AUTHOR=Piazzon Maria C. , Galindo-Villegas Jorge , Pereiro Patricia , Estensoro Itziar , Calduch-Giner Josep A. , Gómez-Casado Eduardo , Novoa Beatriz , Mulero Victoriano , Sitjà-Bobadilla Ariadna , Pérez-Sánchez Jaume TITLE=Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish JOURNAL=Frontiers in Immunology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2016.00637 DOI=10.3389/fimmu.2016.00637 ISSN=1664-3224 ABSTRACT=

Three different immunoglobulin (Ig) isotypes can be found in teleost fish, IgM, IgD, and the teleost-specific IgT. IgM is considered to have a systemic activity, and IgT is attributed a mucosal role, similar to mammalian IgA. In this study, the complete sequence of gilthead sea bream IgM and IgT in their membrane (m) and soluble (s) forms are described for the first time in a perciform fish. Their constitutive gene expression is analyzed in different tissues, and their regulation upon viral, bacterial, parasitic, mucosal vaccination and dietary challenges are studied. GCB IgM and IgT have the prototypical structure when compared to other fish Igs. The constitutive expression of sIgM was the highest overall in all tissues, whereas mIgT expression was highest in mucosal tissues, such as gills and intestine. IgM and IgT were differentially regulated upon infection. IgT was highly upregulated locally upon infection with the intestinal parasite Enteromyxum leei or systemically after Nodavirus infection. Long-term intestinal parasitic infections increased the serum titer of both isotypes. Mucosal vaccination against Photobacterium damselae subsp. piscicida finely regulated the Ig response inducing a systemic increase of IgM titers in serum and a local IgT response in skin mucus when animals were exposed to the pathogen by bath challenge. Interestingly, plant-based diets inhibit IgT upregulation upon intestinal parasitic challenge, which was related to a worse disease outcome. All these results corroborate the mucosal role of IgT and emphasize the importance of a finely tuned regulation of Ig isotypes upon infection, which could be of special interest in vaccination studies.