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Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time-
and tissue specific expression patterns during development, tissue homeostasis, and
diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among
them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies.
TNX is expressed widely in loose connective tissues. TNX contributes to the stability and
maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos
syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically
and transiently expressed upon pathological conditions such as inflammation, fibrosis,
and cancer. There is growing evidence that TNC is involved in inflammatory processes
with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this
review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular
and inflammatory diseases and in clEDS, and we discuss the functional consequences of
the expression of these tenascins for tissue homeostasis.
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INTRODUCTION

An important component of the extracellular environment is the extracellular matrix (ECM), which
is comprised of glycoproteins, proteoglycans, and fibrillar proteins. The ECM offers not only
structural support for cells but also influences cell adhesion, proliferation, differentiation, and
survival through specific receptor-mediated interactions (1). Within the ECM, the tenascins
comprise an attractive glycoprotein family with distinct features for each member.
Abbreviations: BDNF, brain-derived neurotrophic factor; BNP, B-type natriuretic peptide; circRNA, circular RNA; clEDS,
classical-like Ehlers-Danlos syndrome; CNS, central nervous system; DRG, dorsal root ganglion; ECM, extracellular matrix;
EDS, Ehlers-Danlos syndrome; EGF, epidermal growth factor; EMT, epithelial-mesenchymal transition; FBG, fibrinogen;
FGFs, fibroblast growth factors; FNIII, fibronectin type III; HFCD, high levels of phosphorus and calcium; HFpEF, heart failure
with preserved ejection fraction; lncRNA, long non-coding RNA; MMPs, matrix metalloproteinases; PDGFs, platelet-derived
growth factors; PNS, peripheral nervous system; SLE, systemic lupus erythematosus; SNPs, single nucleotide polymorphisms;
sTNX, serum form of TNX; TGF-b, transforming growth factor-b; TLR4, Toll-like receptor 4; TNC, tenascin-C; TNR,
tenascin-R; TNW, tenascin-W; TNX, tenascin-X; Tnxb, mouse tenascin-X gene; TNXB, human tenascin-X gene; TNY,
tenascin-Y; VEGF-B, vascular endothelial growth factor, B; VEGFR-1, vascular endothelial growth factor receptor 1; VUR,
vesicoureteral reflux.
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Tenascins comprise four members in vertebrates: tenascin-C
(TNC), tenascin-R (TNR), tenascin-X (TNX) [referred to as
tenascin-Y (TNY) in chickens], and tenascin-W (TNW)
(originally named tenascin-N in mice) (2, 3). The tenascin
family members have a common structure with heptad repeats,
epidermal growth factor (EGF)-like repeats, fibronectin type III
(FNIII)-like repeats, and a fibrinogen (FBG)-related domain.
This modular structure allows tenascins to interact with multiple
binding partners, including cell surface receptors, cytokines, and
extracellular matrix molecules. Each of tenascins shows a unique
time- and tissue specific expression pattern both during
development and in adulthood (4–8). On the other hand,
tenascins are also subjected to dynamic remodeling during a
number of pathological conditions such as inflammation, fibrotic
disorders, cardiovascular diseases, and cancer progression (9).
Transcriptional control of tenascin family members for their
specific expression patterns has recently been reviewed (10).
Such an expression pattern of tenascins is one of the features of
all matricellular proteins including tenascins (11, 12).
TNX

Expression of TNX in Physiological
and Pathological Conditions
Regulation of TNX Expression
TNX expression is undetectable during early embryonic stages,
but its expression increases ubiquitously in various tissues,
especially in heart, skeletal muscle, and skin, during the middle
embryonic stage and after birth (13–15). TNX is associated with
blood vessels in most tissues and its distribution is often
reciprocal to that of TNC, particularly in the skin and tissues
of the digestive tract (13). Interestingly, by the analyses of TNC-
deficient mice it was found that TNX does not compensate for
the loss of TNC, at least in the brain (16) and during early heart
development (17).

As for the regulation of TNX expression by the cellular
microenvironment, brain-derived neurotrophic factor (BDNF)
stimulates its mRNA expression in endothelial cells (18), whereas
TNX is subjected to downregulation by glucocorticoids in
fibroblasts (19). Sp1, which is a widely distributed transcription
factor, is essential for expression of the mouse TNX gene (Tnxb)
(20). Recently, microRNA miR-30b (21), long non-coding RNA
(lncRNA) LINC01305 (22, 23), and circular RNA (circRNA)
circRNA_14940 (24) have also been revealed to be key regulators
of TNX expression.

TNX Expression in the Nervous System
Recently, the expression pattern and significance of TNX in the
nervous system have become apparent. In the nervous system,
TNX is localized in the perineurium and endoneurium of the
peripheral nervous system (PNS) such as sciatic nerves (15, 25).
Indeed, patients with TNX-deficient type EDS (classical-like EDS:
clEDS) show abnormal peripheral nerves (26). TNX has been
expressed in Schwann cells but not in axons (27). TNX has been
mainly detected in the leptomeninges in the spinal cord and in the
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pia matter of the dorsal root ganglion (DRG). In the DRG, TNX is
localized in satellite cells surrounding primary sensory neurons
(27). In the central nervous system (CNS), TNX has been detected
in the leptomeninges and choroid plexus of the adult cerebral
cortex (28). Avian TNX (TNY) has been shown to inhibit neurite
outgrowth and reduce the spread of growth cones (29).

TNX Expression in Cancers
Although there have been fewer reports on TNX expression in
cancer compared with reports on the expression of TNC and TNW
in cancer, reports on TNX expression have been increasing. TNX
has been shown to be highly expressed in malignant mesothelioma
(30, 31) and ovarian cancer (32), indicating the possibility of TNX
being a novel diagnostic maker of these cancers. On the other hand,
there have been several reports of TNX expression being
downregulated during tumor progression in astrocytomas (33),
cutaneous melanoma (34), and neurofibromatosis type 1 (35),
findings that are mostly opposite to those for TNC. Intriguingly,
it has also been reported that TNX has a tumor suppressor role in
cervical cancer via LINC01305 expression which modulates TNX
expression (22), esophageal squamous-cell carcinoma (36), and
lung cancer via LINC01305 expression (23) and that TNX is
downregulated in these tumors. In agreement with the tumor
suppressor role of TNX in cancer progression, TNX-deficient
mice with grafted melanoma cells exhibited promotion of tumor
invasion and metastasis because of increased activities of matrix
metalloproteinases (MMPs) (37, 38). Interestingly, by the analyses
of TNX and TNC single and/or double deficient mice, we found
out that TNX deficiency-induced tumor cell proliferation in the
primary tumor site is repressed by the lack of TNC, while TNX
deficiency-induced invasion to neighboring tissues is not promoted
by the lack of TNC (39).

Physiological Functions of TNX
The results of a number of studies on abnormalities in mice with
targeted deletion in Tnxb (40) and in clEDS patients (26, 41)
have suggested structural roles of TNX in tissue integrity (7, 42).
TNX possesses elastic properties in the FNIII-like domain (43)
and increases the stiffness of collagen gels (44). TNX is associated
with collagen fibrils within tissues and regulates collagen fibril
spacing (42) via direct interaction with types I, III and V fibrillar
collagens (45), types XII (46) and XIV fibril-associated collagens
(45), and decorin (47). It has also been shown that TNX increases
both the rate and extent of fibril formation in vivo, indicating a
crucial role of TNX in collagen fibrillogenesis (48, 49). Taken
together, the findings suggest that TNX regulates collagen
deposition, collagen fiber stability and collagen mechanical
properties. In addition, it has been shown that TNX binds to
tropoelastin (49). Coarse and fragmented immature elastin fibers
have been detected in clEDS patients, suggesting that TNX is also
involved in the stability and maintenance of elastin fibers (50).

Other Functions of TNX
Fragments of TNX, especially its EGF-like repeats and FNIII-like
repeats, have profound proangiogenic properties (51).
Furthermore, we have shown that TNX interacts with vascular
endothelial growth factor B (VEGF-B) and stimulates endothelial
December 2020 | Volume 11 | Article 609752
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cell proliferation via simultaneous binding to VEGF receptor 1
(VEGFR-1) and VEGF-B (52). Indeed, results of in vivo studies
using TNX-deficient mice have shown that TNX plays a crucial
role in blood vessel formation in sciatic nerves (53) and in injury-
induced stromal angiogenesis in the cornea (54). Recently, we
have reported that TNX-deficient mice display upregulation of
osteoclast marker gene expression and promoted bone
resorption activities due to increased multinucleated osteoclasts
(55). These results provide the first evidence for the essential
functions of TNX in bone metabolism such as osteoclast
differentiation. These non-structural functions of TNX may be
related to the structural roles of this ECM glycoprotein. The
modification of the composition and organization of
extracellular environment due to TNX deficiency might cause
the alteration of mechanical stress to the surrounding cells,
leading to the non-structural aberrations.

Alcaraz et al (56). demonstrated that the C-terminal FBG-
related domain of TNX activates the latent transforming growth
factor-b (TGF-b) into the active molecule and that integrin a11b1
is required as a cell surface receptor for TNX for this activation.
They also showed that the FBG-related domain-mediated TGF-b
activation elicits the TGF-b/Smad signaling pathway and causes
epithelial-mesenchymal transition (EMT) in epithelial cells (56).

So far, a number of important phenotypes have been observed
by studying TNX-deficient mice (Table 1).

clEDS Caused by TNX Deficiency
Ehlers-Danlos syndrome (EDS) is a group of clinically and
genetically heritable connective tissue disorders characterized
by joint hypermobility, skin hyperextensibility, and generalized
connective tissue fragility (68). So far, EDS has been classified
into 14 distinct subtypes caused by defects in 20 different genes
encoding fibrillar collagens and collagen-modifying proteins and
ECM proteins (69, 70). Among the subtypes, classical-like EDS
(clEDS) is caused by a complete lack of TNX due to homozygous
or compound heterozygous TNX gene (TNXB) mutations with
autosomal recessive inheritance, leading to nonsense-mediated
decay of the mutant RNA (41). clEDS shows typical clinical
hallmarks characterized by soft/velvety hyperextensible skin
without atrophic scarring, generalized joint hypermobility and
easy bruising as its major clinical features (41). TNX is also
present in sera. The serum form of TNX (sTNX) with a
molecular size of 140 kDa is generated by cleavage of the 450-
kDa mature form of TNX (41). The measurement of sTNX
concentration is useful for the diagnosis of clEDS (71).

Mitral valve abnormality (24%) and hypertension (24%) have
been reported as cardiovascular complications in clEDS patients
(72). It has also been reported that clEDS patients exhibit rectal
prolapse (18%) and diverticulosis or diverticulitis (18%) as
gastrointestinal complications (72). Currently, these gastrointestinal
complications are considered to be more common in clEDS patients
(73, 74).

Nearly 90% of patients with EDS show chronic pain (75).
clEDS patients frequently complain of chronic back pain, chronic
myalgia and chronic arthralgia (72). Recent investigations of
TNX-deficient mice have shown that there is a direct link
between TNX deficiency and pain. For example, Aktar et al.
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showed that TNX-deficient mice have hypersensitive colonic
nociceptive afferents and increased sensory neuronal sprouting,
leading to gastrointestinal pain and dysfunction (62). In addition,
we recently reported that TNX-deficient mice exhibit mechanical
allodynia and hypersensitivity to chemical stimuli and
hypersensitization of myelinated Ad and Ab fibers (27).

TNX and Fibrosis
In a previous study, we showed that TNX contributes to liver
fibrosis in TNX-deficient mice administered a high-fat and high-
cholesterol diet with high levels of phosphorus and calcium
(HFCD) (67). Inflammation assessed by inflammatory cell
infiltrates and levels of type I collagen was suppressed in TNX-
deficient mice compared with that in wild-type mice. On the
other hand, the TGF-b pathway is a well-known key signaling
pathway associated with hepatic stellate cell activation and fibrosis
progression (76). As mentioned above, TNX affects latent TGF-b
activation and signaling (56). Thus, it is reasonable to assume that
TNX, especially its FBG-related domain, contributes to liver
fibrosis and inflammatory responses via the TGF-b pathway in
combination with integrin a11b1.

Other Diseases Associated With Mutations
or SNPs in TNXB
It has been reported that another disease associated with
heterozygous mutations in TNXB is primary vesicoureteral
reflux (VUR) (77). There is also some evidence that single
TABLE 1 | Tenascin-X-deficient mouse phenotypes.

Phenotypes References

clEDS-related
phenotypes

Hyperextensible skin, reduced tensile strength,
reduced collagen deposition and stability,
reduced fibrillar collagen, increased elastic
fibers

(40, 48, 49,
57),

Muscle weakness, myopathic changes (58, 59),
Reduced diameter of myelinated fibers in
sciatic nerves

(59)

Abnormal wound healing (60, 61),
Gastrointestinal pain and dysfunction,
increased colonic afferent sensitivity and
increased sensory neuronal sprouting

(62, 63),

Mechanical allodynia and hypersensitivity to
chemical stimuli

(27)

Abnormal location of vaginal plug, rectal
prolapse

(64)

Behavior Increased anxiety, superior memory retention,
increased sensorimotor coordination

(65)

Blood vessel
formation and
neovascularization

Abnormal blood vessel formation and less
neovascularization

(53, 54),

Triglyceride
synthesis

Accumulation of triglycerides and altered
composition of triglyceride-associated fatty
acids

(66)

Bone
homeostasis

Bone loss due to increased
osteoclastogenesis

(55)

Tumor
progression

Promotion of invasion and metastasis of
melanoma cells, increased activities of MMPs

(37, 38),

Liver fibrosis Suppression of hepatic dysfunction by
administration of a high-fat diet

(67)
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nucleotide polymorphisms (SNPs) in TNXB are associated with
other diseases. For example, genomic studies with SNPs in
genome-wide association studies revealed that two closely
linked SNPs in the coding region of TNXB are associated with
schizophrenia risk in a Japanese population by a case-control
study (78). On the other hand, an SNP in the 5’ flanking region of
TNXB has been reported to be associated with systemic lupus
erythematosus (SLE) (79). However, the functional implications
of SNPs in TNXB relevant to these diseases remain uncertain and
warrant further investigation.
TNC

Context-Dependent Function of TNC
TNC is a prototypical and most well-characterized member of
the tenascin family. TNC has a variety of biological functions
including regulation of cell adhesion, migration, growth and
differentiation by binding through its modular structure to
multiple cell surface receptors including integrins, Toll-like
receptor 4 (TLR4) and syndecan-4 (80, 81). TNC also binds to
cytokines such as fibroblast growth factors (FGFs), platelet-
derived growth factors (PDGFs) and TGF-b family members
among others, thus regulating the cellular behavior and
organization of the extracellular matrix.

The expression of TNC is regulated during embryonic
development with a specific time and spatial pattern, and its
expression is greatly diminished in adult tissue. Although the
specific expression pattern of TNC was suggestive of its role in
embryogenesis, mice with genetic deletion of TNC were born
and grew without any gross abnormality and were fertile (16).
Later, it was demonstrated that TNC-deficient mice exhibit
abnormalities in their behavior and in the cytoarchitecture of
the brain (82). Considering the extensive expression of TNC
during embryogenesis, TNC may have more roles in fine tuning
animal development that are yet to be clarified.

TNC is transiently and specifically re-expressed upon acute
inflammation and is persistently expressed upon chronic
inflammation (83–85). Growing evidence has suggested that TNC
is a proinflammatory factor and plays a deleterious role in fibrotic
diseases (86–88). Interestingly, several lines of evidence have
suggested that TNC also acts as an anti-inflammatory factor. For
example, it was shown that the first two alternative spliced FNIII-like
repeats suppress in vitro T cell activation (89). The results of in vivo
studies showed that chemically induced inflammatory dermatitis
(90) and Habu-snake venom-induced glomerulonephritis (91)
develop more severely in TNC-deficient mice than in wild-type
mice. Such bimodal activities, namely proinflammatory or anti-
inflammatory activities, of TNC can have paradoxical effects and
may influence many aspects of the immune response in a context-
dependent manner.

The context-dependent function of TNC seems to be derived
from its multidomain structure, which allows TNC to interact with
multiple extracellular matrix and cytokines (81). In addition, TNC
gene can generate multiple variants of TNC protein by alternative
splicing of mRNA in tissue- and disease-specific manners (92), and
Frontiers in Immunology | www.frontiersin.org 4
proteolytic processing by various proteases, of which significance
has been demonstrated by experiments with domain-specific
antibodies and recombinant proteins.

Pathophysiological Role of TNC
in Cardiac Diseases
TNC is reported to be involved in a variety of cardiovascular
diseases (83, 93, 94). In the pathogenesis of myocardial damage
and cardiac dysfunction, animal experiments have demonstrated
that TNC is involved in adverse remodeling of myocardium due
to myocardial infarction (95, 96) and myocarditis (97). TNC has
been reported to promote myocardial hypertrophy, fibrosis (98,
99) and cardiac dysfunction (100) in animal models of cardiac
hypertrophy and myocardial infarction. Being consistent with
those findings, TNC has been shown to promote cardiac fibrosis
in an angiotensin II-induced hypertrophy model (101). However,
another study showed that TNC attenuated cardiac fibrosis due
to pressure overload or angiotensin II infusion (102). These
contradictory findings may be due to the fact that the adverse
effect of TNC was demonstrated in a BALB/c background of
the mouse strain, while its beneficial effect was shown in the
background of C57BL/6. It was further speculated that the
difference may reflect the predominant immune responses of
Th2 in BALB/c and Th1 in C57BL/6, although this hypothesis
awaits formal proof (103).

Pathophysiological Role of TNC
in Vascular Diseases
With regard to vascular diseases, TNC has been reported to be
atherogenic by stimulating TLR4-dependent foam cell formation
(104). However, TNC has also been reported to be anti-atherogenic
since TNC-deficient mice showed mast cell accumulation and
intraplaque hemorrhage (105, 106). Similarly, expression of TNC
may prevent the rupture of cerebral aneurysm by promoting fibrosis
of the aneurysmal wall (107, 108), while it may be deleterious by
exacerbating acute vasospastic response and exacerbate cerebral
injury after subarachnoidal hemorrhage (109, 110). Expression of
TNC by neurohumoral stress protects the aorta from acute aortic
dissection (111) (Figure 1), while it seems to have no impact on the
development of abdominal aortic aneurysm, although it was highly
expressed in the aneurysmal tissue (112). Therefore, TNC can be
either disease-promotive, disease-preventive or neutral in
cardiovascular diseases (94), underscoring the context-dependent
function of TNC, as demonstrated also in various animal models of
non-cardiovascular diseases.

TNC as a Biomarker of Tissue Damage
While the role of TNC is context-dependent and can be
detrimental or beneficial, it has been established that TNC is
expressed in various cardiovascular diseases in clinical settings
(93). TNC is elevated after myocardial injury due to myocardial
infarction (113) or due to acute (114) or chronic myocarditis
(115). TNC is also elevated in hypertrophic (116) and dilated
cardiomyopathies (117). In addition, TNC is elevated in heart
failure with preserved ejection fraction (HFpEF) (118) and in
right ventricular failure (119). TNC is not only deposited in the
December 2020 | Volume 11 | Article 609752
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damaged tissue but also liberated in circulating blood flow. It has
been proposed that TNC can serve as a prognostic marker for
heart failure due to these diseases. While B-type natriuretic peptide
(BNP) is an established prognostic marker for heart failure, the
combination of BNP and TNC may be more precise than BNP or
Frontiers in Immunology | www.frontiersin.org 5
TNC alone for patients with dilated cardiomyopathy (120).
Furthermore, reverse remodeling of the ventricle in heart failure
patients due to cardiac resynchronization therapy was shown to be
associated with reduction in serum TNC level, suggesting that
TNC may reflect ongoing myocardial damage (121).
FIGURE 1 | Expression and function of TNC in mouse model of aortic diseases. Upper panel: Application of CaCl2 solution to the lower abdominal aorta caused
local inflammation and formation of aortic aneurysm. Continuous infusion of angiotensin II after the CaCl2 application resulted in higher wall stress and formation of
larger aortic aneurysm. TNC was induced in the lower abdominal aorta by CaCl2-induced local inflammation, and in the thoracic and upper abdominal aorta due to
the angiotensin II-induced higher wall stress, as illustrated by the blue color. Lower panel: TNC-deficient mice developed aortic aneurysm comparable to wild-type
mice by CaCl2 application in the presence or absence of angiotensin II. On the other hand, TNC-deficient mice developed aortic dissection in the thoracic and upper
abdominal aorta that was characterized by the disruption of the aortic wall (arrowheads) and the formation of false lumen (red color). These findings indicate that TNC
does not play a major role in the destructive inflammation in the aortic aneurysm, while it is critical for protecting the aortic wall from dissection, exemplifying the
context-dependent function of TNC (111).
December 2020 | Volume 11 | Article 609752
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Since TNC is induced by various inflammatory mediators, it
may also reflect the disease activities of inflammatory cardiovascular
diseases including Kawasaki disease (122, 123) and cardiac
sarcoidosis (124). TNC is expressed locally in the tissue of
coronary atherosclerosis (125) and abdominal aortic aneurysm
(112, 126), and its expression is elevated in serum of patients with
these diseases (127). The serum level of TNC is elevated in patients
with acute aortic dissection and its elevated level is associated with
acute mortality (128), as well as chronic prognosis (129, 130). TNC
is also elevated in cerebrospinal fluid after subarachnoidal
hemorrhage and may predict the development of cerebral
vasospasm (131). Elevated serum TNC is not only associated with
specific diseases but also with the mortality and the development of
cardiovascular diseases in patients with chronic kidney disease (132)
and it is also associated with major adverse cardiovascular events
and death in individuals with type 2 diabetes mellitus (133). In
addition to the serum level, local deposition of TNC may serve as a
marker of tissue damage, as demonstrated in animal models of
myocarditis (134) and myocardial infarction (135). Therefore,
quantitative detection of systemic and local levels of TNC may
have a clinical value for monitoring inflammation and tissue
damage both in acute and chronic diseases in order to realize
precision medicine for better outcomes by optimizing the clinical
practice for individual requirement.

Considering the fact that the structure of TNC can be altered
in a disease-specific manner, domain-specific detection of TNC
may also have a clinical value (92). For example, isoform-specific
expression of TNC was demonstrated in the lung tissue of
experimental pulmonary hypertension (136) and in the serum
of the patients (137). This means that care should be taken which
isoform of TNC is being measured to evaluate its significance as a
biomarker in a particular clinical setting, as well as the normal
range of TNC concentration. Because of the significance of the
different TNC isoforms, domain-specific monoclonal antibodies
for TNC would have potential clinical values both as diagnostic
tools to evaluate the disease conditions, and as therapeutic tools
to target a particular function of TNC or a particular tissue that
expresses the corresponding TNC isoform (92).
CONCLUSIONS

TNX and TNC have distinct roles in physiological and
pathological conditions. In a physiological condition, TNX is
Frontiers in Immunology | www.frontiersin.org 6
involved in the structural integrity of collagen fibrils. TNX also
has a tumor suppressor role, a proangiogenic property, a role in
osteoclast differentiation, and a role in TGF-b activation. On
the other hand, in a pathological condition such as TNX
deficiency, its absence causes clEDS with major clinical
features such as hyperextensible skin without atrophic
scarring, generalized joint hypermobility and easy bruising.
Interestingly, TNX deficiency is involved in pain and fibrosis.
The underlying molecular mechanisms for pain and
suppression of fibrosis caused by TNX deficiency need to be
elucidated in more detail.

The physiological role of TNC is yet to be clarified. Although
genetic deletion of TNC inmice resulted in no gross abnormality of
the animals, the possibility remains that TNC plays a role in cell
differentiation and tissue organization during embryogenesis. On
the other hand, accumulating evidence indicates that TNC is re-
expressed and actively participates in the pathogenesis of various
diseases with tissue damage. The context-dependent function of
TNC, possibly due to its modular structure and multiple binding
partners, makes it difficult to interpret the experimental results as
to whether expression of TNC is detrimental or beneficial.
Nonetheless, expression of TNC seems to be a sensitive marker
for tissue damage both in cardiovascular and non-cardiovascular
diseases including cancer. Considering the wide range of
physiological and pathophysiological functions of tenascins and
their specific expression patterns, basic and clinical studies of
tenascin family would be fruitful for delineating their precise
roles and their clinical implications both in normal and
abnormal conditions.
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