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Host defense strategies against infectious diseases are comprised of both host

resistance and disease tolerance. Resistance is the ability of the host to prevent invasion

or to eliminate the pathogen, while disease tolerance is defined by limiting the collateral

tissue damage caused by the pathogen and/or the immune response without exerting

direct effects on pathogen growth. Our incomplete understanding of host immunity

against tuberculosis (TB) is predominately rooted in our bias toward investigating host

resistance. Thus, we must refocus our efforts to understand the entire spectrum of

immunity against M. tuberculosis to control TB.
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INTRODUCTION

Tissue homeostasis is essential for optimal physiological function and overall host fitness for
survival (1). Thus, we have evolved with a complex tissue adaptation that involves cellular stress
responses and, paradoxically, inflammation to maintain integrity, and functional capacity of an
organ despite constant endogenous or exogenous insults, including infections. Historically, the
dogma of host defense against infection was unilaterally aimed at eliminating the root of disease
(i.e., the pathogen) and ultimately led to the discovery of antimicrobial drugs. While the discovery
of antibiotics to directly restrict the growth of pathogens was a “revolution” in medicine, this
accelerated drug-induced natural selection leading to the spread of drug-resistant pathogens.
Today, the persistence of infectious diseases, the lack of vaccines for major chronic infections
(e.g., tuberculosis, malaria, and HIV), as well as the decline in new antibacterial drugs in the
pipeline are all indications for the urgent need of novel therapies that require a better fundamental
understanding of host defense against infections.

Now, it is increasingly understood that host defense strategies against infectious diseases are
comprised of both host resistance and disease tolerance. Host resistance is the ability of the host to
prevent invasion or to eliminate the pathogen (2), while disease tolerance is defined by limiting
the tissue damage caused by the pathogen and/or the immune response (3). Unlike resistance,
disease tolerance does not necessarily exert direct effects on pathogen growth. For this reason,
host resistance was considered as the central arm of host defense against infections. In fact, our
inconsistency in understanding immunity against infectious diseases might be in part due to our
bias toward host resistance to infections. However, this dogma has been recently challenged as we
are gaining more fundamental knowledge from simple organisms such as the plant host defense
mechanisms (4–7).

As plants are stationary, they have evolved many sophisticated host defense mechanisms to
endure severe diseases caused by a large variety of pathogens, including fungi, bacteria, and viruses.
In the late 1950s to early 1970s, it was initially observed that plants can tolerate an infection with
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normal yield without affecting the pathogen load, which was
termed “disease tolerance” (2, 8, 9). Most recently, Medzhitov,
Schneider, and Soares broadened this concept (10), which has
led to a growing appreciation for the crucial role of disease
tolerance in invertebrates and vertebrates against infectious
diseases (11, 12).

Mycobacterium tuberculosis (Mtb) has coevolved with humans
for 70,000 years (13, 14) and achieved an evolutionary trade-
off that infrequently compromises host survival. This trade-
off has been conventionally considered to be dependent on
host resistance for limiting the growth of Mtb. However, our
understanding of natural immunity in 90 to 95% of infected
individuals who become disease-free is extremely limited. As
this latter population constitutes approximately a quarter of
the world population (15), it is imperative that we delineate
the mechanisms underlying host resistance vs. host tolerance
during TB. In this Mini-Review, we focus on recent studies
that shed light on the cellular and molecular mechanisms of
disease tolerance to Mtb and aim to fill this gap in knowledge of
immunity against TB.

TUBERCULOSIS

Exposure to Mtb either results in direct elimination of the
pathogen, most likely by the innate immune system, or
infection, and containment that requires both innate and
adaptive immunity to form the granuloma (Figure 1). In 90–
95% of individuals infected with Mtb, the bacteria are either
eliminated or contained and remain in a latent state, termed
latent tuberculosis infection (LTBI). These individuals are
asymptomatic and do not transmit the disease (16). Both human
and non-human primate (NHP) studies indicate that these
asymptomatic LTBI individuals have a spectrum of infection that
ranges from sterilized and well-contained infections to a small
frequency of individuals who are at higher risk for reactivation
(17–19). Although the mechanism(s) of host susceptibility to
progressive disease is not well understood and is multifactorial,
several genetic polymorphisms have been associated with risk
of active TB. For instance, a type I IFN signature appears to
be linked to development of active TB in NHP (20), and has
been described as a marker of active TB in humans as well (21).
This ultimately led to the discovery of extensive cellular and
molecular mechanisms that were thought to be only engaged in
host resistance to TB. However, recent studies indicate that some
of these mechanisms, as detailed below, that were thought to be
central to host resistance may also play an essential role in disease
tolerance againstMtb.

GRANULOMA IS THE SIGNATURE OF
DISEASE TOLERANCE IN TB

Following the invasion of infectious agents (e.g., bacteria,
fungi, and parasites), if the innate immune response is not
able to destroy or expel the agent, the host will initiate
an adaptive immune response. If the combination of both
innate and adaptive immune responses fail to eliminate a

pathogen, the host is then required to form granuloma—a
mixture of both innate and adaptive effector cells—to “wall
off” an agent and prevent dissemination. From that moment
on, the host is forced to tolerate the agent. At the same
time, this leads to a new set-point of immune responses with
different magnitude as well as duration that must be carefully
regulated to prevent immunopathology and maintain host
fitness.

Granulomas are the hallmark of TB. However, they are a
double-edged sword required for controlling and containment
of Mtb, but also contribute to persistence of the bacteria (22–
24). TB granulomas are particularly heterogeneous, but the
basic granuloma architecture is composed of a central necrotic
core (caseum), which is surrounded by mainly macrophages
that are at different activation stages, and a cuff of T and
B cells. Monocytes, neutrophils, DCs, and NK cells can
also be found in the granulomas. The inflammatory state of
granulomas can alter the ratio of its cellular composition, which
becomes critical in determining granuloma fates and outcome
of infection. Remarkably, despite being a critical step for the
initial formation of the granuloma, it is still unclear if granuloma
formation driven by the host or Mtb? While this fundamental
question remains to be answered, tremendous advances in
understanding the dynamics of granulomas in TB have recently
been made.

While the induction of inflammatory mediators within a
granuloma is required for preventing Mtb dissemination, overly
intense pro-inflammatory responses lead to the destruction of
granulomas via necrosis, enhanced lung parenchymal damage,
lung cavitation, and transmission that results in the onset
of active disease (25–27). Studies in animal models of TB
as well as in humans have elegantly demonstrated that
inflammatory signaling is highly organized in the granuloma
as pro-inflammatory signaling is mainly found at the core of
the granuloma, while anti-inflammatory signaling is located in
the periphery (28). This spatial compartmentalization of pro-
and anti-inflammatory signaling determines the granuloma’s
function in controlling bacterial dissemination. Thus, the host is
better off with a balanced inflammatory and anti-inflammatory
signaling that leads to the regulation of inflammation within
and around the granuloma and reduced frequency of active
disease (29).

MECHANISMS THAT UNDERLAY THE
“SWITCH” FROM HOST RESISTANCE TO
DISEASE TOLERANCE

The central question that remains to be addressed is how and
when host defense strategies switch from resistance to tolerance.
While the exact cellular and molecular mechanisms of this
phenomenon are still under investigation, we envision that three
key pathways contribute to this transition.

1. Pathogen Recognition Signaling
During the early stage of infection, the vast majority of
signaling in the host results from the detection of the pathogen
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FIGURE 1 | The spectrum of Mycobacterium tuberculosis infection in humans. Humans and Mtb have co-evolved to reach a dynamic equilibrium. There are three

major outcomes following exposure to Mtb. (1) Resilient Host: These individuals are able to eliminate the bacteria at the early stage of infection via host defense

mechanisms of the upper or lower airways. (2) Tolerance Host: if innate immunity is unable to eliminate Mtb, the host initiates adaptive immunity and granuloma

formation, which is the beginning of the chronic phase of infection and disease tolerance to contain or ultimately eliminate Mtb (reverting host). Conditions associated

with immunocompromised host may result in loss of Mtb containment and active disease in tolerant host. Although 90–95% of individuals are considered to be

tolerant hosts, the exact number of these individuals who are able to clear Mtb or succumb to disease is still unknown. (3) Susceptible Host: individuals with impaired

natural immunity to Mtb who progress to active disease and transmit the infection.

that initiates predominantly anti-microbial host resistance to
infection. Recognition of Mtb or mycobacterial products by
pattern recognition receptors (PRRs) such as Toll-like receptors
(TLRs), NOD-like receptors (NLRs), C-type lectin receptors
(CLRs), and scavenger receptors initiates a cascade of events
including production of cytokines, nitric oxide, reactive oxygen
species, autophagy, and phagolysosome fusion to reduce the
growth of Mtb and thus enhance host resistance (30). However,
this initial host resistance to an infection comes with substantial
tissue damage that needs to be repaired especially in a
vital organ such as the lung. Additionally, in the context of
a persistent infection like Mtb, in which innate immunity
is often unable to eliminate the bacteria, controlling the
magnitude of the inflammatory response becomes essential
for host survival. Thus, as the infection persists, the host
receives signals from damaged tissue to self-limit inflammation
and preserve tissue integrity. For example, Mantovani’s group
has identified Toll/IL-1R (TIR) 8 receptor, a member of
IL1R family, also known as single Ig IL-1-related receptor
(SIGIRR), as a negative regulator of TLR/IL-1R signaling. TIR-
8 signaling contributes to dampening inflammation and limiting
tissue damage in Mtb infection (31). Mice deficient in TIR-
8 succumb to Mtb infection due to excessive inflammatory
responses despite their ability to efficiently control bacterial
growth (31). Further investigation is certainly required to
dissect the pathways involved in regulating the inflammation
to preserve tissue integrity and the maintenance of disease
tolerance.

2. Host Immune Signaling
While the production of pro-inflammatory cytokines such
as IL-1β and TNF-α are critical in anti-mycobacterial
immunity predominantly during the early phase of Mtb
infection, the constant production of these cytokines
promotes inflammation-mediated tissue damage. Thus, their
production needs to be tightly regulated. Sassetti’s group
has elegantly demonstrated that nitric oxide (NO) inhibits
NLRP3 inflammasome-mediated IL-1β production to prevent
neutrophil-dependent pulmonary tissue damage (32). Most
recently, the same group has shown that the role of NO in
host resistance to Mtb acts via the recruitment of neutrophils,
which are permissive to Mtb growth (33). Importantly,
this immunoregulatory function of NO is coordinated with
the initial recruitment of IFN-γ-producing T cells into the
lung, which leads to granuloma formation and perhaps the
transition from host resistance to disease tolerance (please
see the review from Sassetti-group in this special issue)
(34).

The identification of mutations in the IL-12/IFN-γ/STAT1
axis that lead to disseminated mycobacterial infections, termed
Mendelian Susceptibility to Mycobacterial Disease (MSMD),
along with the susceptibility of T cell-deficient hosts to
mycobacterial infections established the dogma that IFN-γ-
producing T cells play a crucial role in host resistance against
TB. However, there is no direct evidence of T cells/IFN-γ
in protection against Mtb, but rather in the containment of
infection (35–37) via regulation of the inflammatory response.
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For instance, extrapulmonary TB is associated with individuals
having lower measurable Tuberculin Skin Test (TST) responses
(38), as well as with HIV-positive individuals with very
low CD4+ T cell counts (35). In addition, IFN-γ has been
shown to inhibit pulmonary neutrophilic inflammation to
prevent lung tissue damage during the chronic phase of Mtb
infection (39, 40). High levels of neutrophils generate a strong
inflammatory response that results in increased pulmonary
pathology and mortality. Importantly, neutrophil depletion in
IFNγR−/− mice prolonged their survival during Mtb infection.
(39). The contribution of neutrophils to immunopathology
during Mtb infection has been well established in mice (41),
NHP (42, 43), and humans (21). These studies collectively
indicate that the IFN pathway is critical in the regulation of
inflammatory signals and disease tolerance rather than host
resistance.

Furthermore, dysregulated T cell responses appeared to be
detrimental for the host by inducing overt immunopathology. It
has been well documented that during chronic viral infection,
constant exposure of T cells to antigens and inflammatory
cytokines lead to loss of T cell function, a process termed
“T cell exhaustion” (44). One of the well-defined pathways
in T cell exhaustion is programmed cell death (PD1). The
interaction between PD1, which is expressed on antigen-
experienced T cells, and its ligands PDL-1 and PDL-2
prevents T cell proliferation and cytokine production. Thus,
it was thought that the inhibition of PD1 signaling should
promote protection via “reviving” T cell-mediated immunity
to chronic Mtb infection. However, while disruption of PD1
signaling either genetically or via neutralizing antibodies
significantly enhanced T cell-mediated immunity to Mtb
infection, this was associated with increased bacterial growth,
massive pulmonary immunopathology, and reduced survival (45,
46). Thus, the regulatory mechanisms involved in the expansion
and contraction of T cell responses become a critical determinant
of the outcome of TB infection. While the surface expression of
some of these markers (e.g., PD1 or KLRG) on T cells appears
to be critical for dictating their functional role during infection,
the intrinsic immunoregulatory mechanisms of T cells are poorly
understood.

Mitochondria are central platforms that critically regulate
cell proliferation and differentiation. To meet the metabolic
demands of active cells, mitochondria can rapidly switch from
a state of catabolism to anabolism to provide the biosynthetic
intermediates that are pivotal for cellular function. Naïve
T cells have a low rate of metabolic activity, characterized
by minimal nutrient uptake and biosynthesis. These cells
procure cellular energy in the form of adenosine triphosphate
(ATP) from the energetically efficient processes oxidative
phosphorylation (OXPHOS) and fatty acid oxidation (FAO)
(47). Upon TCR activation, dramatic metabolic reprogramming
occurs to generate the increased energy needed for T cell
proliferation, differentiation and cytokine production. To ensure
adequate metabolic resources are available, activated T cells
increase nutrient uptake and switch from OXPHOS and
FAO to aerobic glycolysis (47). While energetically inefficient,
glycolysis enables the cells to rapidly produce ATP and

other biosynthetic precursors essential for cell growth and
proliferation. This switch from predominantly OXPHOS to
aerobic glycolysis, despite the presence of abundant oxygen,
is known as the “Warburg Effect.” Metabolic shift from
OXPHOS to glycolysis or vice-versa is also highly associated
with the inflammatory and anti-inflammatory function of
immune cells (48). For example, inflammatory cells such as
activated macrophages exhibit higher glycolysis, by contrast
anti-inflammatory cells such as M2 macrophages acquire
higher OXPHOS than glycolysis (49). A recent study in non-
human primates (NHP) suggests that the relative proportion of
inflammatory or anti-inflammatory macrophages is important
in deciding the outcome of Mtb infection (50). The metabolic
status of a cell is also important to regulate immune cell
polarization (51). Th17 cell differentiation relies on glycolysis,
whereas blocking glycolysis inhibits Th17 development and
promotes regulatory T cell (Treg) differentiation. Th17 cells
are important in host resistance to Mtb but uncontrolled
production of IL-17 induces inflammation via recruitment
of neutrophils and increases the mortality of Mtb-infected
mice (39). Higher susceptibility of TLR-2-KO mice to Mtb
has been linked to reduced accumulation of Treg cells
and concomitant increased inflammation (52). These findings
suggest that the metabolic state determines the fate of
immune cells which is critical in promoting or dampening
inflammation.

An equally important function of mitochondria is their role
in the cell death program. Cyclophilin D (CypD), a member of
the cyclophilin protein family, is a conserved protein located in
the mitochondrial matrix (53). It has been previously shown that
CypD plays a key role in necrosis by regulating the mitochondrial
permeability transition pore (MPTP), which allows the passage
of solutes and water from the cytoplasm into the mitochondria
(54, 55). Necrosis of macrophages is an exit mechanism for
Mtb (56–59). Remold and colleagues initially demonstrated that
the pharmacological inhibition of CypD in human macrophages
lead to the inhibition of necrosis and reduction of Mtb growth
in vitro (60). This observation has been recently extended to
the zebrafish and mouse models of tuberculosis where the
genetic blockade of CypD prevented macrophage necrosis and
enhanced their anti-mycobacterial capacity (61, 62). Based on
the role of CypD in macrophage immunity to Mtb infection,
we initially hypothesized that CypD-deficient mice (CypD−/−)
are resistant to Mtb infection. Surprisingly, CypD−/− mice
were highly susceptible to Mtb infection compared with control
animals, despite similar numbers of bacteria in both groups.
We further identified that this susceptibility was related to an
enhanced T cell response that promoted lung immunopathology
independent of host resistance. We have determined that CypD
intrinsically regulates T cell metabolism and critically regulates
disease tolerance in TB (63). Similarly, the C3HeB/FeJ mouse
strain that generates a profound T cell response toMtb infection
quickly succumbs to death due to the overgrowth of necrotic
granulomas (64, 65). Although we still don’t know why the
functional role of CypD is different in macrophages vs. T
cells, we envision that as T cells are intrinsically programmed
to proliferate, the functional role of CypD in these cells may
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be wired to regulate the metabolism and proliferation rather
than cell death. Collectively, these data indicate that, similar
to granulomas, T cells are a double-edged sword: while they
are crucial to initiate granuloma formation during the early
phase ofMtb infection and prevent the dissemination of disease,
they also play an important role in transmission of Mtb by
promoting granuloma necrosis during the active phase of the
disease (66). Thus, the function and location of these effector cells
are critical determinants of disease tolerance and host survival
in TB.

3. Lung-Stromal Signaling
The term “tissue remodeling” refers to irreversible anatomical
and structural changes. The lung injury caused by Mtb infection
and subsequent granuloma formation results in distortion of
the lung architecture. This requires effective and coordinated
repair mechanisms to limit the extent of the granulomas and
preserve lung function while ensuring pathogen containment.
For instance, matrix metalloproteinases (MMPs), which are a
family of zinc-dependent proteases, play an important role in
extracellular matrix remodeling by degrading collagens. Several
MMPs have been associated with active TB and cavitation
(67), which reflects the importance of lung tissue repair in
generating a preventive granuloma in TB. Furthermore, some
of the mechanisms that are engaged in tissue healing, like
fibrosis, also play a key role in the formation of fibrosis in
the periphery of the granuloma to effectively prevent bacterial
dissemination. Therefore, it is not surprising that the presence
of type 2 immune responses, which are essential for controlling
tissue damage, has commonly been observed in TB (68–71).
While type 1 immune responses are crucial for the formation of
an effective granuloma to control the infection, type 2 immunity
is required at the same time to control lung tissue damages
caused by both immune responses and Mtb. While the role
of type 2 cytokines (e.g., IL-4 and IL-13) in stimulating TGF-
β-dependent granulomatous inflammation and fibrosis is well
established in parasitic infections, little is known about the exact
role of these cytokines in tissue healing and repair in TB. During
parasite infections both IL-4 and IL-13 are the major drivers
of STAT6 translocation. STAT6-deficient mice are impaired in
forming granulomatous fibrosis (72), and IL-13 increases TGF-
β activation (73). Interestingly, using a heterologous mouse
model of Nippostrongylus brasiliensis (Nb) and Mtb infection,
Salgame’s group has shown that the growth of bacteria was
increased only at 4 weeks after Mtb infection, while there were
no differences at two or seven weeks post infection. Despite this
early increase in bacterial growth, there was no difference in lung
histopathology or granuloma formation (74). Thus, while the
type 2 immune bias transiently compromises early host resistance
to Mtb, it may promote disease tolerance at later timepoints and
ultimately control the infection. It therefore becomes important
to identify the location of both innate and adaptive immune cells
that are responsible for spatial production of type 1 and type
2 cytokines and extracellular matrix (ECM) remodeling in the
granuloma.

Additionally, the expression of virulence factors from Mtb
adds another layer of complexity for the maintenance of this

delicate balance between host and Mtb in the granuloma. For
instance, early secretory antigen-6 (ESAT6) appears to lyse lung
epithelial cells and facilitate local dissemination (75). However,
ESAT6 also induces MMP9 from epithelial cells, which was
associated with the recruitment of monocytes/macrophages and
granuloma maturation (76). In contrast to MMP9, it has been
shown that MMP1 was significantly upregulated in individuals
with active TB. MMP1 specifically degrades type I collagen
and increases pulmonary tissue destruction in TB. Additionally,
transgenic mice expressing human MMP1 showed extensive
tissue damage despite similar levels of bacterial burden in the
lungs (77). Interestingly, a recent study has reported that a
selective MMP7 inhibitor (cipemastat) has a detrimental impact
on pulmonary granulomas by increasing cavitation in a mouse
model of TB (78). An elegant study by Tobin’s group has
also demonstrated extensive angiogenesis within the granuloma,
whereas inhibition of vascular endothelial growth factor (VEGF)
signaling reduced vascular leakage and bacterial dissemination in
a zebrafish model of TB (79). Further studies also suggested that
increased angiogenesis in the area that has restricted access to the
blood supply may increase the access of immune cells and anti-
TB drugs to the bacteria (80). Collectively these studies indicate
that the location and balance in the signaling of type 1 and 2
immune responses that regulate lung extracellular matrix (ECM)
remodeling via collagen deposition/degradation/angiogenesis
define an effective granuloma in TB (please see the review from
Tobin in this special issue).

CONCLUSION AND REMARKS

A prolonged co-evolutionary interaction between humans and
Mtb has almost reached its perfect balance with 90–95% of
infected individuals being resilient or “tolerating” the presence
of Mtb without any disease symptoms (Figure 1). This can be
interpreted as 9 out of 10 people having a protective natural
immunity against TB which renders them asymptomatic and
non-infectious and may further explain why humans are the only
known host forMtb (14). This epidemiological data also suggests
that, through a long evolutionary process, an equilibrium is
reached that supports both host fitness and Mtb survival.
Interestingly, in NHP which are the natural host for SIV, as
well as in HIV-viremic pediatric and adult humans, it has been
long recognized that viral replication is not the major cause of
disease progression but rather immune cell activation (81–83).
Similarly, reactivation of latentMtb in a NHP coinfection model
of SIV/Mtb was directly linked to over-activation of the immune
response (84). Thus, it can be argued that the transition fromHIV
to AIDS, or LTBI to active TB may not depend on the pathogen
load but rather on dysregulated immunity to infections.

While for an obvious reason we have been focusing on 5–
10% of infected individuals who progress to active disease,
we disproportionally have biased our scientific view as well as
investigative approach toward resistance and the elimination
of Mtb. Because of this bias, we incompletely understand the
full spectrum of immunity to TB including the mechanisms of
disease tolerance and thus fall short in developing an effective
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vaccine. Furthermore, any medical intervention targeting host
resistance may potentially break disease tolerance which can have
catastrophic consequences. While assessments of host resistance,
in particular bacterial burden, is the gold standard for the
evaluation of an effective therapy or vaccine, we propose that
measurements of disease tolerance, such as immunopathology,
are also important criteria to be considered in parallel to host
resistance.

The new studies that shed light on disease tolerance may
yield clinical benefit in designing host-targeted vaccines that
minimize tissue damage, prevent granuloma cavitation and
disease transmission, and ultimately reduce the global burden of
TB disease.
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