AUTHOR=Rychkov Dmitry , Neely Jessica , Oskotsky Tomiko , Yu Steven , Perlmutter Noah , Nititham Joanne , Carvidi Alexander , Krueger Melissa , Gross Andrew , Criswell Lindsey A. , Ashouri Judith F. , Sirota Marina TITLE=Cross-Tissue Transcriptomic Analysis Leveraging Machine Learning Approaches Identifies New Biomarkers for Rheumatoid Arthritis JOURNAL=Frontiers in Immunology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.638066 DOI=10.3389/fimmu.2021.638066 ISSN=1664-3224 ABSTRACT=
There is an urgent need to identify biomarkers for diagnosis and disease activity monitoring in rheumatoid arthritis (RA). We leveraged publicly available microarray gene expression data in the NCBI GEO database for whole blood (N=1,885) and synovial (N=284) tissues from RA patients and healthy controls. We developed a robust machine learning feature selection pipeline with validation on five independent datasets culminating in 13 genes: