AUTHOR=Imperato Jessica Nancy , Xu Daqi , Romagnoli Pablo A. , Qiu Zhijuan , Perez Pedro , Khairallah Camille , Pham Quynh-Mai , Andrusaite Anna , Bravo-Blas Alberto , Milling Simon W. F. , Lefrancois Leo , Khanna Kamal M. , Puddington Lynn , Sheridan Brian S.
TITLE=Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection
JOURNAL=Frontiers in Immunology
VOLUME=11
YEAR=2020
URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.575967
DOI=10.3389/fimmu.2020.575967
ISSN=1664-3224
ABSTRACT=
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.