculated for each pair of samples or genes, using a modified
Fruchterman-Rheingold algorithm, with correlation cut offs of
TABLE 1 | Primers and probes used in RT-qPCR.

Target Gene Primers and Probe Sequences Standard RNA Accession Number

28S Probe 5’ (FAM)-AGGACCGCTACGGACCTCCACCA-(TAMRA) 3’ HD11 stimulated with LPS X59733
Forward 5’-GGCGAAGCCAGAGGAAACT-3’
Reverse 5’-GACGACCGATTTGCACGTC-3’

IL2 Probe 5’ (FAM)-ACTGAGACCCAGGAGTGCACCCAGC-(TAMRA) 3’ ExCOS-7 IL-2 mRNA AJ009800
Forward 5’-TTGGAAAATATCAAGAACAAGATTCATC-3’
Reverse 5’-TCCCAGGTAACACTGCAGAGTTT-3’

IL6 Probe 5’ (FAM)-AGGAGAAATGCCTGACGAAGCTCTCCA-(TAMRA) 3’ ExCOS-7 IL-6 mRNA AJ309540
Forward 5’-GCTCGCCGGCTTCGA-3’
Reverse 5’-GGTAGGTCTGAAAGGCGAACAG-3’

IL10 Probe 5’ (FAM)-CCAACTGCTCAGCTCTGAACTGCTGGAT-(TAMRA) 3’ ExCOS-7 IL-10 mRNA AJ621614
Forward 5’-GAAATTAAGGACTATTTTCAATCCAGAGA-3’
Reverse 5’-ACAGACTGGCAGCCAAAGGT-3’

IL21 Probe 5’ (FAM)-TGCTGCATACACCAGAAAACCCTGGG-(TAMRA) 3’ ExCOS-7 IL-21 mRNA AM773757
Forward 5’-AAAAGATGTGGTGAAAGATAAGGATGT-3’
Reverse 5’-GCTGTGAGCAGGCATCCA-3’

IFNG Probe 5’ (FAM)-TGGCCAAGCTCCCGATGAACGA-(TAMRA) 3’ ExCOS-7 IFN-g mRNA Y07922
Forward 5’-GTGAAGAAGGTGAAAGATATCATGGA-3’
Reverse 5’-GCTTTGCGCTGGATTCTCA-3’
March 2021 | Volum
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r = 0.93 (sample-sample) and r =0.87 (gene-gene). Clustering was
performed on these networks using the Markov clustering
algorithm (MCL) with an inflation value of 2.4 (sample-sample)
and 1.4 (gene-gene). The IPA program (Ingenuity® System)
was used to identify cellular canonical pathways and
physiological functions that are affected by E. maxima infection
in the host (p-value < 0.05 and q-value < 0.05).

Preparation of Protein Lysates From Tissue
Samples and Capture ELISA Assays
To determine protein levels of cytokines in tissues, protein lysates
were prepared from the collected jejunum using the modified
protein lysis buffer (20 mM Tris (pH 7.5), 100 mM NaCl, 0.5%
NP-40 (IGEPAL® CA-630, Sigma), 0.5 M EDTA, 0.5 mM
phenylmethylsulfonyl fluoride (Sigma) and 0.5% protease
inhibitor cocktail (Sigma)). Approximately 20 mg of jejunum
were mixed with 600 mL of the prepared protein lysis buffer and
homogenized using 5 mm stainless steel beads (Qiagen) and a
TissueLyser II system (Qiagen), twice at 25 Hz for 2 min with a
5 min incubation on ice between the two homogenizations. The
samples were centrifuged at 13,000 x g for 10 min at 4°C and the
supernatants transferred to chilled microcentrifuge tubes.
The concentrations of the protein lysates were measured using
the BCA Protein Assay kit (Thermo Scientific) according to the
manufacturer’s instructions.

IL-10 and IFN-g protein levels in serum and tissues were
measured by ELISA. IL-10 was quantified using an in house-
developed ELISA system (kindly provided by Dr. Z. Wu) for
serum as described previously (29) and was adapted for use with
tissue lysates. Briefly, assay plates (Nunc Immuno MaxiSorp,
Thermo Scientific) were coated with 3 mg/mL of capture antibody
diluted in carbonate/bicarbonate buffer at 4°C overnight. Plates were
incubated with 50 mL of 2-fold serially diluted standards, sera or
protein lysates for 1 hr, followed by incubation with 1 mg/mL of
detection antibody for 1 hr. The plates were incubated with the
Pierce High Sensitivity streptavidin-HRP (1:10,000 dilution,
Thermo Scientific) for a further hour before adding 50 mL of 1-
Step Turbo TMB (Thermo Scientific). After 10 min, the reaction
was stopped by adding 50 mL of 2 N sulfuric acid. The absorbance
was read at 450 nm (650 nm as a reference). Serum and tissue IFN-g
levels were quantified using the Chicken IFN-g CytoSet kit (Life
Technologies) as per the manufacturer’s instructions.

The standard curve was fitted to a four-parameter logistic
regression curve and final concentration measures were determined
using the online program provided by elisaanalysis.com (http://www.
elisaanalysis.com/). The quantity of IL-10 and IFN-g protein in the
jejunumwas converted from the concentration determined by ELISA
to the quantity of protein in 1 mg of tissue by correcting for the
amount of protein lysate used in the ELISA and the total protein
lysate in 1 mg of tissue.

Immunohistochemistry (IHC)
Immunohistochemistry was performed to determine differences in
cell populations in the jejunum of line C.B12 and 15I chickens at 4
dpi with E. maxima. Cryostat sections (7 mm thick) were picked
onto Superfrost® glass slides (Thermo Scientific) and air-dried.
Sections were fixed in acetone with 0.75%H2O2 for 10min at room
Frontiers in Immunology | www.frontiersin.org 5
temperature and air-dried for a further 5 min. The sections were
incubated with monoclonal antibodies (purchased from Southern
Biotech, Cambridge, UK, Table 2) specific for various leukocyte
subpopulations. The Vectastain Elite ABC (Mouse IgG) Kit
(Vector Laboratories, CA, USA) was used to detect monoclonal
antibodies and peroxidase activity developed using the AEC
staining kit (Sigma) following the manufacturer’s instructions.
Subsequently, sections were counterstained with hematoxylin Z
(CellPath, Newtown, UK), and bluing performed with Scott’s Tap
Water (tap water, 2% magnesium sulfate, 0.35% sodium
bicarbonate). Slides were mounted in Aquamount AQ (Vector
Laboratories) and images were captured with an Eclipse Ni
microscope (Nikon, Tokyo, Japan), followed by quantification of
the subpopulation of T lymphocytes using ZEN lite 2012 software
(blue edition, Carl Zeiss). To enumerate cell sub-populations in the
jejunum, the number of lamina propria lymphocytes (LPL) and
IEL were counted per 300 mm length of villi and per 150 x 150 mm2

area of crypts. Cells were counted from 3 different areas per section
and 3 villi or crypt regions were selected per area.

Statistical Analysis
All statistical analysis was conducted with Minitab 17 software
(Minitab Inc., USA). Data were analyzed for normality using the
Anderson-Darling test. Data were not normal and significance
was therefore assessed by the Mann-Whitney U test. The
Spearman’s rank correlation coefficient was calculated to
evaluate relationships between parasitemia and host immune
responses, and each cytokine in the serum and jejunum.
RESULTS

Comparison of Body Weight Gain and
E. maxima Load Between Relatively
Resistant and Susceptible Chickens
To examine the impact of E. maxima infection on the growth of
line C.B12 (relatively resistant) and line 15I (relatively susceptible)
March 2021 | Volume 12 | Article 653085
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TABLE 2 | Antibodies used in IHC staining.

Antibody Specificity Clone Dilution Reference

Mouse anti-
chicken CD4

Chicken CD4 CT-4 1:400 Chan et al
(78)

Mouse anti-
chicken
CD8a

Chicken CD8a 3-298 1:400 Luhtala
et al. (79)

Mouse anti-
chicken
TCRgd

Chicken TCRgd TCR1 1:400 Chen et al
(80)

Mouse anti-
chicken
TCRab/vb1

Chicken TCRab1 TCR2 1:400 Chen et al
(80)

Mouse anti-
chicken
monocyte/
macrophage

Chicken mannose receptor 1
(MRC1) on monocytes,
macrophages, interdigitating
cells and microglia

KUL01 1:800 Mast et al.
(81)

Mouse anti-
chicken
Bu-1/ChB6

Chicken chB6, present on B
cells and epithelial NK cells

AV20 1:800 Rothwell
et al. (82)
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chickens, the percentage weight gains were calculated for
individual birds from 2 days prior to E. maxima infection to the
time of culling (Figure 1A). E. maxima infection did not affect
body weight gain (BWG) compared to control birds and there was
no significant difference between the two lines during the course of
the experiment. The low challenge dose did not result in lesions in
the gut of either line.

E. maxima genome copy numbers sharply increased at 6 dpi
to similar levels in both lines of birds (Figure 1B). Thereafter the
genome copy numbers decreased in both lines but was
significantly higher in the jejunum of line 15I compared with
line C.B12 chickens at 7 and 8 dpi. By 13 dpi, no significant
difference in E. maxima genome copy number was apparent
between the two lines. Eimeria genomes remained detectable 1
day later in relatively susceptible line 15I chickens.
Comparison of Global Kinetic Gene
Expression Profiles Between Relatively
Resistant and Susceptible Chickens
During E. maxima Infection
To explore host responses to E. maxima infection and the genetics
underlying the relative differences in resistance and susceptibility
between line C.B12 and 15I chickens, transcriptome analysis was
performed. Differentially expressed genes (DEGs) were identified
within the jejunum anterior to the Meckel’s diverticulum, the site
of peak E. maxima replication, between control and infected
chickens of each line at 2, 4, 6 and 8 dpi under the following
conditions: False Discovery Ratio (FDR) < 0.05 and log(Fold
Change (FC)) > 1.6 (Tables 3; S1, S2). Line 15I chickens
showed very little response at 2 dpi (5 DEGs) and 4 dpi (3
DEGs), but had a large number of DEGs at 6 dpi (1124 DEGs). In
contrast, line C.B12 had already established a substantial response
by 4 dpi (177 DEGs), but also demonstrated a peak response at 6
dpi (666 DEGs). In line C.B12, 42.2% and 26.8% of the DEGs were
immune-related in function at 4 and 6 dpi, respectively. In line 15I,
there was no differential expression in immune-related genes at 4
dpi, while 29.2% of DEGs at 6 dpi were immune-related. Immune
genes upregulated strongly in both lines at day 6 included IFNG,
chemokines and complement components. Analysis using the
Markov clustering algorithm indicated that samples from line
C.B12 at 6 dpi and line 15I at 8 dpi were the furthest distance from
controls, indicating that globally the peak responses may occur at
these times (Figure 2A). A network graph of unbiased gene-to-
gene clustering was constructed (Figure 2B, Table S3). Out of 12
clusters, cluster 5 revealed a set of 163 genes (Figure 2C), which
included IFNG and IL10, that were strongly elevated at 6 dpi in
both lines of chickens, but also earlier at 4 dpi in line C.B12
chickens. Further functional analysis revealed that genes of this
cluster are mainly involved in interferon signaling, the Th1
pathway, and the Th1 and Th2 activation pathways. Genes in
Cluster 5 included the IFN-a/b receptor (IFNAR), IFNG,
interferon regulatory factor (IRF), protein tyrosine phosphatase
(PTPN2), signal transducer and activator of transcription 1 and 2
(STAT1 and STAT2), transporter 1 ATP binding cassette (TAP1,
participates in the interferon signaling pathway), CD80, CD274,
delta like canonical Notch ligand 4 (DLL4), IL10, IL12A
Frontiers in Immunology | www.frontiersin.org 6
(participates in the Th1 pathway, and Th1 and Th2 activation
pathways), C-C motif chemokine ligand 1 (CCL1), CCL4,
complement components 1s (C1S), C1R, and genes involved in
the JAK-STAT cascade.

Kinetics of Differential Gene
Expression in Relatively Resistant
and Susceptible Chickens
At 2 and 4 dpi, E. maxima-infected line 15I chickens had only 5
and 3 significant DEGs respectively, compared to control birds,
although none of these were immune-related (Table S1). At 6
dpi, the largest increase in the expression of immune-related
genes in line 15I was observed with 25% of upregulated genes
with known functions having immune roles (Table S1). The
pathways associated with the response of line 15I chickens at 6
A

B

FIGURE 1 | Body weight gains and parasite replication in line C.B12 and 15I
chickens following E. maxima infection. Three-week-old birds were orally
infected with 100 sporulated E. maxima oocysts (n = 5 per line) or sterile water
(n = 3 per line). (A) Percentage of body weight gains were calculated for
individual birds from 2 days prior to inoculation to time of culling at time points
as indicated. The results were presented as the mean percentage of body
weight gain and error bars represent standard deviation. (B) Eimeria maxima
replication was quantified by qPCR targeting the MIC1 gene. The results were
presented as the ratios of parasite genome vs host genome copy numbers for
individual birds. Matching letters indicate significant differences between the two
lines at p < 0.05 on the same day (n = 5 per time point).
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dpi were primarily involved in T cell differentiation including
differentiation into Th1 and Th2 subsets (Figure 3A). Gene
ontology (GO) term enrichment analysis also highlighted the IL-
21, IL-2 and IFN-g pathways (Table S4). The highest upregulated
protein coding genes were a complement receptor (homolog of
CR1), IFNG and a gene involved in lipid metabolism (ELOVL3).
Significant upregulation of immune-related genes was still
observed at 8 dpi in line 15I, with 14.8% of 638 DEGs being
immune-related. Upregulated genes at 8 dpi are involved in the
complement and cell replication pathways, while genes
associated with coagulation were downregulated (Figure 3B,
Table S4). IFNG and IL10 continued to be significantly
upregulated at 8 dpi, and chemokines CCL26 and chCCLi7
were highly upregulated.

In comparison with relatively susceptible (line 15I) chickens,
relatively resistant (line C.B12) chickens developed immune
responses to E. maxima infection as early as 2 and 4 dpi. A total
of 13 DEGs were identified between E. maxima-infected line
C.B12 compared to non-infected chickens at 2 dpi (Table 1).
Most of these genes upregulated were associated with erythrocytes.
At 4 dpi in line C.B12, 42% of 177 DEGs were immune-related
genes (Table S2). Further functional analysis revealed that genes
involved in the interferon signaling and Th1 pathways were
strongly upregulated (Figure 3C) including interferon-induced
protein with tetratricopeptide repeats 1 (IFIT1), MX dynamin
GTPase 1 (MX1, participates in the interferon signaling pathway),
CD274, suppressor of cytokine signaling 3 (SOCS3, participates in
the Th1 pathway), IFNG, SOCS1 and signal transducer and
activator of transcription 1 (STAT1, participates in both
pathways). GO term enrichment analysis indicated genes
associated with T-cell activity, the IFN-g pathway, the JAK-
STAT cascade and response to virus were strongly upregulated
(Table S5). The highest upregulated protein coding genes were
IFNG, a homolog of lysozyme-G (ENSGALG00000044778),
CCL4, and GTPase very large interferon inducible pseudogene 1
(GVINP1). Some of the upregulated interferon-stimulated genes
such as radical S-adenosyl methionine domain containing 2
(RSAD2), IFIT1, MX1 and 2’-5’-oligoadenylate synthetase like
(OASL) were not significantly upregulated at any time point in
line 15I chickens (Table S1). At 6 dpi, interferon and T-cell related
genes continued to be upregulated in line C.B12, with the highest
peak of IFNG and IL10 expression observed (Figure 3D; Table
S2). By 8 dpi, the response of line C.B12 chickens had subsided
Frontiers in Immunology | www.frontiersin.org 7
with only 171 DEGs (Table S2). These genes varied, and no
significantly enriched GO terms were identified. Ingenuity
pathway analysis revealed that only the coagulation pathway –
regulated by fibrinogen gamma (FGG), kininogen 1 (KNG1),
plasminogen (PLG)—was significantly downregulated in line
C.B12 at 8 days post E. maxima infection.

Comparison of the Immune Responses
Between Line C.B12 and Line 15I Chickens
To directly compare the response to infection in the two chicken
lines, the DEGs with the highest mean difference in logFC during
E. maxima infection between the lines were examined, and the top
50 were plotted in a heatmap (Figure 4A). DEGs uniquely
upregulated in line 15I included cytokines and genes associated
with chemotaxis (TNF receptor superfamily member 13C
(TNFRSF13C), C-X-C motif chemokine ligand 13 (CXCL13),
chemokine ah221 (CCL9) and Pre-B lymphocyte protein 3
(VPREB3). A group of interferon-stimulated viral response
genes (IFIT5, RSAD2, MX1, OASL) and ubiquitin specific
peptidase 18 (USP18) were upregulated at 4 and 6 dpi in line
C.B12 but not line 15I chickens, further highlighting that this
pathway is responding at a relatively higher level in line C.B12
compared to line 15I chickens. An additional group of genes was
strongly upregulated in line C.B12 at 6 dpi only. Many of these
genes are involved in epidermis development (keratin 75 (KRT75),
KRT15, KRT12, ALX homeobox 4 (ALX4), homeobox B13
(HOXB13), suggesting that tissue repair is occurring at this time
point in line C.B12, but may be delayed in line 15I.

To further investigate the differences between the two
chicken lines, we compared pathways enriched in each line
using IPA software (Figure 4B). This highl ighted
commonalities and differences between the responses of the
lines. The coagulation pathway was downregulated in both
lines at 6 and 8 dpi, while genes associated with cell cycle
regulation were uniquely downregulated in line 15I. The Th2
and the Tec kinase signaling pathways were upregulated in
both lines at 6 dpi, as was interferon signaling, although the
latter pathway was significantly enriched already at 4 dpi in
line C.B12 chickens. Pathways that showed a stronger
enrichment in line 15I compared to C.B12 chickens included
the Th1, T helper cell and complement pathways. Analysis of
the predicted upstream regulators revealed that both chicken
lines share many of the same upstream regulators including
TABLE 3 | Number of differentially expressed genes (DEGs).

Contrast Total number of DEGs1 Immune-related genes (%)2

Up Down Up Down

Line 15I infected vs. control at 2 dpi 3 2 0 0
Line 15I infected vs. control at 4 dpi 1 2 0 0
Line 15I infected vs. control at 6 dpi 845 279 24.7 4.5
Line 15I infected vs. control at 8 dpi 303 335 14.8 6.6
Line C.B12 infected vs. control at 2 dpi 12 1 0 100
Line C.B12 infected vs. control at 4 dpi 68 109 42.2 0
Line C.B12 infected vs. control at 6 dpi 314 352 17.2 9.6
Line C.B12 infected vs. control at 8 dpi 48 123 29.6 9.6
March 2021 | Volume 12 |
1The threshold: FDR < 0.05 and abs FC > 1.6.
2Immune-related genes are the percentage of genes with human orthologs in which the human ortholog is categorized as having immune function under Gene Ontology classification.
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IFNG, CSF2 and vascular endothelial growth factor A (VEGF)
although the activation of these generally occurred at 4 and 6
dpi in line C.B12 and at 6 and 8 dpi in line 15I chickens
(Figure 4C).

A previous genome-wide association study using an F2
intercross between lines C.B12 and 15I revealed a 35 MB
Frontiers in Immunology | www.frontiersin.org 8
region of chromosome 2 is significantly associated with
resistance to coccidiosis (43, 44). We identified genes in this
region that were differentially regulated at one or more time
points (Table S6). Forty-seven genes in this region were
differentially regulated in at least one condition. Out of 47, 10
genes were differentially expressed between two lines, including
A

B

C D

FIGURE 2 | A network graph of unbiased sample-to-sample and gene-to-gene clustering. Sample-sample networks colored by treatment group (A-I) and Markov
clustering (A-II). Gene-gene network graph of Markov clustered genes (B), with normalized expression across samples (mean-centered scaling) of each cluster in the
surrounding charts. Genes in cluster 5 (C) including IFN-g and IL-10 have strongly elevated expression at 6 dpi in both lines of chickens, but also earlier at 4 dpi in
line C.B12 chickens. Pathways enriched in cluster 5 are shown in (D).
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ATP binding cassette subfamily A member 13 (ABCA13H),
Dermatan sulfate epimerase like (DSEL), Serpin family B
member 2 (SERPINB2) and Sad1 and UNC84 domain
containing 3 (SUN3). The F-box protein 15 (FBXO15), which
is involved in the MHC class I processing pathway, was
Frontiers in Immunology | www.frontiersin.org 9
downregulated earlier in the line C.B12 compared to line 15I
chickens during E. maxima infection. The interferon alpha
inducible protein 6 (IFI6), which plays a role in cell apoptosis,
was upregulated in line C.B12 at 6 dpi but not in line 15I
chickens, compared to non-infected chickens.
A

B

C

D

FIGURE 3 | Global transcriptional analysis of cellular canonical pathways and physiological functions. Ingenuity pathway analysis during E. maxima infection in line
15I at 6 (A) and 8 (B) dpi and line C.B12 chickens at 4 (C) and 6 (D) dpi. Color based on Z-score with orange indicating activated pathways and blue indicating
de-activated pathways.
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Differential Kinetics of IFN-g and IL-10
Expression in the Jejunum of Relatively
Resistant and Susceptible Chickens
Following E. maxima Infection
During the analysis of RNA-Seq results, we discovered that IFNG
and IL10 expression increased more rapidly post-infection in line
C.B12 (4 dpi) compared to line 15I (6 dpi) (Figure 5A).
Expression of IFNG was significantly increased (FDR < 0.05) at
6 and 8 dpi in line 15I, but in line C.B12 at 4, 6 and 8 dpi, while
IL10 was significantly upregulated at 6 and 8 dpi in line 15I and
at 6 dpi in line C.B12. Although IL10 was not significantly
upregulated at 4 dpi in line C.B12, this is likely due to the high
variance between birds at this time point, with some samples
showing elevated IL10 counts.

To verify the transcriptomic results and to obtain insight into
the role of IFN-g and IL-10 in susceptibility to E. maxima
Frontiers in Immunology | www.frontiersin.org 10
infection, IFNG and IL10 mRNA levels in lines C.B12 and 15I
were determined in the jejunum at 2, 4, 5, 6, 7, 8 and 13 dpi
(Figure 5B). Across control birds of all time points, line C.B12
birds had significantly higher (p<0.01) IFNG mRNA
transcription in the jejunum compared to line 15I. In both
chicken lines, the greatest increase in IFNG mRNA
transcription, relative to control birds of the same line, was at
6 dpi (Figure 5B). At 6 and 8 dpi, line 15I exhibited significantly
greater increases in IFNG mRNA levels compared to line C.B12
chickens. Analysis of IFN-g protein in the jejunum by ELISA
revealed biphasic increases in IFN-g production at 5 and 7 dpi in
both chicken lines (Figure 5C). During E. maxima infection, line
C.B12 exhibited significantly increased IFN-g protein in the
jejunum at 2, 4, 5, 7 and 8 dpi, whereas line 15I had
significantly increased IFN-g protein at 5 and 7 dpi compared
to their non-infected counterparts. Following infection, line 15I
A C

B

FIGURE 4 | Comparison of line 15I and C.B12 chickens during E. maxima infection. Heatmap (A) showing genes that presented the highest mean fold difference
between lines. Functional pathway analysis (B) and predicted upstream regulators in both lines (C) are presented with color based on Z-score; orange indicating
activated pathways or regulators and blue indicating de-activated pathways or regulators.
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A

B
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D

FIGURE 5 | Kinetics of IFNG and IL10 mRNA transcription by RNA-Seq (A) and RT-qPCR (B), protein levels in the jejunum (C) and protein levels in the serum (D) of
E. maxima-infected chickens. Three-week old birds were orally inoculated with 100 oocysts of E. maxima (solid markers) or sterile water (control birds; hollow
markers) and jejunum and serum samples collected at various days post-infection as indicated. Data are presented as individual birds. For RT-qPCR data, the
relative quantity (RQ) of mRNA transcription of individual infected birds was calculated relative to the mean of control birds of the same line at individual time points
and normalized using the 28S reference gene. Matching letters denote significant differences between groups on the same day (p < 0.05, n = 3 for control and n = 5
for infected groups). C, control; I, infected; Line C.B12 shown as red circles, line 15I as blue squares.
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birds exhibited higher levels of IFN-g protein in the jejunum at 6
and 8 dpi compared to line C.B12.

At 4 dpi, line C.B12 transcribed higher levels of IL10mRNA in
the jejunum relative to age-matched control birds of the same line
and control or infected line 15I birds (Figure 5B). However, the
transcription of IL10 mRNA in the jejunum of line 15I was
dramatically increased, relative to controls, at 6 dpi, whereas line
C.B12 expressed similar increases in IL10 mRNA levels at 2, 4, 6
and 13 dpi. There was no significant difference in the basal
transcription of IL10 between control birds of the two lines
across all time points. Similarly to IFN-g protein levels in the
jejunum, there were two peaks of IL-10 protein levels in the
jejunum at 5 and 7 dpi (Figure 5C). The levels of IL-10 protein in
the jejunum of the control birds was either lower than the limit of
detection (as in line 15I) or very little was present (as in line C.B12)
across all time points. At 5 dpi, there were significantly increased
IL-10 protein levels in the jejunum of both lines of chicken. The
increased IL-10 protein induced by E. maxima infection then
slightly decreased at 6 dpi, but increased again at 7 dpi. Unlike
mRNA levels, there was no significant difference in IL-10 protein
levels between the two lines at any of the time points.

We also measured mRNA levels of Th17-associated genes
IL17A, IL17F, IL21, IL2 and IL6 (Figures 6 and S1). Although the
expression of IL2 mRNA levels at 2 and 6 dpi seemed to be
upregulated, the change was not significant due to the high
variance between chickens (Figure S1). Among the measured
genes, only IL21 showed a significant increase in the jejunum of
both lines of chickens during E. maxima infection (at 4 and 6
dpi) compared to their non-infected counterparts (Figure 6A).
Additionally, at 4 and 6 dpi, line 15I transcribed significantly
higher IL21 mRNA levels compared to line C.B12 chickens
whereas at 13 dpi, IL21 mRNA was higher in line C.B12 birds.
However, the protein levels of IL-21 in jejunum and serum were
either very low or below the detection limit of the ELISA.

Differential Kinetics of IFN-g and IL-10
Levels in the Serum of Relatively Resistant
and Susceptible Chickens Following
E. maxima Infection
Unlike the levels of IFN-g protein in the jejunum, the kinetics of
serum IFN-g differed between the lines with C.B12 peaking at 4
and 6 dpi and line 15I at 7 dpi (Figure 5D). E. maxima-infected
line C.B12 exhibited significantly higher levels of serum IFN-g at
4, 6 and 13 dpi compared to non-infected chickens. In line 15I,
significantly higher serum IFN-g was observed at 6 and 7 dpi
compared to non-infected chickens. Compared to infected line
C.B12, infected line 15I chickens had significantly higher serum
IFN-g at 7 dpi.

Serum IL-10 levels were significantly increased in line C.B12
following E. maxima infection at 4, 5, 6 and 7 dpi, while in line
15I, significantly increased serum IL-10 was observed from 4 to
13 dpi during E. maxima infection (Figure 5D). At 4 dpi, line
C.B12 had higher levels of serum IL-10 compared to line 15I
following E. maxima infection. However, serum IL-10 levels in
the E. maxima-infected line 15I were significantly higher than
that of C.B12 chickens at 6, 7 and 8 dpi. The levels of serum IL-10
Frontiers in Immunology | www.frontiersin.org 12
in line 15I were dramatically increased at 7 dpi during E. maxima
infection, whereas in line C.B12 chickens, serum IL-10 levels
remained similar to those observed at 5 and 6 dpi.
A

B

C

FIGURE 6 | Kinetics of IL21 mRNA transcription (A) and protein expression
(B) in the jejunum and IL-21 protein levels in the serum (C) of E. maxima-infected
chickens. Three-week old birds were orally inoculated with 100 oocysts of E.
maxima or sterile water (control birds) and jejunum and serum samples collected
at various days post-infection as indicated. Data are presented as individual birds.
For RT-qPCR data, the relative quantity (RQ) of mRNA transcription of individual
infected birds was calculated relative to the mean of control birds of the same line
at individual time points and normalized using the 28S reference gene. Matching
letters denote significant differences between groups on the same day (p < 0.05,
n = 3 for control and n ≥ 5 for infected groups). C, control; I, infected.
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Correlation Between Local and
Systemic IFN-g and IL-10 Production
and Parasite Burden
To investigate the effect of IFN-g and IL-10 on E. maxima
burden, the correlation between jejunum and serum IFN-g and
IL-10 protein levels and E. maxima replication were calculated
(Table 4). Both local (jejunum) and systemic (serum) IFN-g and
IL-10 levels in both lines of chickens correlated positively with
E. maxima burden. Serum IFN-g in line 15I correlated more
strongly with E. maxima burden than in line C.B12 chickens,
whereas tissue IFN-g correlated more strongly with E. maxima
burden in line C.B12 compared to line 15I chickens. Both serum
and jejunum IL-10 in line 15I correlated more strongly with
E. maxima burden compared to line C.B12 chickens. We also
measured the effect of IFN-g and IL-10 on BWG. Although the
expression of IFN-g and IL-10 in the jejunum and serum
correlated negatively with BWG, the correlation was not
significant (p > 0.05) (data not shown).

Cellular Changes Following
E. maxima Infection
To investigate and compare changes to the immune cell
populations in the two lines of chickens at the early stages of
E. maxima infection, IHC was performed with jejunum collected
at 4 dpi (Figure 7). We first compared jejunum of uninfected
birds to establish if intrinsic differences between the lines existed.
There was no significant difference in the number of cells
expressing any of the measured cell markers in the villus
lamina propria (Figure 7A) or epithelium (Figure 7B) between
the two lines, although line C.B12 displayed slightly higher
numbers of CD4+, CD8a+, gd+ T and ab1+ T cells.

At 4 dpi, there was no difference in the population of the
measured cell markers between E. maxima-infected and non-
infected chickens in the jejunal lamina propria or epithelium of
either chicken line. However, comparison of the number of cells
in E. maxima-infected tissues revealed significantly lower
numbers of CD4+, CD8a+ and MRC1L-B+ cells in the lamina
propria (Figure 7A) and ab1+ T cells in the epithelium of the
villi (Figure 7B) in line 15I compared to line C.B12 chickens.

We also measured changes to the immune cell populations in
the lamina propria and epithelium of the crypts in both lines of
chicken (Figure S2). There was no significant difference in the
number of cells between uninfected chickens of line C.B12 and
Frontiers in Immunology | www.frontiersin.org 13
line 15I, or between E. maxima-infected and non-infected
chicken within each line. Comparison of the number of cells in
the crypts of E. maxima-infected chickens revealed significantly
lower numbers of ab1+ T cells and higher numbers of chB6+ cells
in the epithelium of line 15I compared to line C.B12 chickens
(Figure S2B).
DISCUSSION

Understanding the basis of host resistance to E. maxima is
important for the commercial poultry industry as it would
enable identification of quantifiable resistance or susceptible
phenotypes, allowing for the selective breeding of chickens for
resistance against this and possibly other Eimeria species. Thus,
investigation of host responses to Eimeria infection in the
relatively resistant and susceptible White Leghorn chicken lines
C.B12 and 15I has important economic implications for the
poultry production industry, in addition to avian well-being and
food security. In this study, we characterized the kinetics of
differential gene expression in these two lines of chicken, as well
as the kinetics of local and systemic protein expression andmRNA
transcription of IFN-g, IL-10, IL-21 and Th17 responses. We have
also investigated cellular differences between control and infected
birds of both lines during the early stages of infection. The results
indicate the importance of early activation of interferon signaling
pathways, with IFN-g, IL-10 and IL-21 responses during the innate
phase of infection associated with resistance to E. maxima. This
research builds on previous work, investigating the importance of
these responses from transcriptome to protein levels in the
jejunum, the site of E. maxima infection, and systemically at the
protein level in the serum.

Transcriptomic analysis of jejunal tissue from chicken lines
C.B12 and 15I infected with E. maxima revealed differences in
the kinetics of the host immune response and provided
information on the different biological pathways involved.
Commonalities between the two lines included strong
upregulation of IFNG, various chemokines and complement
components at 6 dpi, which agrees with previous transcriptome
based analysis of chicken cecal epithelial responses to E. tenella
(45). Although there was no difference in E. maxima replication at
4 dpi between the two lines, early immune responses observed in
relatively resistant line C.B12 at this time point, in particular
TABLE 4 | Correlation of IFN-g and IL-10 in serum and jejunum with E. maxima replication.

Line 15I Line C.B12

IFN-g Serum 0.52 0.19
(p < 0.001) (p = 0.25)

Tissue 0.51 0.63
(p < 0.001) (p < 0.001)

IL-10 Serum 0.74 0.61
(p < 0.001) (p < 0.001)

Tissue 0.64 0.57
(p < 0.001) (p < 0.001)
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interferon responses, may be sufficient to reduce E. maxima
replication by 7 dpi. In line 15I these responses did not occur
until 6 dpi, potentially leading to a delay in the inhibition of E.
maxima replication. While the level of E. maxima replication
varies between line C.B12 and 15I chickens, it appears that the
timing and progression of the parasite lifecycle does not, illustrated
by the duration and profile of oocyst excretion (10) and
transcription of zoite-specific transcripts such as immune
mapped protein 1 (IMP1) (46). Pathways involved in Th1 and
Th2 responses were also upregulated at 4 dpi in line C.B12.
Although 4 dpi is likely too early for such adaptive responses,
Frontiers in Immunology | www.frontiersin.org 14
higher numbers of CD4, CD8a and ab1 T cells were present in the
jejunum of control and infected line C.B12 compared to line 15I
birds, and are cell types associated with these responses. Regardless
of resistance and susceptibility to E. maxima, both chicken lines
share many of the same upstream regulators including IFN-g, IL-
10RA and IL-2 that may cause changes in gene expression.
However similar to functional pathway analysis, all the predicted
upstream regulators affect expression in line C.B12 at 4 dpi and 6
dpi, whereas line 15I chickens are not affected by the same
upstream regulators until 6 dpi, supporting the importance of
the early immune responses in resistance to E. maxima infection.
A

B

FIGURE 7 | Populations of CD4, CD8a, gd T cells, ab1 T cells, chB6 and MRC1L-B LPL (A) and IEL (B) in the jejunal villi of line C.B12 and line 15I chickens at 4
dpi with E. maxima. Shown are data comparing control birds of both lines, infected birds of both lines, control and infected line C.B12 birds and control and infected
line 15I birds. LPL and IEL were counted from nine villi of one section per bird (n = 3 for uninfected and n ≥ 5 for infected groups). Each bar represents the mean
number of cells per 300 mm of villus (± SD). Matching letters denote significant differences between groups (p < 0.05). C, Control; I, infected.
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Transcriptomic analysis also revealed a set of interferon-
stimulated genes that were uniquely responding in line C.B12,
including MX1, RSAD2 and OASL, that may be involved in the
relative resistance displayed by line C.B12.

One of the important findings of this study was that higher
increases in early (2 and 4 dpi) IFN-g and IL-10 production were
present in the E. maxima-resistant chicken line, whereas a more
gradual increase (a minor increase at 2 and 4 dpi but a dramatic
increase at 6 and 8 dpi) in production of these cytokines was
observed in the relatively E. maxima-susceptible line. These
findings indicate that the timing at which the immune
response is mounted is paramount to resistance. These results
were evaluated by IHC, showing that, although not statistically
significant, an intrinsically higher presence of IFN-g-producing
[CD4+, ab1+ T cells and MRC1L-B+ macrophages (47)] LPL and
IEL were present in relatively resistant line C.B12 in the villi of
control birds than in line 15I at 4 dpi. Moreover, significantly
higher numbers of MRC1L-B+ macrophages, CD4+ and CD8a+

cells were detected in the lamina propria of infected line C.B12
compared to line 15I birds, indicating macrophage and NK cell
involvement at 4 dpi. Chicken intestinal IEL include NK cells
which may express CD8a (48), chB6 (49) or TCRgd (50).
Likewise, Wakelin et al. (51) showed Con A-responsive cells in
the mesenteric lymph nodes appeared earlier and produced more
IFN-g in E. vermiformis-resistant mice following infection.
Taken together, significantly up-regulated IFN-g expression in
the jejunum of E. maxima-infected chickens is likely due to the
recruitment and stimulation of MCR1L-B+, CD4+ and CD8a+

cells. Hong et al., showed that IL10 and IFNG mRNA
transcription was robustly increased at 4 and 6 dpi in CD4 and
CD8 cell subpopulations following E. maxima infection (19). The
current study identified higher numbers of CD4 and CD8a IEL
and LPL in line C.B12, both prior to and following infection. In
support of these findings, higher numbers of CD4+ IEL were
detected in the duodenum during early E. acervulina infection in
resistant chickens (52) and increased CD4+ LPL were detected
within 24 h of intra-cecal inoculation of E. tenella sporozoites
(53). These results imply that CD4+ cells are effectors of Eimeria
resistance early on during infection and could be a source of the
early IL-10 and IFN-g observed in this study.

IL-10 is a pleiotropic cytokine and in addition to maintaining
the Th1/Th2 balance, it is also important to normal gut
homeostasis, regulating NK cell and macrophage activity,
limiting proinflammatory cytokine production and promoting
epithelial cell proliferation amongst other functions (54). The
impact of IL-10 on the outcome of Eimeria infection is likely
dependent on both the timing and magnitude of its production.
Early IL-10 may be involved in mediating innate responses;
pegylated recombinant human IL-10 induces IFN-g, perforin
and granzyme B secretion in CD8+ T cells (55). Other
publications have indicated that IL-10 reduces the efficacy of
the immune response to Eimeria. Antibody-mediated IL-10
depletion in broilers enhanced weight gain and decreased
oocyst production following inoculation with an attenuated
Eimeria spp. vaccine (E. maxima, E. tenella and E. acervulina)
(30) and did not appear to affect adaptive immunity as IL-10-
Frontiers in Immunology | www.frontiersin.org 15
depleted-chickens displayed similar weight gains following
vaccination then challenge as control birds (56). Additionally,
in broilers treated with CitriStim, a yeast mannan-based feed
additive, and given an attenuated vaccine (E. maxima, E. tenella
and E. acervulina), reduced IL10 mRNA was found in the cecal
tonsils which was accompanied by reduced oocyst shedding and
improved feed efficiency and weight gains (57). Although in the
study by Rothwell et al. (27), IL10 transcripts were detected in the
spleen of control birds, we did not detect IL-10 at a protein level
in the serum in our study. Rothwell et al. (27) also observed
extremely low basal levels of IL10 mRNA in the jejunum of
uninfected chickens whereas the current results suggest that IL10
mRNA is transcribed in the jejunum under normal homeostatic
conditions. This discrepancy is attributable to the increased
sensitivity of the primer and probe sequences used in this
study (data not shown). Levels of IL-10 protein positively
correlated with E. maxima replication and it is plausible E.
maxima is inducing IL-10 as an immune evasion strategy.
Similar to the findings by Hong et al. (19), each vaccination
with E. maxima led to increased serum IL-10, however the extent
to which increases were observed gradually decreased with each
subsequent vaccination, whereas serum IFN-gwas only increased
after the first vaccination (in our unpublished data). The current
study suggests that an early, modest induction of IL-10 does not
negatively impact resistance to E. maxima infection, but
excessive IL-10 production disrupts the efficacy of the
protective response. These findings imply that IL-10 can be
suitable as a biomarker of susceptibility at late time points with
E. maxima infection, but less suitable as a predictor of
susceptibility prior to or early on during infection.

IL-17A and IL-17F are mainly considered cytokines of the
Th17 cell lineage, which functions in autoimmune disease and
defense against bacterial, fungal and parasitic pathogens (58–60).
More recently IL-17A and IL-17F have been related to innate
cells including NK and gd T cells and macrophages. They are
important mediators of mucosal immunity and innate responses,
with functions including neutrophil recruitment, macrophage
activation and IFN-g production and chemokine and
antimicrobial peptide production in epithelial cells (61, 62). As
our study implies, early innate responses are key to resistance to
E. maxima and previous studies have indicated that Eimeria spp.
infection in chickens leads to the increased transcription of
IL17A, as well as IL2 and IL6 mRNA (19, 63). In contrast, our
RT-qPCR and RNA-Seq data revealed there was no significant
change in IL17A, IL17F, IL2 and IL6 mRNA levels during E.
maxima infection. Although IL17A and IL2 mRNA levels at 2
and 6 dpi seemed to be upregulated, the change was not
significant due to the high variance between chickens within
the same group. Previously it has been suggested that IL-17A
impairs immunity to Eimeria spp. infection. Zhang et al. (64)
showed increased IL17A mRNA transcription at 6 hours post
infection with E. tenella. IL-17A depletion reduced heterophil
infiltration and associated immunopathology in the ceca, but also
reduced oocyst output indicating that IL-17A is involved in
susceptibility to E. tenella. In addition, Del Cacho et al. (65)
also found that IL-17A reduced E. tenella schizont development
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and migration. Among the Th17-associated genes tested, only
IL21mRNA levels were increased in the jejunum of both lines of
chickens during E. maxima infection compared to non-infected
chickens. A member of the IL-2 family, IL-21 plays important
roles not only in Th17 differentiation, but also in innate
immunity, with functions including enhancement of
cytotoxicity and IFN-g production in NK and CD8 T cells (66,
67). Additionally, IL-21 plays key roles in autoimmune disease
and in shaping humoral and cellular immune responses to
parasitic infection (68, 69). In chickens, increased IL21 mRNA
levels are reported in autoimmune vitiligo. To date, IL-21 has not
been previously found to have a role during Eimeria infection.
The kinetics of our study revealed that the pattern of IL21mRNA
transcription was similar to IFNG and IL10 in the jejunum,
indicating that IL-21 may also be involved in resistance to
E. maxima through mediating innate immunity. Similar
transcription patterns of IFNG, IL10 and IL21 mRNA were
reported during the development of vitiligo lesions (70).
Moreover, in mice IL-21 modulates differentiation of CD4 and
CD8 T cell subsets in a context-dependent manner and certain
cytokines, including IL-10, may compensate for IL-21 (71). Since
E. maxima infection leads to an increase in CD8a T cell
numbers, it is possible that the co-expression of IL-21, IFN-g
and IL-10 may play an important role in the enhancement of
CD8 T cell responses, as reflected in the higher numbers of
CD8a IEL and LPL in the jejunum of line C.B12 birds observed
in this study. Previously, cytotoxic CD8 cell activity was shown to
be a component of protective immunity to secondary E. tenella
infection (53, 72, 73) and resistance and IFN-g production
during primary E. acervulina infection in chickens (74). The
early timing of this response in line C.B12, alongside the fact that
no other Th17-associated genes tested were changed during
infection, suggests that Th17 responses are not involved during
Eimeria spp. infection.

The present study suggests that the timing of the immune
response is crucial for E. maxima resistance. Immunity to
Eimeria arises during sporozoite translocation through the
lamina propria in chickens (72, 75, 76). Resistance to Eimeria
spp. relies on the host response in the first few days of
infection, when sporozoites are present in the lamina propria
and in contact with LPL as well as when intracellular in
parasitophorous vacuoles (77). The increased IL-10 observed
in line 15I in the serum suggests that systemic IL-10 production
supports susceptibility to E. maxima, but the positive correlation
of IL-10, IFN-g and IL-21 with one another and the higher
expression in resistant chickens at early time points implies that
the balance between the three is imperative for effective
immunity to E. maxima.
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