AUTHOR=Zhu Jianmin , Liu Jin-Qing , Liu Zhihao , Wu Lisha , Shi Min , Zhang Jianchao , Davis Jonathan P. , Bai Xue-Feng TITLE=Interleukin-27 Gene Therapy Prevents the Development of Autoimmune Encephalomyelitis but Fails to Attenuate Established Inflammation due to the Expansion of CD11b+Gr-1+ Myeloid Cells JOURNAL=Frontiers in Immunology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2018.00873 DOI=10.3389/fimmu.2018.00873 ISSN=1664-3224 ABSTRACT=
Interleukin-27 (IL-27) and its subunit P28 (also known as IL-30) have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS). However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV)-delivered IL-27 (AAV-IL-27) and IL-30 (AAV-IL-30) in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE). AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.