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Solid tumors are initiated by genetic mutations in non-hematopoietic cells and progress

into invasive malignant tumors. This tumor progression often culminates in metastatic

disease that is largely refractory to current therapeutic modalities and thus dramatically

reduces survival of tumor patients. As solid tumors account for more than 80%

of cancer-related deaths, it is necessary to develop novel therapeutic strategies to

treat the diseases. An attractive strategy is to target macrophages in both primary

tumors [known as tumor-associated macrophages (TAMs)] and metastatic tumors

[called metastasis-associated macrophages (MAMs)]. TAMs and MAMs are abundant

in most solid tumors and can promote tumor metastasis. Several studies in various

models of solid tumors suggest that the accumulation of TAMs, MAMs, and their

progenitor cells is regulated by chemokine ligands released by tumor and stromal cells.

Consequently, these macrophage-recruiting chemokines could be potential therapeutic

targets to prevent malignant tumor development through disruption of the accumulation

of pro-metastatic macrophages. This review will discuss the role of chemokine

ligands and their receptors in TAM and MAM accumulation in primary and secondary

tumor sites, and finally discuss the therapeutic potential of inhibitors against these

macrophage-recruiting chemokines.

Keywords: cancer, metastasis, tumor-associated macrophage, chemokine, antagonist, immunotherapy

INTRODUCTION

Genetic alterations in non-hematopoietic cells can lead to uncontrolled cell proliferation that
results in aberrant tissuemass called a solid tumor. Initially the solid tumors grow locally and do not
invade adjacent tissues. However, accumulation of genetic alterations in the tumor cells turns them
into malignant tumors that spread to different part of the body and establish secondary tumors
(metastasis). While early detection techniques have greatly improved patient survival, significant
challenges remain in the treatment of tumors following metastasis (1). It has been reported that the
establishment of metastatic tumors dramatically increases the mortality rate of tumor patients (1),
and thus the presence of solid tumors account for more than 80% of tumor-associated deaths (2).
It is therefore necessary to prevent the metastasis formation from solid tumors.

In order to form metastatic tumors, cancer cells in the solid tumors pass through a process
called the metastatic cascade (3, 4). In the primary site, cancer cells escape from the anti-tumor
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immune responses (immune escape), invade the surrounding
tissue (invasion) and enter the blood or lymphatic vessels
(intravasation) that disseminate cancer cells into the circulation.
The cancer cells also increase the density of blood vessels
at the tumor site (angiogenesis), which also enhances tumor
cell egress. At the secondary site, the circulating cancer cells
migrate from the vessels to the parenchyma (extravasation) and
often grow into the lethal metastatic tumors (persistent growth)
(5). Through the accumulation of genetic changes, malignant
tumor cells acquire several abilities that advance each step of
metastasis, e.g., increased proliferation, motility, invasiveness,
and survival (6). In addition to these cell autonomous changes,
tumor cells require the supports from surrounding stromal
cells to progress the metastatic cascade (4–6). It is now
widely recognized that both primary and metastatic tumors are
composed of numerous stromal cells such as endothelial cells,
pericytes, fibroblasts, mesenchymal stem cells, and a variety of
immune cells [including regulatory T (Treg) cells, mast cells,
neutrophils, myeloid-derived suppressor cells (MDSCs), and
tumor associatedmacrophages (TAMs)]. All of these stromal cells
are known to promote tumor angiogenesis, cancer cell invasion,
and/or disrupt immune surveillance, which helps progression
of the metastatic cascade (5, 7). Among these tumor-promoting
stromal cells, TAMs are one of the most abundant cell types in
solid tumors (8), and a high number of TAMs in the tumor
correlates with poor overall survival in most solid tumors such
as breast, gastric, oral, ovarian, bladder, and thyroid cancers
(9–13). Furthermore, several mouse models of malignant solid
tumors have identified that TAMs recruited to primary tumors
and those in the metastatic sites (called metastasis-associated
macrophages, MAMs) promote almost all steps of the metastatic
cascade (Figure 1) (5). Therefore, blockade of TAM and MAM
accumulation in the tumor microenvironment could represent a
novel approach to prevent the progression of solid tumors and
improve the outcome of metastatic disease (14).

Immune cell recruitment into the site of inflammation follows
several steps, i.e., tethering to the vessel wall, rolling on it,
adhesion to endothelial cells, crawling, and migration through
the endothelial monolayer. Since activation of certain set of
integrins progress each step of this cascade, blockade of the
integrin-induced adhesion cascade has been suggested as a novel
therapy for inflammatory diseases (15). Another key factor that
regulates the directed migration and positioning of immune
cells, including macrophages, are chemokines. Chemokines
are a family of small cytokines consisting of more than 50
members in human and mice. They are classified into four

Abbreviations: ATF4, activating transcription factor 4; CCL, CC-chemokine

ligand; CCR, CC-chemokine receptor; CITED2, Cbp/p300-interacting

transactivator with Glu/Asp-rich carboxy-terminal domain-2; CSF1, colony
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PyMT, Polyoma Middle T oncogene; RCC, renal cell carcinoma; RKIP, Raf kinase

inhibitory protein; TAM, tumor associated macrophage; TGFβ, transforming

growth factor β Treg cell, regulatory T cell; VEGF, vascular endothelial growth

factor.

subfamilies based on the position of cysteine residues, i.e., XC-,
CC-, CXC-, and CX3C-chemokine ligands (XCL, CCL, CXCL,
and CX3CL). These chemokine ligands bind to their cognate
receptors (XCR, CCR, CXCR, and CX3CR, respectively), and
regulate circulation, homing, and retention of immune cells.
Although some ligands can bind to multiple receptors and vice
versa, the binding affinities of ligands to a cognate receptor
are largely different. Furthermore, each immune cell type
differentially expresses the receptors, and expression of receptors
and ligands is spatially and temporally regulated (16). Therefore,
each chemokine ligand-receptor pair selectively regulates the
positioning of a certain type of immune cell for host defense
and immunity (17). Accumulating evidences suggest that solid
tumors utilize chemokines and their receptors to accomplish
successful metastasis. In the tumor microenvironment, both
cancer and stromal cells produce various chemokine ligands
that recruit the tumor promoting immune cells such as Treg

cells, neutrophils, MDSCs and TAMs (18). It is therefore likely
that blockade of chemokine signals could be an attractive
strategy to prevent malignant tumor development by disrupting
accumulation of the pro-metastatic cells including TAMs. On
the other hand, the target chemokine signal should be carefully
considered as it can also affect the recruitment of cytotoxic
lymphocytes (CTL) such as CD8+ T and natural killer (NK) cells
that have the potential to eliminate malignant tumor cells and
thereby are essential for the success of immunotherapies such as
checkpoint inhibitors and CTL transfer therapies.

In this review, I will describe the roles of TAMs and MAMs
in the metastatic process, and summarize chemokine ligands and
receptors that recruit the pro-metastatic macrophages mainly
based on results from pre-clinical tumor models in mice.
I will also discuss the therapeutic potential of TAM/MAM
targeting by chemokine receptor antagonists, and consider the
possibility of combining macrophage targeting with emerging
immunotherapies for malignant tumors.

ROLES OF MACROPHAGES IN THE
METASTATIC CASCADE

The Contribution of TAMs to the Metastatic
Steps at the Primary Site
TAMs are macrophages (characterized as
F4/80+CD11b+Ly6Clow in mouse or CD11b+CD14+CD163+

in human) that accumulate in the tumor microenvironment and
promote tumor progression (4). Although TAMs in solid tumors
can be derived from tissue resident macrophages, several animal
studies have shown that TAMs originate from classicalmonocytes
in blood that are characterized as CD11b+Ly6C+CCR2+ (or
CD14++CD16−CCR2+ in human) (14, 19). For example,
a mouse model of glioblastoma has shown that adoptively
transferred CCR2+ monocytes are recruited to the tumor
and differentiate into TAMs, accounting for 85% of the total
macrophage population in the tumor (20). In a mouse model
of breast cancer caused by the mammary epithelial restricted
expression of the Polyoma Middle T oncogene (PyMT), genetic
depletion of CCR2+ monocytes reduces the number of TAMs
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FIGURE 1 | Roles of tumor-infiltrating macrophages in progression of the metastatic cascade. In the primary site, tumor-associated macrophages (TAM) suppress

functions of cytotoxic lymphocytes (CTL) and promote angiogenesis, which supports tumor growth as well as dissemination of cancer cells. TAMs also directly help

cancer cells to migrate into adjacent parenchyma (invasion) and to enter the blood vessels (intravasation). In the metastatic site, a distinct population of TAMs called

metastasis-associated macrophage (MAM) promotes migration of cancer cells from the vessels into the parenchyma (extravasation) and their persistent growth or

survival. MAMs may also suppress anti-tumor immune responses in metastatic sites. Both in the primary and secondary site, tumor-promoting macrophages (i.e.,

TAMs/MAMs) originate from circulating classical monocytes.

in primary tumors. Further, adoptively transferred CCR2+

monocytes are recruited to the tumors and differentiate into
F4/80+ macrophages (21). These results suggest that the majority
of TAMs in some solid tumors are differentiated from classical
monocytes.

Studies using the PyMT breast cancer model have suggested
that the accumulation of TAMs promotes progression of
the metastatic cascade (Figure 1). For example, macrophage
ablation in the PyMT mice by genetic deletion of colony
stimulating factor 1 (CSF1) suppresses tumor angiogenesis
and pulmonary metastasis of cancer cells (22, 23). In this
model, macrophage-selective deletion of Wnt7b also reduces
angiogenesis in primary mammary tumors and suppresses lung
metastasis (24). Tumor angiogenesis is known to promote
dissemination of cancer cells from the primary tumor into
the circulation by increasing the density of leaky vessels and
enhancing tumor cell invasiveness (25). It is therefore likely that
TAMs enhance the hematogenous dissemination of cancer cells
via promoting angiogenesis. TAMs also promote the tumor cell
egress by directly helping cancer cell invasion and intravasation.
Intravital imaging of the PyMT tumors indicates that mammary
tumor cells invade surrounding tissues together with TAMs and
enter the blood vessel in association with perivascular TAMs
(26, 27). In these processes, TAMs secrete epidermal growth
factor (EGF), and activate its receptor in cancer cells, which
enhances invasion capability and motility through increasing
invadopodium formation and matrix degradation (28). It is also
reported that perivascular TAMs transiently increase vascular
permeability via secretion of vascular endothelial growth factor
(VEGF) and thereby promote intravasation of the PyMT tumor
cells (29). Consistent with these results, a high number of
TAMs correlates with high density of vasculature in a variety of
human solid tumors including breast cancer (30). Furthermore,
direct contact between perivascular TAMs, endothelial cells and

cancer cells (called tumor microenvironment for metastasis;
TMEM) is associated with increased risk of distant metastasis
in breast cancer (31). Several studies suggest that TAMs also
protect cancer cells from anti-tumor immune reactions. For
example, macrophages isolated from the mouse and human
solid tumors can directly suppress T cell responses (5, 32) and
NK cell cytotoxicity (33, 34) in vitro. It is also reported that
depletion of TAMs by a CSF1 receptor antagonist enhances
CD8+ T cell-mediated anti-tumor immunity under treatment
with chemotherapy in the PyMT breast cancermousemodel (35).
Mechanistically, TAMs can suppress T cell activities directly via
expression of immune regulatory molecules such as arginase-1
(ARG1), IL-10, and transforming growth factor β (TGFβ) (36),
as well as via physical contacts with T cells that suppresses
full activation of T cells or their access to the tumor cells (37,
38). In addition, TAMs can suppress T cell-mediated immune
reactions indirectly by regulating the recruitment of Treg cells (39,
40). These results indicate that TAMs accumulating in primary
tumors help cancer cells to disseminate into the circulation
via enhancing immune suppression, angiogenesis, cancer cell
motility and invasiveness. It is therefore likely that molecules
that recruit TAMs can be therapeutic targets to prevent the
metastatic seeding of primary tumor cells in certain types of solid
tumors.

Metastatic Steps Promoted by MAMs in
the Secondary Site
It has been suggested that TAMs contain many different
subtypes that play specific roles in tumor development
and progression (8). In mouse models of metastatic breast
cancer, a population of macrophages characterized as
F4/80highLy6G−CD11bhighCD11clow accumulates in the
lung with metastatic tumors. This macrophage population is
barely found in the normal lung and distinct from lung resident
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macrophages that are defined by high expression of F4/80
and CD11c (41, 42). The CD11b-positive macrophages that
accumulate in the metastatic sites are thus called metastasis-
associated macrophages (MAMs). Recent studies have shown
that adoptively transferred classical monocytes are recruited to
the metastatic sites where they differentiate into MAMs (43, 44).
It is also reported that depletion of MAMs by CSF1 or its
receptor knockout reduces metastatic tumor burden in mice that
are intravenously injected with mammary tumor cells (41, 42).
These results suggest that the recruitment of monocytes and
subsequent accumulation of MAMs are required for circulating
breast cancer cells to develop metastatic tumors.

In order to establish metastasis foci, circulating cancer cells
need to extravasate, survive, and grow at the secondary sites.
Several studies using mouse models of metastatic breast cancer
have shown that MAMs can enhance the progression of these
steps (Figure 1) (5, 8). For example, depletion of MAMs by
CSF1 knockout reduces the number of cancer cells outside
the blood vessels in the lung of mice that are intravenously
injected with MET-1 mouse mammary tumor cells (41). It is
also reported thatmacrophage-selective deletion ofVegfa reduces
pulmonary metastasis formation of breast cancer cells in vivo,
and suppresses permeability of endothelial monolayers as well as
extravasation of cancer cells in vitro (43). These results indicate
that MAMs promote extravasation of cancer cells via VEGF-
A secretion. In the same model, pharmacological or genetic
depletion of macrophages following tumor cell extravasation
suppresses the metastatic tumor loads in the lung (41). It is
also reported that MAMs suppress apoptosis of human breast
cancer cells disseminated into the lung of mice by transmitting
a survival signal via vascular cell adhesion molecule 1 (VCAM-1)
on MDA-MB-231 human breast cancer cells (45). Furthermore,
MAMs enhance angiogenesis via a Tie-2-mediated mechanism
and thereby promote the outgrowth of micro-metastatic foci in
the lung of PyMT mice (46). These results suggest that MAMs
promote survival and persistent growth of cancer cells after
seeding at the metastatic sites. Moreover, a recent study suggests
that MAMs can protect cancer cells from tumoricidal immune
reactions in the metastatic sites since MAMs, isolated from the
metastatic tumors established by E0771-LG mouse mammary
tumor cells, suppress cytotoxicity of CD8+ T cells against cancer
cells in vitro (44). Given these findings, accumulation of MAMs
seems to be a key factor for progression of metastatic steps at
the secondary sites during pulmonary metastasis of breast cancer
cells, whereas the contribution of MAMs to the development of
metastasis in other tumor models or clinical patients has not yet
been established.

CHEMOKINES THAT PROMOTE
ACCUMULATION OF PRO-METASTATIC
MACROPHAGES

Chemokines That Recruit TAMs to the
Primary Site
As described above, mouse models of some solid tumors suggest
that TAM accumulation in primary tumors is mainly due to the

recruitment of classical monocytes that express high levels of
CCR2. It is also reported that high expression of a CCR2 ligand
(CCL2) in tumors positively associates with the accumulation
of TAMs in glioblastoma, squamous cell carcinoma, renal cell
carcinoma (RCC), as well as ovarian, endometrial, lung, and
breast cancer (47–53). Thus CCL2-CCR2 signals seem to be a
key determinant of monocyte recruitment and subsequent TAM
accumulation. In line with this notion, several mouse studies have
emphasized the importance of CCL2 in the recruitment of TAMs.
For example, treatment with anti-CCL2 neutralizing antibodies
significantly reduces the number of macrophages in human RCC
xenografts transplanted into SCID mice, which reduces micro-
vessel density, and growth of xenografted tumors (53). Although
the source of CCL2 in this model is not identified, the same
group has shown that a RCC cell line, 786-O, expresses high
levels of CCL2. They also demonstrated that suppression of the
CCL2 expression in 786-O cells reduces the number of TAMs in
the xenograft tumor as well as tumor growth and microvascular
density (53), suggesting that cancer cell-derived CCL2 promotes
the TAM accumulation in this model (Figure 2A). In the
786-O RCC cells, the CCL2 production is increased by JunB
overexpression via loss of the von Hippel-Lindau (VHL) tumor
suppressor gene (54). Since loss of VHL is found in the
majority of sporadic RCC and JunB is up-regulated in the VHL-
deficient RCC specimens (54, 55), these results suggest that CCL2
production by cancer cells via aberrant JunB expression might
be a predominant mechanism to enhance TAM accumulation in
RCC. Mouse models of other types of solid tumors have also
demonstrated that cancer cell-derived CCL2 plays pivotal roles
in the accumulation of TAMs, whereas regulatory mechanisms
behind CCL2 production differ between tumor types. For
example, in subcutaneous tumors developed by LLC lung cancer
cells, deletion of the Ccl2 gene in LLC cells reduces the number of
macrophages in the tumors (56). In this case, CCL2 expression
in cancer cells is promoted by activation of the mammalian
target of rapamycin complex 1 (mTROC1) pathway (56) that is
frequently activated in various types of cancer including lung
cancer (57). In endometrial cancers, established in mice by loss
of liver kinase B1 (LKB1) tumor suppressor gene (Lkb1−/−), the
CCL2 level is markedly increased in cancer cells. In this model,
genetic deletion of Ccl2 in the Lkb1−/− tumors significantly
reduces the number of TAMs, which results in the delayed
tumor progression and prolonged overall survival (52). It is also
reported that reduced expression of LKB1 gene in immortalized
human endometrial epithelial cells significantly increases CCL2
secretion (52). Consistent with these data, loss of LKB1 protein
is observed in ∼20% of endometrial cancers, and low LKB1
levels in the cancer strongly correlate with high CCL2 expression
and high macrophage number (52, 58). Given these results,
loss of LKB1 seems to be a trigger for certain populations
of endometrial cancer cells to increase CCL2 expression and
subsequent TAM accumulation. On the other hand, a recent
study showed that AN3CA and KLE endometrial cancer cells
produce CCL2 via activating transcription factor 4 (ATF4),
and that anti-CCL2 neutralizing antibody treatment suppresses
macrophage infiltrations in subcutaneous tumors developed by
AN3CA or KLE cells (59). Since high ATF4 expression correlates
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FIGURE 2 | Chemokines that promote accumulation of TAMs in the primary tumors. (A) Tumor cells or tumor-activated stromal cells secrete CCL2 through activation

or suppression of tumor type specific signaling pathways, which promote TAM accumulation in the tumor microenvironment. (B) Additional genetic alteration in cancer

cells during tumor progression can induce expression of TAM-attracting chemokines. (C) Environmental changes caused by therapeutic treatments or hypoxia also

promote de novo chemokine secretion from cancer cells.

with highmacrophage density in human endometrial cancer (59),
up-regulation of this transcription factor in cancer cells might be
another mechanism behind CCL2-induced TAM accumulation
in endometrial cancer. Collectively, these results suggest that
cancer cells promote TAM accumulation by producing CCL2 via
tumor type specific signaling pathways (Figure 2A).

The CCL2-CCR2 signaling is also required for the
accumulation of TAMs and subsequent tumor progression
in mouse models of breast cancer. For example, in mice
with mammary tumor developed by orthotopic injection of
MDA-MB-231 human breast cancer cells, treatment with anti-
CCL2 antibody reduces TAM accumulation, which results in
the reduced micro-vessel density and tumor growth (60). In
this model, however, cancer cells may not be a major source
of CCL2 since the number of TAMs does not correlate with
mRNA levels of human CCL2 in MDA-MB-231 cells but
does with mouse Ccl2 in the stroma (60). In line with this
notion, immunohistochemical analysis of human breast cancer
specimens shows that stromal but not tumoral CCL2 expression
significantly correlates with macrophage infiltration, tumor size,
and poor prognosis of patients (60). Another study also showed
that genetic deletion of Ccl2 in the host (i.e., stromal) cells but
not in cancer cells results in reduced TAM infiltration, deficient
angiogenesis, and impaired tumor growth in mice that are

orthotopically injected with 4T1 mammary tumor cells (61). It
is also reported that CCL2 is expressed in fibroblasts residing in
breast cancer biopsies, and that human mesenchymal stem cells
increase CCL2 secretion in response to conditioned medium
from MDA-MB-231 breast cancer cells (62). Furthermore,
conditioned medium from 4T1 mammary tumor cells can
increase CCL2 expression in cultured macrophages (63). It is
therefore likely that a population of breast cancer cells prompt
stromal cells to secrete CCL2 for TAM accumulation in the
tumors. Although the precise mechanism behind the stromal
CCL2 production is still unclear, a recent study shows that
inhibition of Notch1 expression in 4T1 cells reduces CCL2
levels in transplanted tumors and thereby decreases TAM
accumulation (64). Since high Notch1 expression associates with
transition from ductal carcinoma in situ to invasive cancer, as
well as worse overall survival of breast cancer patients (65), it is
possible that enhanced Notch1 expression in tumor cells during
their malignant progression promotes stromal secretion of CCL2
in breast cancer (Figure 2A).

Although the above-mentioned studies suggest CCL2 as a
dominant TAM attractant in most solid tumors, CCL2 inhibition
suppresses TAM accumulation by only around 50% and does
not achieve complete TAM depletion in the mouse models
(52, 53, 56, 59–61). This suggests the involvement of other

Frontiers in Immunology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 2629

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Argyle and Kitamura Targeting Macrophage-Recruiting Chemokines for Cancer Treatment

CCR2 ligands such as CCL12 (17) and cytokines such as
VEGF and CSF1 that are known to recruit monocytes (66,
67). The incomplete inhibition may also be explained by the
contribution of chemokine signals other than the CCL2/CCR2
axis. For example, it is reported that CCL20, a ligand for
CCR6, is abundant in PyMT mammary tumors and genetic
deletion of Ccr6 gene in PyMT mice significantly reduces the
number of TAMs in mammary tumors (68). Although the cell
type that secretes CCL20 is unknown in the PyMT model, a
recent study demonstrates that MDA-MB-231 human breast
cancer cells express high level of CCL20 and that inhibition of
CCL20 expression in cancer cells reduces TAM accumulation
in xenografts (69). It is also reported that a highly metastatic
derivative of MDA-MB-231 cells (named BM1) expresses high
levels of CCL5 (a ligand for CCR5) and treatment of BM1
tumor-bearingmice with a CCR5 antagonist significantly reduces
the number of TAMs in tumors (70). These results suggest
that breast cancer cells can utilize CCL20-CCR6 and CCL5-
CCR5 signaling in order to recruit TAMs. In the MDA-MB-
231 breast cancer model (69), expression of CCL20 and TAM
accumulation in xenografted tumors are suppressed by knock
down of Cbp/p300-interacting transactivator with Glu/Asp-rich
carboxy-terminal domain-2 (CITED2), a transcriptional co-
regulator whose expression is increased in human invasive ductal
carcinoma compared to normal mammary tissues and further
enhanced in metastatic breast cancer (71, 72). In the BM1 as
well as 4T1 mammary tumor models, forced expression of Raf
kinase inhibitory protein (RKIP) suppresses CCL5 secretion from
cancer cells and reduces TAM accumulation in the xenograft
(70, 73). It is also reported that lower expression of RKIP in
breast cancer is associated with higher levels of CCL5, as well
as a higher probability of metastasis and poor prognosis (73–
75). These results suggest that additional genetic alterations in
cancer cells that occur in the course of tumor progression (e.g.,
overexpression of CITED2 and/or loss of RKIP gene) induce de
novo chemokines (e.g., CCL20 and/or CCL5) that recruit TAMs
to primary tumor sites (Figure 2B).

In addition to the genetic alterations in cancer cells,
environmental changes may also switch on the de novo
expression of TAM recruiting chemokines (Figure 2C). In
mammary tumors in the PyMT mice, the CCL20-CCR6 axis
can promote TAM accumulation (68) whereas the CCL2-CCR2
signal plays only a minor role if any (21). However, treatment
of PyMT mice with the chemotherapeutic agent, doxorubicin,
increases protein levels of CCR2 ligands CCL2 and CCL12 in
the tumor stromal area, and promotes the recruitment of CCR2+

monocytes into the mammary tumors (76). Furthermore, in mice
with the mammary tumors developed by orthotopic injection
of PyMT tumor cells, treatment with estrogen enhances TAM
accumulation in the tumor via increased expression of CCL2
(77). These results suggest that a chemokine signal used for the
TAM accumulation in breast cancer can be switched from CCL20
to CCL2 in response to the environmental changes induced by
chemotherapies or hormonal treatments. Such environmental
induction of TAM recruiting chemokines can also occur locally
in certain areas of the tumor. For example, a hypoxic area in
a human breast cancer specimen demonstrates higher levels

of CCL11 and a higher number of TAMs compared with a
normoxic area (78). Since MDA-MB-231 breast cancer cells
under hypoxic conditions increase CCL11 secretion and thereby
promote macrophage migration in vitro (78), these results
suggest that CCL11 is induced by low oxygen and locally recruits
TAMs to the hypoxic regions in tumors. Interestingly, therapeutic
treatments also promote the regional accumulation of TAMs via
localized induction of CXCL12. In a mouse model of glioma,
localized radiation therapy induces CXCL12 in the invasion
front of xenografts, where TAMs are recruited through activation
of the CXCL12 receptor, CXCR4 (79, 80). In subcutaneous
tumors established by LLC lung cancer cells, chemotherapy
(cyclophosphamide) treatment increases CXCL12 expression
around blood vessels and recruits TAMs to the perivascular area
through CXCR4 (81), whereas CCL2 from cancer cells promotes
TAM accumulation in the LLC tumors without receiving any
chemotherapy (82).

Taken together, it is likely that CCL2-CCR2 signaling plays a
pivotal role in TAM accumulation in most solid tumors, whereas
other signals such as CCL5-CCR5, CCL20-CCR6, CXCL12-
CXCR4 can be an alternative or additional chemoattractant
pathway (Figure 2). However, it is still unclear whether all of
these chemokines are required for TAM accumulation in the
same tumor microenvironment. Interestingly, a recent study
using a mouse model of breast cancer showed that TAMs are
recruited via CCR2 signaling to primary tumors where they
induce CXCR4 expression in response to tumor-derived TGFβ
and thenmigrate toward the blood vessel via CXCL12 to promote
intravasation of cancer cells (83). It is therefore possible that
TAMs utilize multiple chemokine signals for their positioning in
the primary tumor in order to exert pro-metastatic functions. It
is also reported that CCL2 and CXCL12 synergistically enhance
the in vitro migration of human monocytes and macrophages
(84), suggesting that expression of multiple chemokines in the
tumormicroenvironment is required for the efficient recruitment
of monocytes and TAMs. Further investigation is necessary to
identify when and how these chemokines are induced in the same
tumor microenvironment and to what extent they contribute to
TAM accumulation.

Chemokines That Promote MAM
Accumulation in the Metastatic Site
A recent study using a mouse model of metastatic breast
cancer has shown that transferred classical monocytes
(F4/80lowCD11b+Ly6C+) differentiate into MAMs
(F4/80lowCD11bhighLy6Clow) by 42 h after infiltration into the
lung with metastatic tumors and that the accumulation of MAMs
is continuously increased during metastatic tumor growth
(44). This suggests that classical monocytes are constitutively
recruited and produce MAMs in metastatic tumors. It is also
reported that classical monocytes expressing high levels of CCR2
preferentially migrate to metastatic tumors established by Met-1
mouse mammary tumor cells or those in the PyMTmice. In these
models, anti-CCL2 antibody treatment, or genetic deletion of
CCR2 inhibits the monocyte migration to the tumor-challenged
lung and decreases the number of MAMs, which results in
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the reduction of metastatic tumor burden (43). Adoptively
transferred human classical monocytes (CD14+CD16−CCR2+)
also migrate to the metastatic tumors established by 4173 human
breast cancer cells (a highly metastatic derivative from MDA-
MB-231 cells) in nude mice, and this monocyte recruitment
is inhibited by treatment with neutralizing antibodies against
either mouse (host stromal cell-derived) or human (cancer
cell-derived) CCL2 (43). Collectively, these results indicate
that CCL2 secreted from both tumor cells and stromal cells
plays a pivotal role in the recruitment of monocytes and
subsequent accumulation of MAMs in the site of metastasis
(Figure 3A).

Consistent with these results, loss of Ccr2 significantly reduces
MAM accumulation and pulmonary metastasis formation in
another metastatic breast cancer model using E0771-LG mouse
mammary tumor cells (42). In this model, genetic deletion of
CCR1 in mice also reduces the number of MAMs in metastatic

tumors and results in the decreased tumor burden. Interestingly,
loss of CCR1 does not affect the recruitment of monocytes but,
instead, prevents MAM-cancer cell interactions and subsequent
retention of MAMs in the tumor-challenged lung (42). These
results suggest that distinct chemokine signals regulate a specific
process of MAM accumulation, i.e., recruitment of monocytes
by CCR2 and retention of MAMs by CCR1 in pulmonary
metastasis of breast cancer Figure 3A. It has been reported
that freshly isolated human monocytes reduce expression of
CCR2 and concomitantly increase expression of CCR1when they
differentiate to macrophages in vitro, and that the differentiated
macrophages are more responsive to a CCR1 ligand, CCL3, than
monocytes in an intracellular calcium flux assay (85). Therefore,
transition of dominant receptor expression might determine
differential responses of monocytes and MAMs to distinct sets
of chemokine ligands. In a pulmonary metastasis model of
renal cancer, MAMs increase CCR5 but not CCR1 expression

FIGURE 3 | Macrophage-mediated chemokine signals in the metastatic tumors. (A) In the lung challenged by metastatic breast cancer cells, CCL2 recruits classical

monocytes that differentiate into a distinct myeloid cell population that gives rise to metastasis-associated macrophage (MAM). Activation of CCR2 in MAMs prompts

them to secrete CCL3, which in turn enhances MAM-to-cancer cell interaction and subsequent retention of MAMs via a CCR1-mediated mechanism. (B) In a later

phase of metastasis caused by renal cell carcinoma (RCC), CCL3 in the tumor microenvironment increases MAM accumulation via a CCR5-dependent manner. (C)

Metastasized colon cancer cells in the liver produce CCL2 via an insulin-like growth factor-1 (IGF-1) signal and recruit MAMs whereas colon cancer cells in the primary

site recruit macrophages (i.e., TAMs) via CCL20 secretion. In the liver metastases of colon cancer, tumor cells, or T cells secrete CCL5 that activate CCR5 on MAMs

and maintain their pro-tumor features. Thus blockade of CCR5 signal reprograms MAMs to tumoricidal cells. (D) In the lung metastases developed by breast cancer

cells, MAMs secrete CCL8 and recruit regulatory T (Treg) cells.
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at the late stage of metastatic tumor development (by 21 days
after tumor injection) and loss of Ccr5 but not Ccr1 reduces
MAM accumulation in metastatic tumors at this time point
(86). On the other hand, CCR5 is not necessary for early MAM
accumulation that occurs within 24 h after tumor injection in
the E0771-LG breast cancer model (42). It is thus possible that
the distinct microenvironments at different phases of metastasis
determine predominant chemokine receptors that MAMs utilize
for accumulation (Figure 3B). In line with this notion, a mouse
model of liver metastasis using MC38 colon cancer cells has
shown that suppression of the CCL2-CCR2 signal inhibits MAM
accumulation until 9 days after intra-splenic tumor injection but
fails to do so by day 13 (87).

Regulation of certain ligand expression by environmental
factors may also determine the predominant chemokine signals
for MAM accumulation. Although MC38 colon cancer cells
release high levels of CCL2 and recruit MAMs via a CCR2-
dependent manner to the liver (87), these cells produce CCL20
and recruit TAMs via a CCR6-dependent mechanism to primary
tumors established by subcutaneous injection (88). Therefore,
environmental factors that regulate the expression of MAM
recruiting chemokines seem to be specific for the tumor site
(Figure 3C). A recent study showed that treatment with an
antagonist for insulin like growth factor 1 (IGF-1) receptor
reduces expression of CCL2 and suppresses MAM accumulation
in MC38 metastatic tumors in the liver (89), suggesting IGF-1 as
a key regulator of chemokine induction in the microenvironment
of tumor-challenged liver. It is notable that treatment with
the IGF-1 receptor antagonist also reduces CCL5 levels in
the metastatic liver (89). Although the contribution of CCL5-
CCR5 signaling to MAM accumulation or the source of CCL5
was not identified in this model, a recent study using a
patient-derived organotypic culture model showed that tumor-
infiltrating T cells produce CCL5 (90). This study also showed
that CCR5 blockade in the organotypic culture induces tumor
cell death, which is abrogated by pharmacological macrophage
depletion (90). This suggests that CCL5 induced by a specific
tumor microenvironment prevents the MAMs to become
tumoricidal cells (Figure 3C). In the E0771-LG metastatic
breast cancer model, a CCR1 ligand, CCL3, is expressed by
MAMs at higher level than other types of tumor-infiltrating
immune cells or circulating monocytes, and loss of Ccl3
reduces MAM accumulation in the metastatic lung. Interestingly,
the CCL3 expression in MAMs is significantly suppressed
by anti-CCL2 antibody treatment and recombinant CCL2
increases CCL3 secretion from cultured macrophages (42). These
results collectively indicate that CCL2 in the metastatic tumor
microenvironment triggers a chemokine cascade involving
CCL3-CCR1 signaling that promotes retention of MAMs in
the metastatic lung (Figure 3A). Since pulmonary infection
with Cryptococcus neoformans induces CCL3 expression via a
CCL2 dependent mechanism and blockade of CCL3 reduces
accumulation of macrophages in the lung (91), CCL2-induced
CCL3 expression may be a common mechanism for macrophage
accumulation in the lung under pathological conditions. Several
in vitro studies show such chemokine-induced chemokine
production in monocytes or macrophages. For example, human

monocytes cultured with CCL5 increase expression of mRNA
encoding CCL2, and CCL3 (92). In human monocyte-derived
macrophages, CCL18 promotes secretion of CCL2 and CCL3 as
well as CCL22 that is known as a chemoattractant of Treg cells
(93). Interestingly, a recent report suggests that CCL3 released
from E0771 breast cancer cells increases expression of CCL7,
CCL8, CCL11, and CCL12 in the lung (94). Although the cell
type that releases these chemokines is not clear in this study,
another study using 4T1 breast cancer cells indicates that MAMs
in the metastatic lung predominantly express CCL8 and recruit
Treg cells that express CCL8 receptor CCR5 (95) (Figure 3D). It
is thus possible that distinct tumor microenvironments increase
the level of chemokines such as CCL2, CCL5 and CCL18 that
not only recruit monocytes/macrophages but also induce de novo
chemokines including CCL3, CCL8, and CCL22 and thereby
reinforce the accumulation of metastasis-promoting immune
cells such as MAMs and Treg cells (96).

Current results have indicated that spatiotemporal expression
of chemokine ligands and receptors (e.g., CCL2-CCR2, CCL3-
CCR1/CCR5) regulate recruitment, retention, and the phenotype
of MAMs. Since these chemokine signals can be attractive
targets to prevent the lethal expansion of metastatic tumors,
further studies are required to understand which chemokines are
expressed in a certain metastatic tumor microenvironment, how
their expression is regulated, and what are their precise roles in
MAM functions.

THERAPEUTIC POTENTIAL OF
CHEMOKINE ANTAGONISTS TO PREVENT
MALIGNANT TUMOR DEVELOPMENT

Different studies have identified several chemokines and
chemokine receptors that promote the recruitment of TAMs
into primary tumors. These chemokine ligands and receptors are
potential targets to prevent dissemination of cancer cells from the
primary tumors to the circulation. However, since a substantial
proportion of patients (4–61% depending on the tumor sites)
has already developed metastatic tumors at diagnosis, and
their survival rate is <20% in many cases (1), it is possibly
more important to consider blocking the metastatic tumor
outgrowth in secondary sites rather than dissemination from the
primary site if we are going to improve the outcome of cancer
patients. As discussed above, the CCL2-CCR2, CCL3-CCR1,
and/or CCL3-CCR5 axes enhance MAM accumulation in the
metastatic site, especially the lung, in mouse models of metastatic
tumors. In these models, blockade of MAM accumulation via
genetic deletion of CCR1, CCR2 or CCR5 significantly reduced
metastatic tumor burden (42, 43, 86), suggesting that antagonists
for these receptors can be novel therapeutic agents to prevent
metastatic tumor development through inhibition of MAM
accumulation.

CCR1 and CCR2 are well-known key regulators of immune
cell accumulation, and thus several pharmaceutical companies
have developed monoclonal antibodies and small molecule
inhibitors against the chemokine receptors for human
autoimmune diseases such as rheumatoid arthritis and multiple
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sclerosis (97). CCR5 antagonists have also been extensively
explored since this receptor is known as a co-receptor for human
immunodeficiency virus (HIV-1) to enter the cell. Consequently,
the US Food and Drug Administration (FDA) has approved
some CCR5 antagonists as anti-retroviral agents for HIV (97).
Although these chemokine receptor antagonists were originally
designed for autoimmune and infectious diseases, several
pre-clinical studies have indicated their therapeutic potential for
metastatic tumors. For example, a CCR1 antagonist (BL5923)
can suppress metastatic tumor growth of colon cancer cells in
the liver (98), and another CCR1 antagonist (CCX721) reduces
tumor burden and osteolysis in a mouse model of multiple
myeloma bone disease (99). In mice that have received the
subcutaneous injection of LLC cancer cells, treatment with a
CCR2 antagonist (RS504393) inhibits the establishment of lung
metastatic foci (100). A recent study also showed that another
CCR2 antagonist (RS102896) can suppress liver metastasis of
MCF-7 human breast cancer cells induced by estrogen (101).
Furthermore, in mice that have developed orthotopic tumors by
4T1 mammary tumor cells, treatment with a CCR5 antagonist
(maraviroc) reduces metastatic tumor burden in the lung (95).
Although clinical trials of chemokine receptor antagonists
in cancer are still limited, several positive results have been
reported. For example, an anti-CCR2 antibody (MLN1202)
has been tested in a phase II clinical trial for metastatic cancer
and showed therapeutic effects in 14 out of 43 patients with
bone metastases (ClinicalTrials.gov ID: NCT01015560). A phase
I trial of a small molecule inhibitor of CCR2 (CCX872) in
combination with chemotherapy (FOLFIRINOX regimen) has
also been performed in patients with non-resectable pancreatic
cancer (ClinicalTrials.gov ID: NCT02345408) in which overall
survival (OS) at 18 months was 29% for CCX872/FOLFIRINOX
combination therapy, whereas it was 18.6% for FOLFIRINOX
alone (102). A small-scale phase I clinical trial of a CCR5
antagonist (Maraviroc) in patients with metastatic colorectal
cancer (ClinicalTrials.gov ID: NCT01736813) has demonstrated
that maraviroc treatment in combination with chemotherapy
showed an objective partial responses in three out of five patients
and prolonged overall survival (90).

Despite these encouraging results, a treatment with single
chemokine antagonist will not be enough to suppress metastatic
tumor growth since even total deletion of CCR1, CCR2, or
CCR5 by knockout cannot achieve complete elimination of
metastatic tumors in mouse models (42, 86). One possible
reason for this is that multiple chemokine receptors support the
accumulation of pro-metastatic macrophages (i.e., TAMs and
MAMs). It has been reported that solid tumors express several
different chemokine ligands. For example, human colorectal
cancer specimens concomitantly express CCL2, CCL4, CXCL1,
CXCL5, and CXCL8 at a significantly higher level than normal
mucosa (103). Further, human breast cancer tissues can express
high levels of CCL2 and CCL5 compared to the adjacent
normal breast tissues (77, 104). Human ovarian cancer also
expresses high levels of mRNA coding CCL2, CCL4, CCL5,
CXCL10, CXCL12, and CXCL16 (105). As discussed above, some
receptors for these chemokines such as CCR1, CCR2, CCR3,
CCR5, and CXCR4 are reported to enhance the recruitment

or retention of pro-metastatic macrophages. Interestingly,
several in vitro studies suggest that CCR1- or CCR2-induced
monocyte migration is synergistically enhanced by activation of
CXCR4 (84, 106), suggesting that CCR1 and CCR2 cooperate
with other receptors such as CXCR4 in order to promote
MAM accumulation and subsequent metastatic tumor growth.
Collectively, it is possible that MAMs utilize multiple chemokine
signals to accumulate in the tumor microenvironment, which
makes it difficult to exclude MAMs from metastatic sites by
a single chemokine receptor blockade. Therefore, inhibition of
multiple chemokine receptors will be required to exercise full
therapeutic effects on the MAM-promoting metastatic tumor
development. An attractive approach is a treatment with dual-
antagonists that inhibit more than one chemokine receptor. So
far, several companies have developed dual-antagonists targeting
CCR1/CCR3, CCR2/CXCR2, CCR2/CCR5, and CXCR1/CXCR2,
and tested their therapeutic effects in inflammatory diseases
(96, 107). For example, in genetically engineered mice that
develop muscular dystrophy, treatment with a CCR2/CCR5 dual
antagonist cenicriviroc reduces macrophage accumulation in the
dystrophic diaphragm and slows the progression of the disease
(108). In mouse models of non-alcoholic steatohepatitis (NASH),
treatment with cenicriviroc reduces macrophage recruitment
and ameliorates hepatic inflammation as well as fibrosis in the
liver (109, 110). Since cenicriviroc treatment is well tolerated
in patients with hepatic impairment without any obvious side
effects (111), a phase II trial has been on going in patients with
NASH and liver fibrosis (ClinicalTrials.gov ID: NCT03059446).
Although clinical trials in cancer patients have not yet been
reported, a mouse model where MC38 colon cancer cells
were grown intramuscularly has shown that the cenicriviroc
treatment can suppress TAM accumulation in the tumor and
enhance therapeutic efficacy of local irradiation in suppressing
tumor growth (112). These reports suggest that dual chemokine
receptor antagonists are attractive drugs for cancer treatment.
However, clinical application of dual-antagonists for metastatic
diseases requires further identification of chemokine signal
combinations that concomitantly promote MAM accumulation
in metastatic tumors under different condition (e.g., tumor
origin, metastatic site, and progression stage). In addition to
proper target receptor selection, it is also important to determine
the functional doses of antagonists that are sufficient to provide
the continuous receptor coverage in vivo (15, 113).

Insufficiency of a single chemokine blockade in metastasis
suppression can also be due to a lack of direct cytotoxic effects
on cancer cells. As described above, MAMs recruited to the
metastatic site can promote tumor cell survival (41). It is also
reported that malignant tumor cells express chemokine receptors
such as CCR7, CXCR1, and CXCR4 that can increase their
invasiveness as well as survival (114). However, it is unlikely that
blockade of MAM accumulation by chemokine antagonists can
directly induce tumor cell death, and thus macrophage targeting
should be combined with another therapeutic modality such
as chemotherapy and/or immunotherapy that directly kills the
cancer cells. In line with this notion, several animal studies
show that blockade of myeloid cell accumulation via chemokine
receptor inhibition exerts synergistic therapeutic effects when
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combined with cytotoxic drug treatments. For example, reduced
monocyte accumulation by genetic deletion of host CCR2
expression enhances the effect of doxorubicin or cisplatin
treatment on the relapse of mammary tumors in the PyMT mice
(76). Furthermore, a CXCR4 antagonist (AMD3100) prevents
macrophage accumulation and delays tumor relapse after
cyclophosphamide treatment in subcutaneously transplanted
lung cancer and in orthotopic mammary cancers (81). In
primary tumors developed by orthotopically injected pancreatic
cancer cells, reduced macrophage accumulation by a CCR2
antagonist (PF-04136309) enhances the efficacy of gemcitabine
in suppressing the tumor growth (115). Consistent with this
pre-clinical study, a recent clinical trial indicates that treatment
of pancreatic cancer patients with a CCR2 antagonist (CCX872)
in combination with FOLFIRINOX regimen (i.e., a combination
of five chemotherapy agents) improve overall survival (102).
These results suggest that elimination of macrophages via
chemokine receptor antagonists in combination with direct
cancer cell killing by chemotherapy is an effective therapeutic
strategy to prevent malignant tumor development (Figure 4).
However, macrophage blockade may not always enhance
chemotherapy efficacy. In a mouse model of pancreatic
cancer, treatment with a CD40 agonist increases sensitivity
of the tumor to gemcitabine via depletion of fibrosis by
monocytes/macrophages. Mechanistically, a CD40 agonist
induces systemic release of IFNγ that prompts classical
monocytes to express matrix metalloproteinase (MMP) and
recruit these anti-fibrotic monocytes/macrophages to the tumor
via CCL2 (116). Therefore, in such a case, blockade of TAM
accumulation by CCR2 antagonists may reduce, instead of
enhance, the efficacy of gemcitabine treatment. These results
suggest that a certain therapeutic treatment affects features of
macrophages in the tumors, and thus application of chemokine
receptor antagonists to other therapeutic modalities should be
carefully evaluated.

Blockade of TAM/MAM accumulation combined with
immunotherapies is another attractive therapeutic strategy to
prevent malignant tumor development (117). Since cytotoxic
lymphocytes (CTLs) such as CD8+ T and NK cells can
eliminate cancer cells if they exert full cytotoxicity, several
strategies to utilize their tumor killing ability have been
developed. These immunotherapies such as immune checkpoint
inhibitors and adoptive CTL transfer have been tested in
clinical trials and demonstrated significant therapeutic effects
on lymphoma and some solid tumors such as melanoma
and lung cancer. However, their efficacy is so far limited
in a certain fraction of patients and tumor types due to
tumor-cell-intrinsic mechanisms such as the impaired antigen
presentation and/or tumor-cell-extrinsic mechanisms including
the accumulation of immunosuppressive cells. As previously
described, TAMs/MAMs are reported to suppress functions
of CD8+ T and NK cells in vitro and thus considered as
attractive targets to improve efficacy of immunotherapies. In
a mouse model of pancreatic cancer, treatment with anti-
PD1, and anti-CTLA4 antibodies in combination with TAM
depletion by a CSF1 receptor antagonist (PLX3397) blocks
tumor expansion more efficiently compared with a single

FIGURE 4 | Therapeutic potential of chemokine receptor antagonists. In

metastatic tumors, CCL2, CCL3, and CCL5 promote the MAM accumulation

and subsequent metastasis formation. Primary tumor models also indicate a

pivotal role of CXCL12 in the accumulation of macrophages whereas its role in

the metastatic tumor needs to be clarified. Antagonists against receptors for

these ligands (i.e., CCR1, CCR2, CCR5, and CXCR4) can reduce the number

of MAMs and thus dislodge MAM-derived environmental supports for

metastasized cancer cells. Several studies indicate that the MAM targeting by

chemokine receptor antagonists synergistically enhance therapeutic effects of

chemotherapy and immunotherapy such as immune checkpoint inhibitors and

adoptive transfer of cytotoxic lymphocytes (CTL). The tumor microenvironment

includes other chemokines such as CXCL9 and CXCL10 that recruit CTLs to

the tumor. In some cases, epigenetic modulators can prompt cancer cells to

produce these chemokines, which may enhance efficacy of MAM targeting

combined with immunotherapies. Genetic manipulation of CTLs to express

chemokine receptors for ligands abundantly included in tumors (e.g., CCL22,

CXCL1) can also improve the efficacy of MAM targeting combined with CTL

transfer therapy.

treatment with anti-PD1/anti-CTLA4 or PLX3397 (118). It is also
reported that genetic depletion of CCR2+ classical monocytes
(i.e., TAM progenitors) enhances accumulation of adoptively
transferred CD8+ T cells in the primary tumor, and thereby
augments the therapeutic effect of the adoptive T cell transfer
therapy on the tumor growth in a melanoma model (119).
These results suggest that elimination of macrophages from the
tumor microenvironment can improve efficacy of checkpoint
inhibitors or adoptive CTL transfer. Therefore TAM/MAM
blockade by chemokine receptor antagonists combined with
immunotherapies can be a novel therapy for malignant tumors.
However, target chemokine receptors should be carefully selected
since recruitment of CD8+ T or NK cells in the tumor sites
is also regulated by chemokine signals. It has been reported
that CD8+ T cells utilize several chemokine receptors such
as CCR4, CCR5, CCR7, CCR9, CCR10, and CXCR3 for their
trafficking depending on their activation status (120). NK cells
also express several chemokine receptors including CCR1, CCR2,
CCR5, CCR7, CXCR1, CXCR3, CXCR4, and CXCR6 (121),
suggesting that antagonists for these receptors have a potential
risk to reduce the efficacy of immunotherapies. However, a recent
study using a B16 mouse melanoma model demonstrated that
neither Ccr2 nor Ccr5 deficiency affect tumor infiltration of
adoptively transferred CD8+ T cells, despite the fact that the
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tumor expresses high levels of CCL2 and CCL5 (ligands for
CCR2 and CCR5, respectively). In contrast, Cxcr3 deficiency
significantly reduces the recruitment of CD8+ T cells in the
B16 tumors (122). The loss of Cxcr3 also significantly reduces
NK cell accumulation in metastatic tumors established by B16
cells (123). These results suggest that activated CD8+ T and NK
cells may predominantly utilize CXCR3 signals for their tumor
infiltration. It is thus likely that blockade of MAM-recruiting
chemokine receptors such as CCR1, CCR2, CCR5 has minimum
effects on the tumor infiltration of CD8+ T and NK cells,
which is indispensable for immunotherapy efficacy. In line with
this notion, the combined treatment with a CCR1 antagonist
and anti-PDL1 antibody significantly reduces tumor burden
compared to either of single treatments in a mouse model of
breast cancer (124). It is also reported that treatment with a CCR2
antagonist in combination with anti-PD1 antibody suppresses
tumor growth in a mouse model of pancreatic cancer, whereas
single treatment with anti-PD1 antibody is not effective (125).
These pre-clinical data suggest that blockade of macrophage-
recruiting chemokine receptors combined with immunotherapy
is an attractive approach. However, this combination therapy
may not be effective in a certain fraction of solid tumors that
do not express sufficient levels of CXCR3 ligands (CXCL9 and
CXCL10) and fail to recruit tumoricidal CD8+ T cells (126–
128). A recent study using mouse models of ovarian cancer has
shown that the reduced production of CXCL9 and CXCL10 from
cancer cells is caused by enhancer of zeste homolog 2 (EZH2)
mediated histone modification and DNA methyltransferase
1 (DNMT1) mediated DNA methylation of the chemokine
genes (129). Interestingly, this study also demonstrates that
treatment of tumor-bearingmice with epigeneticmodulators, i.e.,
combination of EZH2 and DNMT1 inhibitors, increases tumor
expression of CXCL9/CXCL10 and improves therapeutic efficacy
of anti-PDL1 antibody and adoptive transfer of CD8+ T cells
by enhancing T cell migration toward tumors. Given the non-
redundant requirement of CXCR3 signaling for tumoricidal T
cell trafficking to the tumor (122), these epigenetic modulators
can enhance efficacy of combination therapy consisting of
TAM/MAM blockade and checkpoint inhibitors or CTL
transfer. Another attractive approach to enhance efficacy of
the combination therapy is engineering of CTLs to express
receptors for chemokine ligands that are abundant in the tumor
microenvironment. A recent study demonstrated that genetic
engineering of CD8+ T cells with CCR4 enhances their migration
toward CCL22 secreted from Panc02 pancreatic cancer cells in
vitro, and that adoptive transfer of the CCR4-engineered T cells
into the Panc02 tumor-bearing mice eradicate the established
tumor more efficiently than the infusion of non-engineered T
cells (130). It is also reported that introduction of CXCR2 in
tumor antigen specific CD8+ T cells enhances their infiltration
into the tumor that expresses the ligand CXCL1 and thereby
reduces tumor growth in a mouse model of colon cancer
(131). Collectively, TAM/MAM blockade by chemokine receptor
antagonists in combination with immunotherapies seems to be
a promising strategy to prevent the progression of solid tumors
(Figure 4).

FUTURE PERSPECTIVE

Different studies have shown that accumulation of TAMs/MAMs
play pivotal roles in the establishment of lethal metastatic
tumors. As summarized in this review, several mouse models
of metastatic tumors have identified chemokine signals that
promote TAM/MAM accumulation and thus can be novel
therapeutic targets to block the macrophage-promoting
metastasis formation. Pre-clinical studies also suggest that TAM
targeting by chemokine receptor antagonists, combined with
immunotherapy has the ability to exert synergistic therapeutic
effects. Further, this can be enhanced by promoting tumor
infiltration of effector CTLs via chemokine signal modification.
Further investigation of the synergistic effects of TAM/MAM
targeting chemokine antagonists on the CTL recruitment
and immunotherapy efficacy will lead to the establishment of
effective therapies for metastatic disease. Since predominant
chemokine signals utilized for macrophage accumulation
can be changed by the tumor microenvironment, a database
showing chemokine expression profiles of solid tumors with
different subtypes, stages, and treatment history will be helpful
to investigate the optimal combination of target chemokine
receptors. Identification of environmental factors that induce
macrophage-recruiting chemokines is also important since
these factors can be alternative therapeutic targets. Another
aspect to be considered is that tumor metastasis is supported
not only by MAMs but also by other immune cell types
such as Treg cells and MDSCs (5). As described above, TAMs
can recruit Treg cells to the primary tumors via secretion
of CCL20 or CCL22 (39, 40). It is also reported that Treg

cell recruitment to primary mammary tumors in mice is
promoted by a CCL5-mediated mechanism (132). Several
studies have reported that accumulation of MDSCs in the
primary tumors is regulated by CXCL5, CXCL8, and CXCL12
depending on the models (133–135). However, the involvement
of these chemokine signals in the accumulation Treg cells and
MDSCs in the metastatic site has not yet been investigated.
A recent study indicates that monocytic MDSCs recruited
to the pulmonary metastasis foci originate from circulating
classical monocytes (44) that are recruited by the CCL2-CCR2
axis (43), which suggests a significant contribution of CCL2
to MDSC recruitment to the metastatic site. Although their
roles at metastatic sites remain to be identified, Treg cells,
and MDSCs in the primary tumors are known to suppress
CTL functions and are considered as targets to improve
immunotherapy. Therefore, deciphering the chemokine signals
that recruit Treg cell and MDSC to metastatic tumors, as well
as their correlations with MAM-recruiting chemokines will be
important to determine effective chemokine receptor antagonists
to combine with immunotherapies. Results from these basic
studies will lead to novel therapeutic strategies, i.e., TAM/MAM
blockade in combination with chemo-/immunotherapies by
targeting chemokine signals. Further studies in preclinical
models and patient samples are required for the clinical
application of combination therapies to metastatic tumors to be
realized.
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