Early nutrition may influence the development of food allergies later in life. In the absence of breastfeeding, hydrolysates from cow’s milk proteins (CMP) were indicated as a prevention strategy in at risk infants, but their proof of effectiveness in clinical and pre-clinical studies is still insufficient. Thanks to a validated mouse model, we then assessed specific and nonspecific preventive effects of administration of extensive hydrolysates from caseins (eHC) on the development of food allergy to CMP. The additional nonspecific effect of the probiotic
Groups of young BALB/cByJ female mice were pretreated by repeated gavage either with PBS (control mice), or with PBS solution containing non-hydrolyzed milk protein isolate (MPI), eHC or eHC+LGG (eq. of 10 mg of protein/gavage). All mice were then experimentally sensitized to CMP by gavage with whole CM mixed with the Th2 mucosal adjuvant
PBS pretreated mice were efficiently sensitized and demonstrated elicitation of allergic reaction after OFC, whereas mice pretreated with MPI were durably protected from allergy to CMP. eHC+/-LGG pretreatments had no protective effect on sensitization to casein (specific) or BLG (non-specific), nor on CMP-induced allergic reactions. Surprisingly, eHC+LGG mice demonstrated significantly enhanced humoral and cellular immune responses after sensitization with CMP. Only some subtle changes were evidenced by flow cytometry.
Neither specific nor nonspecific preventive effects of administration of casein-derived peptides on the development of CMP food allergy were evidenced in our experimental setup. Further studies should be conducted to delineate the mechanisms involved in the immunostimulatory potential of LGG and to clarify its significance in clinical use.