AUTHOR=Sei Janet J. , Cox Kara S. , Dubey Sheri A. , Antonello Joseph M. , Krah David L. , Casimiro Danilo R. , Vora Kalpit A. TITLE=Effector and Central Memory Poly-Functional CD4+ and CD8+ T Cells are Boosted upon ZOSTAVAX® Vaccination JOURNAL=Frontiers in Immunology VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2015.00553 DOI=10.3389/fimmu.2015.00553 ISSN=1664-3224 ABSTRACT=

ZOSTAVAX® is a live attenuated varicella-zoster virus (VZV) vaccine that is licensed for the protection of individuals ≥50 years against shingles and its most common complication, postherpetic neuralgia. While IFNγ responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4+ and CD8+ T cell responses induced 3–4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4+ T cells were poly-functional CD154+IFNγ+IL-2+TNFα+ cells, which were boosted upon vaccination. The CD4+ T cells were broadly reactive to several VZV proteins, with immediate early (IE) 63 ranking the highest among them in the fold rise of poly-functional cells, followed by IE62, gB, open reading frame (ORF) 9, and gE. We identified a novel poly-functional ORF9-specific CD8+ T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4+ and CD8+ T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFNγ by poly-functional IE63- and ORF9-specific CD4+ T cells and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8+ T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7CD45RACD45RO+), and central (CCR7+CD45RACD45RO+) memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4+ T cells and ORF9-specific CD8+ T cells may contribute toward ZOSTAVAX efficacy.