AUTHOR=van Bilsen Jolanda H. M. , Dulos Remon , van Stee Mariël F. , Meima Marie Y. , Rouhani Rankouhi Tanja , Neergaard Jacobsen Lotte , Staudt Kvistgaard Anne , Garthoff Jossie A. , Knippels Léon M. J. , Knipping Karen , Houben Geert F. , Verschuren Lars , Meijerink Marjolein , Krishnan Shaji TITLE=Seeking Windows of Opportunity to Shape Lifelong Immune Health: A Network-Based Strategy to Predict and Prioritize Markers of Early Life Immune Modulation JOURNAL=Frontiers in Immunology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.00644 DOI=10.3389/fimmu.2020.00644 ISSN=1664-3224 ABSTRACT=
A healthy immune status is strongly conditioned during early life stages. Insights into the molecular drivers of early life immune development and function are prerequisite to identify strategies to enhance immune health. Even though several starting points for targeted immune modulation have been identified and are being developed into prophylactic or therapeutic approaches, there is no regulatory guidance on how to assess the risk and benefit balance of such interventions. Six early life immune causal networks, each compromising a different time period in early life (the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were generated. Thereto information was extracted and structured from early life literature using the automated text mining and machine learning tool: Integrated Network and Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g., genes/proteins/metabolites/processes/diseases), extracted causal relationships among these entities, and assembled them into early life-immune causal networks. These causal early life immune networks were denoised using GeneMania, enriched with data from the gene-disease association database DisGeNET and Gene Ontology resource tools (GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate information-dense early life immune networks. Analysis of the six early life immune networks by PageRank, not only confirmed the central role of the “commonly used immune markers” (e.g., chemokines, interleukins,