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Editorial on the Research Topic

The Role of Oxidative Stress, Epigenetics and Non-coding RNA in Regulating

Trained Immunity

The adaptive immune response typically triggers antigen-specific memory T- and B-cells to protect
against recurrent infections. However, accumulating studies demonstrate that innate immune cells,
such as monocytes, macrophages, dendritic cells, and natural killer (NK) cells, are endowed with
similar adaptive properties associated with immunological memory in a process that has been
termed “trained immunity” (1). In support, studies performed in Scid or Rag1-deficient mice that
harbor defective functional T- and B-cells, and consequently impaired adaptive immune responses,
also show partial protection to reinfection (2). Bacteria, plants, and invertebrates, which also lack
an adaptive immune response, also exhibit improved protection against reinfection highlighting
the evolutionary conservation of this process (3). Moreover, after vaccination with live vaccines in
human subjects, long-term functional changes of innate immune cells with enhanced antimicrobial
function has been demonstrated. Finally, other traditionally considered “non-immune” cell types
such as endothelial cells and vascular smooth muscle cells were shown to develop trained immunity
when exposed to inflammatory challenges (4, 5).

While trained immunity of innate cells may confer additional level of protection against
infectious pathogens, it may exacerbate chronic disease states, such as cardiovascular disease, in
which heightened activation of innate cells generates a sustained and potentially uncontrolled
inflammatory state that promotes disease pathogenesis and tissue injury. In this respect, trained
immunity is a double-edge sword depending on disease context. This raises the question—what are
the molecular mechanisms underlying the reprogramming of innate immune cells into cells with
trained immunity? Emerging studies including those highlighted in this special issue indicate that
long-term reprogramming depends on a combination of epigenetic and metabolic modifications.

As highlighted by Zhong et al., over-activation of the innate immune system in trained
immunity has been proposed to contribute to the non-resolving inflammation in atherosclerosis.
Furthermore, both infectious (e.g., lipopolysaccharide or β-glucan) and non-infectious stimuli
[e.g., oxLDL, lipoprotein(a), aldosterone] are capable of priming innate cells such as monocytes
to a trained phenotype upon re-challenge (6). Epigenetic remodeling at the level of histone
methylation (e.g., H3K4me3) has been implicated in the development of trained immunity (6).
Because monocytes exhibit a shorter lifespan than the duration of trained immunity, the long-term
nature of trained immunity is likely elsewhere. Indeed, reprogrammed bone marrow progenitor
cells, such as hematopoietic stem and progenitor cells (HSPCs) may serve as one reservoir for the
generation of lineage-specific macrophages with endowed properties for trained immunity and
sustained activation (7). In support of this hypothesis, 4 weeks after switching LDLR−/− mice
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from a high cholesterol to a normal chow diet, monocytes
from these mice surprisingly still develop a hyperactivated,
pro-inflammatory state with augmented immune responses to
TLR stimulation (8). Finally, human subjects with symptomatic
atherosclerosis also harbor circulating monocytes with a trained
pro-inflammatory phenotype (9).

Another important question addressed by Lai et al. is how
do macrophage subsets develop phenotypic diversity and how
does trained immunity contribute to specific subsets? Using
microarray datasets of a range of tissue macrophages including
31 macrophage subset markers, 45 transcription factors in 34
diseases, including 10 types of cancers, and 23 trained immunity
enzymes, they identify 12 shared and 20 group-specific disease
macrophage pathways. They identify that peritoneum-derived
and lung, liver, spleen, and intestine (LLSI)-derived macrophages
express higher trained immunity enzyme transcripts than
do ATM-derived macrophages. Collectively, interrogation of
diverse macrophage datasets revealed new shared and divergent
pathways of tissue macrophages and provides new hypotheses
to limit inflammation and trained immunity in health and
chronic disease.

The complex interplay of immune cell subsets is highlighted
by Wagner et al. who focus on the harsh inflammatory
microenvironment after myocardial infarction and why stem
cell-based therapies may hold promise for controlling the
immune response to facilitate myocardial repair. Ischemic injury
is associated with myocardial necrosis and the elaboration of
danger associated molecular patterns (DAMPs) and chemokines
to recruit neutrophils and pro-inflammatory M1 macrophages
that help clear necrotic tissues. In contrast, during the second
phase, there is a shift to M2 pro-resolving, anti-inflammatory
macrophages facilitated by CD4+ T regulatory cells. Other
CD4+ T cells subsets are activated by autoantigens released from
the injured myocardium. Stem cells, including mesenchymal
stem cells release a range of paracrine factors, such as IL-
10, TGF-β, and PGE2, that limit the immune response—
likely a combination of adaptive, innate immunity, and trained
immunity. Future studies will be required to further delineate the
relative contribution of stem cell-based therapies on each of the
arms of the immune response.

Another level of regulation of trained immunity is from
the non-coding genome. Lin et al. highlight how long non-
coding RNAs (lncRNAs) are regulated in response to infection

by duck tembusu virus (STMUV), the causative agent of egg-
drop syndrome in ducks. Because lncRNAs can interact with
DNA, RNA, or chromatin, these findings provide new insights

for potential compensatory feedback by viral infection. Future
studies of re-challenging these cells with virus will be of interest
to clarify specific lncRNAs in trained immune responses.

Finally, Carnino et al. highlight the potential roles
of extracellular vesicles (EVs), their post-translational
modifications and selective encapsulation of non-coding
RNA cargo. Accumulating studies demonstrate that these EVs
mediate intercellular communication involving the transfer
of non-coding RNAs that exact functional and phenotypic
alterations in recipient cells. The authors highlight multiple
common types of post-translational modifications of EVs
including protein deimination, a process generated by the
peptidylarginine deiminase family of enzymes that converts
arginine into citrulline and is implicated in the release of EVs.
Interestingly, 42 essential metabolic and immune proteins
are post-translationally deiminated in EVs only. Further
investigation into the impact of these deiminated EVs and
their non-coding RNA cargo on trained immunity will be
of interest.

The collection of articles highlighted here aims to
provide an overview of the current understanding of
diverse facets of trained immunity and raise several
important questions. Use of rigorous cell-based tools such
as single-cell sequencing and epigenetic profiling tools such
as single-cell ATAC-Seq may provide powerful insights
for identifying specific cell types involved in trained
immune cell responses and how they are regulated in
disease-based contexts.
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