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Nanotechnology is widely used in the fields of biology and medicine. Some special
nanoparticles with good biocompatibility, hydrophilicity, and photostability can be used as
ideal systems for biomedical imaging in early diagnosis and treatment of diseases. Among
them, aggregation-induced emission materials are new antiaggregation-caused
quenching nano-imaging materials, which have advantages in biocompatibility, imaging
contrast, and light stability. Meanwhile, heterogeneity of nanoparticles may cause various
adverse immune reactions. In response to the above problems, many researchers have
modified nano-materials to be multifunctional nano-composites, aiming at combining
diagnosis and treatment with simultaneous imaging and targeted therapy and additionally
avoiding immune reactions, which is of great potential in imaging-guided therapy. This
review discusses the application of aggregation-induced emission materials, and other
nano-imaging materials are also mentioned. We hope to provide new ideas and methods
for the imaging of nano-materials in diagnosis and treatment.

Keywords: aggregation-induced emission, immunity, inflammation, biomedical imaging, application of
aggregation-induced emission
INTRODUCTION

Nanotechnology is widely used in the fields of biology and medicine. Among them, nanoparticles
(NPs) play a key role in biomedical imaging and the therapeutic fields of modern medicine due to
their special physical and chemical properties, such as electrical conductivity, stability, and optical
properties. Some NPs, called nano-imaging materials, can be used as imaging agents (with
diagnostic capability) in ideal imaging systems. The nano-imaging materials commonly used
include carbon nanotubes (CNTs), nano-materials with metal ions, rare earth elements, and a new
kind of imaging material named aggregation-induced emission (AIE) materials (1). With the
improvement of biomedical imaging technology, nano-imaging materials enable the achievement of
early diagnosis and visualization during the treatment process based on their unique optical
properties. For example, in order to achieve the efficiency and visualization of the diagnosis and
org October 2020 | Volume 11 | Article 5758161
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treatment, the multifunctional nano-probes with good
photothermal property, high imaging contrast, biological
safety, and accurate drug delivery are mainly developed. The
multifunctional nano-probes not only realize the various ways of
imaging, but also achieve an efficient treatment of neoplastic and
non-neoplastic disease by combination therapy (2); nano-
imaging material with metal ions can convert absorbed light
energy into heat energy, leading to the apoptosis or necrosis of
specific lesions, which is often used in the photothermal therapy
of tumors at present (3).

In recent years, people have been devoted to the research of a
new type of nano-imaging material, namely AIE materials. AIE
materials are essential materials about antiaggregation-caused
quenching (anti-ACQ), which were first reported in the study by
Tang et al. (4) in 2001. It is mentioned in the report that AIE
materials can be emitted more efficiently in an aggregated (rather
than dispersed) state. In accordance with the advantages of AIE
luminogens (AIEgens) in biocompatibility, imaging contrast
with biological background, and photostability (5, 6), their
potential applications in the fields of fluorescence bioimaging
and chemical sensors have attracted widespread attention for
research (7) by implementing multimodal imaging, synergistic
therapy, and tumor immunotherapy for monitoring as well as
Frontiers in Immunology | www.frontiersin.org 2
effectively generating reactive oxygen species (ROS) as aggregates
in order to achieve high-performance fluorescence (FL) imaging-
guided photodynamic therapy (PDT) (8). As a result, AIE
materials may play an important role in the diagnosis and
treatment of neoplastic disease. In addition, AIEgens can be
used in the treatment of non-neoplastic diseases. In recent years,
antibiotics have been used frequently to cure bacterial infection
(9). It is critical to prepare a multifunctional system that has both
rapid bacterial differentiation and effective antibacterial
properties and to quickly identify gram-positive bacteria in
order to achieve an accurate and efficient antibacterial effect
(10, 11) (Scheme 1).

With the wide application of nano-imaging materials, there
are some problems in the safety of these special materials. Some
nano-imaging materials can communicate with biological
components (like cells, receptors, and proteins) and trigger cell
signaling cascades, which can cause an unpredictable immune
reaction (activation or suppression) or other negative results
(17), such as nondegradability, normal tissue damage, potential
immunogenicity, and even cell and systematic immunoreaction
and inflammatory reaction (both innate immunity and
immunological adaptive reactions) (18). After NPs get into the
body, the complement system can be activated by nano-imaging
SCHEME 1 | The application of AIE materials in neoplastic and non-neoplastic diseases. cited from Ref (12), Ref (13), Ref (14), Ref (15) and Ref (16).
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materials, and then they interact with the innate immune system
and cause an immunomodulation reaction based on their
physical and chemical properties (19). Furthermore, when
exposed to the X-ray, an amount of electrons and free radicals
damage cell DNA due to the toxic potentially of nano-imaging
materials with heavy metal ions. The aqueous solution or
physiological solution of the nano-imaging materials used in
MRI is less stable and easy to accumulate and precipitate (20),
react with plasma proteins, and be phagocytosed by monocytes
and macrophages. The damage of some nano-imaging materials,
like Ag NPs and Au NPs, to the human body derives from
ROS, which break mitochondria function, lysosomes, and
cytomembranes and causes apoptosis (21, 22). These imaging
materials interact with the cells of the liver, lung, spleen, and skin
directly, which will lead to oxidative damage and inflammation
(23). Therefore, the key to nanotechnology is to solve
heterogeneity when designing nano-materials in order to
extend circulation time in the body and achieve long-term
immune escape (3). This review emphatically sums up the
immunobiological applications related to AIE materials and
the solution of potential risks as well as summarizes the recent
developments, biological effects, and biomedical applications of
other nano-imaging materials.
THE LATEST DEVELOPMENTS AND
BIOMEDICAL APPLICATIONS OF AIE
MATERIALS

NPs with integrated multiple imaging and therapeutic modalities
have great potential in accurate diagnosis and improvement of
curative effect for tumors. Compared with traditional organic
fluorescent materials, AIEgens have higher luminous intensity,
photobleaching resistance, and biocompatibility so that they have
become a superior tool for biosensing and bioimaging (24, 25).

AIEgens Can Realize Multimodal Imaging
and Synergistic Therapy
Hypoxia in the tumor microenvironment often leads to reduced
effectiveness of radiation therapy (RT) for some malignant
tumors. However, photothermal therapy (PTT) under near
infrared irradiation (NIR) can increase the blood flow and
promote the oxygen supply of tumor tissue (26). Resulting
from the uneven distribution of heat in tumor tissue, the
tumor cannot be eradicated effectively by PTT alone (26).
Therefore, combining the uniform irradiation of RT with the
oxygen pump effect of PTT is an ideal choice to achieve
synergetic treatment of tumors and improve the therapeutic
effect. For tumor therapeutics, integrating multiple imaging
and treatment modes into a single structural unit in order to
attain an accurate diagnosis and improve the therapeutic effect is
a promising research interest with profound clinical value (27).

The simple Ag @ AIE core-shell nanoparticles (AACSN) were
prepared by Xue et al. (28) using the simple silver core/AIE shell
NPs, which realize a new strategy of multimodal imaging and
cooperative therapy. The adjustability of shell thickness could
Frontiers in Immunology | www.frontiersin.org 3
help to overcome the incompatibility between FL and plasma
noble-metal NP while the excellent performance of FL and CT
imaging can also be maintained. More importantly, an additional
function is generated on the core-shell interface to achieve
outstanding properties of PT and PA. The experimental results
show that five types of imaging and therapy modes based on FL,
PA, CT, PTT, and RT are successfully constructed in core @ shell
nanostructure. This simplifies the complex preparation process
and avoids the potential incompatibility between different
components. This strategy provides an effective way to design
multifunctional nanomaterials for disease diagnosis and
synergetic treatment.
AIEgens Can Improve the Therapeutic
Efficiency of PTT and PDT
For optical materials, photophysical properties play key roles in
determining the biomedical function and efficacy of optical
agents. When an optical material is in an excited state, it
dissipates the energy through three pathways (29): fluorescence
emission (FE), intersystem crossing (ISC), and thermal
deactivation (TD), which are utilized as FL, luminescence, and
PA imaging or PTT, respectively. Regulating the optical agents
through a nano-engineering approach or molecular design can
enhance one of the three pathways of these agents and improve
one of their imaging effects. For the nano-engineering approach,
an optical agent can be delivered and aggregated in the tumor
and then reacts with the tumor microenvironment and opens up
the radiative pathway. For molecular design, one can improve
the molecular structure to narrow the energy gap, decrease
energy loss, or control the agent’s release, thus enhancing
cancer phototheranostics. As is mentioned in previous research
(30), one can control the imaging effect of AIEgens by regulating
FE, ISC, or TD. Dan Ding et al. use calix arene and AIEgens to
form supramolecular AIE dots, which are encapsulated by PEG-
12C. These kinds of NPs could restrict ISC and TD, so the light
excitation energy will only release by FE (see Figure 1), causing
highly emissive, photosensitive supramolecular AIE nano-dots.

PDT is an emerging means for tumor treatment. Under the
function of a photosensitizer (PS), the cytotoxic ROS are generated,
leading to the death of tumor cells (31). This method has the distinct
advantages of minimal invasion and high spatiotemporal precision
(32, 33). Although preliminary results have been achieved by PDT
in the treatment of tumors, there are still the following deficiencies.
First, traditional PSs such as rose bengal and methylene blue have
the problem of low generation efficiency of ROS, which limits the
antitumor activity of PDT (34). Second, the PSs mentioned above
exhibit intrinsically weak FL (35) while the lack of FE is not
conducive to manipulate FL imaging-guided PDT. Consequently,
multifunctional materials need to be designed to improve the
therapeutic efficiency of PDT. In recent years, the emergence of
PSs with AIE features has promoted the new development of PDT.
It is proved that AIEgens can effectively generate ROS as aggregates
and then realize high-performance FL imaging-guided PDT (36).
Inspired by the advantages of stimuli-responsive nano-micelles and
AIE PSs in tumor treatment, the team of You ML and Ben ZT
designed two kinds of stimuli-responsive nano-micelles carrying a
October 2020 | Volume 11 | Article 575816
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far red–emissive AIE PS (MeTTMN) to improve the generation
efficiency of ROS and the PDT effect (37). Two kinds of stimuli-
responsive polymer, mPEG-Hyd-PCL-CIN (P-Hyd) and mPEG-
SS-PCL-CIN (P-SS), were successfully synthesized (8). The results
show that the synthesized polymer has good biocompatibility,
spontaneous assembly into nano-micelles in aqueous solution,
and good drug-loading ability (AIE-PS-MeTTMN with high drug
loading). In addition, compared to the control group, the generation
efficiency of ROS can be significantly improved by using stimulus-
responsive nano-micelle carriers at a simulative cancer
environment. These MeTTMN-loaded stimuli-responsive nano-
micelles have an efficient inducing effect on the apoptosis of
tumor cells. Jun D and Ben ZT et al. (38) efficiently made
fluorogen TTB with AIE properties encapsulated within a
polymeric matrix and modified with RGD-4R peptide to prepare
RGD-4R-MPD/TTB NPs with NIR emission, high photostability,
and low dark cell toxicity. The results show that the PDT based on
RGD-4R-MPD/TTB NPs T can effectively inhibit the growth of
cervical, prostatic, and ovarian cancer. By observing changes of
tumor histology and protein levels, it was found that it could
Frontiers in Immunology | www.frontiersin.org 4
effectively promote the apoptosis and necrosis of tumor cells,
inhibit the proliferation of tumor cells, and thereby promote the
death of cells. These results suggest that the efficiency of FL
imaging-guided PDT could be improved in different ways, and
the NIR PS with AIE character might be used as a substitute for
nano-probes and nano-medicines in the clinical treatment of
various tumors.

The Monitoring of AIEgens in Tumor
Immunotherapy
As a new type of luminescent material, AIEgens has become a
powerful tool for biological sensing and monitoring, including
long-term tracking (39). The tumor immunotherapy provides
new options for the treatment of various types of malignant
tumors. It aims to train the immune cells in the host so as to
destroy the tumor cells, but the response in patients is generally
limited (40). Hence, the immune reaction needs to be monitored
in vivo in volunteers to optimize the immunotherapeutic effect.
At present, the existing methods include the determination of
whole blood lymphocytes and immunocytokine and biopsy of
A B

C

FIGURE 1 | Optimized molecular structures and calculated energy diagrams of (A) 1 and (B) 1+CC5A-12C complex. (C) The three dissipation pathways of the
absorbed excitation energy for different AIE dots, which are likened to three water taps. FE, fluorescence emission; TD, thermal deactivation. (Reprinted with
permission from Ref (30). Copyright © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
October 2020 | Volume 11 | Article 575816

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Aggregation-Induced Emission Materials
tumor tissue. However, these measures are invasive and cannot
effectively reflect the data of dynamic therapy (41). ROS plays a
key role in regulating biological functions from intracellular
homeostasis to cell death. What is more, it is essential for
ROS to activate immune reactions (42). In innate immunity,
the phagocytes (such as neutrophils and macrophages)
can spontaneously promote the generation of ROS and
fight against infection through an oxidation mechanism
(17). In an adaptive immune reaction, the activation of T
cell receptors triggers the generation of ROS in T cells, leading
to the activation of T cells and cytokine secretion (19). In
conclusion, the ROS can be used as a biomarker to monitor
immune activation. Dan Ding et al. (12) carried out a novel PS,
which reduced intermolecular interaction with a twisted donor-
p-acceptor (D-p-A) molecular structure, which could also
restrict the excited-state intramolecular motion due to the
steric hindrance (see Figure 2). With consumption of absorbed
excitation energy decreasing, more ROS were induced, and
immunogenic cell death was massively evoked. In recent years,
molecular imaging technology has wide prospective application
Frontiers in Immunology | www.frontiersin.org 5
in real-time evaluation of immunoactivation in vivo in
volunteers. Although fluorescent probes can be used to detect
ROS (13), they are rarely used to detect ROS in immune cells
because of their inadequate biodistribution and poor sensitivity,
let alone for in vivo imaging of immune activation. D. Cui and K.
Pu et al. (14) synthesized a kind of semiconducting polymer
nano-reporters (SPNRs) with superoxide anion (O2•

−), which
can activate chemiluminescence signals for in vivo imaging of
immunoactivation during tumor immunotherapy. Among them,
SPNR3 represents the first O2•

−-activatable near-infrared
chemiluminescent reporter. Owing to its high selectivity and
sensitivity, the SPNR3 can distinguish the higher O2•

− levels
in immune cells from that in other cells (including tumor
and normal cells). After systemic administration, SPNR3
preferentially accumulates in the tumor cells of living mice
and activates the chemiluminescence signal in the tumor
microenvironment. In addition, the improvement of in vivo
chemiluminescence signals after tumor immunotherapy is
related to the increase of T cells in tumors, which indicate the
feasibility of SPNR3 tracking T cell activation. Therefore, this
A

B

D

EC

FIGURE 2 | (A) Synthetic route to TPE-DPA-TCyP and DPA-TCyP. (B) Photoluminescence (PL) spectra of TPE-DPA-TCyP and DPA-TCyP (10×10-6 M) in the
presence and absence of lipid vesicles (22×10-6 M) in PBS. (C) Plot of ln(A0/A) against light exposure time, where A0 and A are the ABDA absorbance (378 nm)
before and after irradiation, respectively. (D) Chemical structures, dihedral angles, and HOMO-LUMO distributions by DFT calculations of TPE-DPA-TCyP and DPA-
TcyP. (E) Energy levels of S1-S6 and T1-T6 calculated by the vertical excitation of the optimized structures in (D). (Reprinted with permission from (12) Copyright ©

2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
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kind of AIEgens can be used for real-time imaging of tumor
immunotherapy in vivo, and it has great prospective application
for high-throughput screening of immunotherapeutics of
immunotherapy drugs.

In recent years, much research has been done on the
biomedical applications of AIEgens involved immunological
effects. For example, Wang et al. (43) discovered an FL self-
reporting approach based on AIE properties to monitor
polymeric fluorescent particles (PFPs). PFPs with uniform and
tunable sizes harboring the abilities of biolabeling and
photosensitizing, can be employed as superior optical nano-
agents for photo-controllable immunotherapy. NK cells keep
their original immunocompetence after coating with low-
concentration PFPs, and such immunocompetence could be
promoted by PFPs under light irradiation in PFP-coated NK
cells. In addition, PFP-coated NK cells promote immunotherapy
efficiency to cancer cells. Thus, excellent optical nano-agents
greatly boost the extensive applications of precipitation
polymerization in various science and technology areas.
The Role of AIEgens in the Treatment of
Non-Neoplastic Diseases
AIEgens for the Diagnosis and Treatment of
Bacterial Infectious Diseases
Human health is seriously threatened by bacterial infectious
diseases, especially those caused by gram-positive bacteria (44).
Millions of people are infected with gram-positive bacteria every
year (45); furthermore, such bacteria causes 25% of surgical-site
infections in nosocomial infections (46). In addition, in some kinds
of tumors, the gram-positive bacteria can significantly enhance the
resistance of chemotherapy drugs, reduce the curative effect of
chemotherapy drugs (2), and promote tumor growth and
metastasis (47). The traditional methods of bacterial identification
include a gram-staining test, plate-culture, polymerase chain
reaction, and immunological methods (48), but the
implementation of them requires complex instruments, much
time, large amounts of labor, and expensive fees (49). In recent
years, antibiotics have been used frequently to cure bacterial
infection (9). Although they are capable of killing bacteria and are
easily accessible, excessive use and abuse of antibiotics inhibit their
effectiveness and develop drug resistance (50). Therefore, in the case
of no drug resistance, it is critical to prepare a multifunctional
system that has both rapid bacterial differentiation and effective
antibacterial properties and to quickly identify gram-positive
bacteria in order to achieve an accurate and efficient antibacterial
effect (10, 11). FL imaging-guided photodynamic antibacterial
technology serves as an effective method to solve this problem in
recent years (15). Michelle M.S. Lee et al. (15, 51) use AIE-active
molecules called TTVP with good water solubility, NIR emission,
and extremely high generation efficiency of ROS for the first time to
carry out bacterial identification and photodynamic antibacterial
research. The research indicates that TTVP can selectively target
gram-positive bacteria through a washing-free and ultrafast staining
procedure after the incubation period of 3 s, which shows ultrafast
bacterial identification. The results of in vitro and in vivo
experiments show that TTVP can completely inactivate gram-
Frontiers in Immunology | www.frontiersin.org 6
positive bacteria under white light irradiation in vitro, so it is a
kind of super strong light-mediated antibacterial. More significantly,
it also has a significant effect on photodynamic antibacterial
treatment in a rat model of skin wound infection. This was the
first time it has been reported that NIR-emissive AIEgen as a
multifunctional agent can effectively kill gram-positive bacteria in
vivo and in vitro with both specific identification and
photodynamics, which provide guidance for the rational design of
easy-to-operate and time-saving bacterial identification reagents
and the promotion of the development of high-performance
antibacterial materials.

The Diagnosis and Treatment of Parkinson’s Disease
(PD) With AIEgens
PD is one of the most common progressive neurodegenerative
diseases, which often occurs in people aged 60 years and over with
symptoms of shaking palsy and involuntary tremble (52). However,
the exact cause of the disease is unknown (53). Recently, studies
have shown that lipid droplets (LDs) serve as containers of
triglycerides and cholesteryl esters as well as the dynamic
organelles for lipid metabolism, protein storage, signal regulation,
and cell apoptosis (54). It was found by Liu et al. (55) that
mitochondrial disorder and oxidative stress lead to accumulation
of LDs, and the oxidized lipid metabolites further promote
mitochondrial disorder and cause neuronal death and PD, which
indicates LDs may play an important role in PD’s progress. Thus,
the real-time monitoring of LDs from PD patients is of great value.
Li HL et al. (16) synthesized ultra-stable AIEgen probe 2-DPAN to
monitor the dynamic process of LDs in PD model cells. The results
show that LDs are closely related to the change of mitochondrial
activity; that is, lipase can accelerate the process of cell death,
prestimulate LDs through unsaturated fat acid oleic acid (OA),
and reduce the process of cell death by inhibiting the production of
excess ROS and fat acid so as to protect the mitochondria.
Therefore, real-time behavior monitoring of LDs is important and
necessary in the early stage of PD prevention. The application of 2-
DPAN proves the importance of LDs in neuronal homeostasis, and
the effective regulation of LDsmay prevent or inhibit the progress of
PD. Benefiting from its good specificity, photostability, and
biocompatibility, the probe may become a useful tool for studying
LD-related diseases.
THE DISADVANTAGE AND
IMPROVEMENT OF AIE MATERIALS
AND NANO-IMAGING MATERIALS

Deficiencies and Modification of AIEgens
Based on the research on AIEgens in the past 20 years, it can be seen
that the introduction of AIE can solve the problem of fluorescent
quenching. However, there are still some limitations, such as high
hydrophobicity, poor cell compatibility, short emission wavelength,
low penetration, long latency (> 5 min), and being time-consuming
(56, 57), which severely limit the biological applications of AIE
materials in vivo. To develop and promote the biomedical
applications of fluorescent organic NPs based on AIE materials,
October 2020 | Volume 11 | Article 575816
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their biocompatibility and the application of cell imaging are further
studied. The hydrophobic surface of NPs can be modified to be
hydrophilic so that they can have good water dispersibility and
novel AIE properties. Xi QZ et al. (58) have designed a new system
of FL bioprobes based on nano-aggregates combining AIE-based
organic fluorogens An18 (derived from 9,10-distyrylanthracene
with an alkoxyl end group) and surfactant Pluronic F127. It was
also the first time to propose a simple method for preparing AIE-
based fluorescent organic nanoparticles (FONs) by mixing AIE
units (An18) and surfactant F127. Originating from the
hydrophobic interaction between An18 and F127, water-soluble
An18-F127 NPs are widely used in cell imaging. The research shows
that the modified AIE-based NPs are biocompatible with cells and
easy to observe. It means that the surfactant-modified AIE-based
FONs have good water solubility, biocompatibility, and a
convenient preparation method, which can be used as a new kind
of bioimaging dye.

Deficiencies and Modification of
Nano-Imaging Materials
As an important part of innate immunity, the complement system is
the first defense to deal with invaders and protect the body, and it
can be activated by three pathways, i.e., the classical, alternative, and
mannan-binding lectin (MBL) pathways. After NPs get into the
body, they interact with the innate immune system and generate the
immunomodulation reaction based on their physical and chemical
properties (19). With the participation of the complement members
(see Figure 3), the acute anaphylactoid reaction or anaphylactic
reaction would be triggered. In order to reduce the adverse reactions
and toxicity, it is feasible to use surface modification technology and
restrain the formation of complement C3 and C5 invertase so as to
improve innate immune compatibility and safety in vivo.

Because of high X-ray absorbance, metal nano-imaging
materials can be used as radio sensitizers. Nevertheless, this is
potentially toxic because of the heavy metal ions. The aqueous or
physiological solution of the magnetic NPs (MNPs) used in MRI
is less stable and easy to accumulate and precipitate (20),
resulting in the decrease of effective concentration in the tissue.
Frontiers in Immunology | www.frontiersin.org 7
Thus, ligand choosing is the premise and basis for optimizing
and stabilizing the optical properties of a nanocluster and
reducing its toxicity. In addition, according to the physical and
chemical properties of NPs, the multifunctional NPs of
biocompatibility would be manufactured after the modification
(59) for the immune escape and in vivo longevity.

The damage of some nano-imaging materials, like Ag NPs
and Au NPs, to the human body derives from ROS, which
could interact with the cells of the liver, lung, spleen, and skin
directly, leading to oxidative damage and inflammation (23).
Cytoskeleton damage, mitochondrial activity, and the changes of
protein and nucleus metabolism are the main effects of NPs on
the cells. Studies of cytotoxicity and genotoxicity show that
toxicity of some nano-imaging materials to tumor cells led to
cytoskeleton damage and impact cell division, which explain the
potential applications and mechanism of nano-imaging
materials on malignant tumor therapy.
CONCLUSION

With the rapid development of the emerging field of nanomedicine,
nano-imaging materials are applied to daily life and medicine.
Functional/smart AIEgen probes have made great progress in
specific bacterial imaging and killing, targeted cell/intracellular
organelle imaging and ablation, and targeted tumor therapy. At
present, biomedical imaging is mainly used for the diagnosis and
therapy for image capture. Previous studies demonstrate that most
of AIEgens harbor low in vitro cytotoxicity, and one of the
limitations of AIEgens is that they are not good at building FL
“turn-on” nanoprobes. Therefore, complex molecular design and
modification must be carried out to obtain multi-functional nano-
imaging materials (60). Great efforts have been made to modify new
AIEgens and traditional nano-imaging materials for the decrease of
the immune reaction and to synthesize multifunctional nano-
composite particles through the design of nanostructures, which
provides a new method for realizing image-guided tumor therapy
and multimode imaging and collaborative therapy. Researchers
FIGURE 3 | The complement system can be activated by three pathways, that is, classical, alternative, and MBL pathways.
October 2020 | Volume 11 | Article 575816
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have designed various multifunctional nano-composite particles
based on photothermal conversion and the improvement of
mediating tumor oxygen levels, which are beneficial for the
therapy of combination photothermal and radiation. Additionally,
nano-imaging materials can enhance the targeting of drug delivery
as the chemotherapy drug carrier and make tumor targeting
imaging and combined therapy (chemotherapy and radiotherapy)
possible by combining PTT and MRI diagnosis. Similarly, the
synthesis and modification of AIEgens through different ways
could improve the efficiency of FL imaging-guided PDT, NIR PS
with AIE character could be the substitutes of nano-probes and
nanomedicines for multiple tumor clinical therapies and real-time
supervision and imaging during tumor immune therapy, optimizing
the effect of the immune therapy. Nano-imaging materials can not
Frontiers in Immunology | www.frontiersin.org 8
only be used inmalignant tumor therapy, but also in benign diseases
as probes, which has a high prospective application in diagnosis
and treatment.

Nano-imaging materials should be given more attention and
research in the future due to their high medical and biomedical
value as well as the new ideas and possibilities for people in the
field of disease therapy.
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