AUTHOR=Ji Juan , Wang Juan , Yang Jin , Wang Xi-Peng , Huang Jing-Jing , Xue Teng-Fei , Sun Xiu-Lan TITLE=The Intra-nuclear SphK2-S1P Axis Facilitates M1-to-M2 Shift of Microglia via Suppressing HDAC1-Mediated KLF4 Deacetylation JOURNAL=Frontiers in Immunology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.01241 DOI=10.3389/fimmu.2019.01241 ISSN=1664-3224 ABSTRACT=

Sphingosine 1-phosphate (S1P) is involved in a variety of cellular responses including microglial activation and polarization. However, the impacts of S1P on ischemia-induced microglial activation and polarization remain unclear. In the present study, Sprague-Dawley rats were selected for middle cerebral artery occlusion (MCAO) establishment and treated with S1P analog FTY720 (0.5, 1, 2 mg/kg) for 24 h. The impacts of FTY720 on oxygen-glucose deprivation (OGD)-induced microglial polarization were examined in the primary cultured microglia. FTY720 treatment could prevent ischemia-induced brain injury and neurological dysfunction, also decrease the levels of IL-1β and TNF-α and promote M2 microglial polarization in rats. Further, we found that FTY720 inhibited the expressions of M1 markers, but increased the expressions of M2 markers in the OGD-insulted microglia. And FTY720 could enhance the phagocytic function of microglia. The sphingosine kinase 1/2 (SphK1/2) or the Sphk2 inhibitor could prevent the M1 to M2 phenotype shift improved by FTY720, but the Sphk1 inhibitor failed to affect the roles of FTY720. Furthermore, the Sphk1/2 or Sphk2 inhibitor promoted the activities of histone deacetylase (HDAC1) and inhibited the histone acetylation of the Krüppel-like factor 4 (KLF4) promoter regions, indicating that intra-nuclear pFTY720 inhibited HDAC1 activations and prevented KLF4 to interact with HDAC1, and thereby suppresses KLF4 deacetylation. Therefore, our data reveals that intra-nuclear SphK2-S1P axis might facilitate the transformation of microglial polarization from M1 to M2 phenotype, which might be intra-nuclear regulatory mechanisms of FTY720-prevented neuroinflammation.