AUTHOR=Niu Jinzhong , Huang Yu , Liu Xinchao , Wu Fenglei , Tang Jufen , Wang Bei , Lu Yishan , Cai Jia , Jian Jichang TITLE=Fish Galectin8-Like Exerts Positive Regulation on Immune Response Against Bacterial Infection JOURNAL=Frontiers in Immunology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.01140 DOI=10.3389/fimmu.2020.01140 ISSN=1664-3224 ABSTRACT=

Galectin-8 is a member of the galectin family that is involved in immune response against pathogens. However, the roles of fish galectin-8 during pathogen infection require comprehensive studies. In this study, a galectin-8 homolog (OnGal8-like, OnGal8-L) was characterized from Nile tilapia (Oreochromis niloticus), and its roles in response to bacterial infection were analyzed. The OnGal8-L contains an open reading frame of 891 bp, encoding a peptide of 296 amino acids with two CRD regions of tandem-repeat galectin and two carbohydrate recognition sites. The OnGal8-L protein shares 46.42% identities with reported Oreochromis niloticus galectin-8 protein. Transcriptional expression analysis revealed that OnGal8-L was constitutively expressed in all examined tissues and was highly expressed in spleen. The transcript levels of OnGal8-L were up-regulated in the spleen, head kidney, and brain, following Streptococcus agalactiae (S. agalactiae) challenge. Further in vitro analysis indicated that the recombinant protein of OnGal8-L (rOnGal8L) could agglutinate erythrocyte, S. agalactiae, and A. hydrophila and bind S. agalactiae, A. hydrophila, and various PAMPs (lipopolysaccharides, lipoteichoic acid, poly I:C, peptidoglycan, galactose, mannose, and maltose). Also, rOnGal8L could regulate inflammatory-related gene expression, phagocytosis, and a respiratory burst of monocytes/macrophages. Moreover, in vivo analysis showed that OnGal8-L overexpression could protect O. niloticus from S. agalactiae infection through modulating serum antibacterial activity (AKP, ACP, and LZM), antioxidant capacity (CAT, POD, and SOD), and monocyte/macrophage proliferation and cytokine expression, as well as reducing bacterial burden and decreasing tissue damage. Our results collectively indicate that OnGal8-L plays important regulatory roles in immune response against bacterial infection.