AUTHOR=Bessa Pereira Catarina , Bocková Markéta , Santos Rita F. , Santos Ana Mafalda , Martins de Araújo Mafalda , Oliveira Liliana , Homola Jiří , Carmo Alexandre M. TITLE=The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain JOURNAL=Frontiers in Immunology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2016.00416 DOI=10.3389/fimmu.2016.00416 ISSN=1664-3224 ABSTRACT=
The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to