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Early detection and management of diabetic peripheral neuropathy (DPN)

are critical to reducing associated morbidity and mortality. Corneal Confocal

Microscopy (CCM) facilitates the imaging of corneal nerves to detect early

and progressive nerve damage in DPN. However, its wider adoption has been

limited by the subjectivity and time-intensive nature of manual nerve fiber

quantification. This study investigates the diagnostic utility of state-of-the-art

Vision Transformer (ViT) models for the binary classification of CCM images to

distinguish between healthy controls and individuals with DPN. The ViT model’s

performance was also compared to ResNet50, a convolutional neural network

(CNN) previously applied for DPN detection using CCM images. Using a dataset

of approximately 700 CCM images, the ViT model achieved an AUC of 0.99, a

sensitivity of 98%, a specificity of 92%, and an F1-score of 95%, outperforming

previously reported methods. These findings highlight the potential of the ViT

model as a reliable tool for CCM-based DPN diagnosis, eliminating the need for

time-consuming manual image segmentation. Moreover, the results reinforce

CCM’s value as a non-invasive and precise imaging modality for detecting nerve

damage, particularly in neuropathy-related conditions such as DPN.

KEYWORDS

artificial intelligence, diabetic neuropathy, corneal confocal microscopy, image
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1 Introduction

The Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that, in 2021,

diabetes affected 529 million people across 204 countries and territories, underscoring the

high prevalence of the condition among various age groups worldwide (Ong et al., 2023).

Diabetic Peripheral Neuropathy (DPN) is a neuropathic condition affecting the peripheral

nerves, often presenting as a distal, symmetrical sensory or motor deficit. As a major long-

term complication of diabetes, DPN can result in painful neuropathy, foot ulceration, and

amputation.

Early and accurate diagnosis of DPN is essential for timely intervention and effective

disease management (Ponirakis et al., 2021, 2022). Without treatment, DPN can lead to

serious outcomes, including loss of sensation, falls, foot ulcers, and even limb amputations.

Additionally, diabetic patients with DPN face a higher risk of mortality from any cause or
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cardiovascular disease compared to those without DPN (Jensen

et al., 2021; Elafros et al., 2022; Eid et al., 2023).

Corneal Confocal Microscopy (CCM) is a non-invasive

imaging technique that serves as a precise surrogate biomarker

for small fiber neuropathy. The corneal nerves, accessible through

CCM, are frequently impacted in the early stages of DPN, enabling

clinicians to detect nerve damage before more severe symptoms

develop. Manual analysis of CCM images is labor-intensive,

subjective, and requires significant expertise, with interobserver

variability that can limit diagnostic accuracy for DPN. Using Deep

Learning (DL), Salahouddin et al. (2021) employed a U-Net-based

model to automate the segmentation and quantification of corneal

nerves in CCM images, achieving discrimination between patients

with and without DPN, with an average area under the curve

(AUC) of 0.93. Moving toward eliminating the need for pixel-

wise annotations, Preston et al. (2022) utilized a ResNet model to

diagnose peripheral neuropathy, reporting an average sensitivity of

84% in correctly identifying DPN patients on a test set of 40 images.

Following recent advancements in automated DPN diagnostics,

we evaluated a state-of-the-art Vision Transformer (ViT) model

for classifying DPN patients using CCM images, comparing its

performance to the established ResNet architecture. Our approach,

which eliminates the need for pixel-wise annotations, is the first to

apply ViTs for DPN classification on CCM images, demonstrating

high accuracy on a relatively large dataset. Additionally, we

employed Grad-CAM to generate heatmaps, visually highlighting

regions that contribute most to the classification decision and

confirming a focus on corneal nerves. Figure 1 shows an overview

of the transformer-based model architecture for corneal nerve

classification.

2 Method

2.1 Dataset

The experiment was carried out on a database of 692 CCM

images (358 healthy controls and 334 DPN cases) collected

from 106 subjects (29 patients with DPN and 77 healthy

controls), captured using the Heidelberg HRTIII corneal confocal

microscope. This is a sub-analysis of the LANDMark study

(Pritchard et al., 2014)—a multi-center study conducted at the

University of Manchester, UK and Queensland University of

Technology, Australia in 2009–2014. The LANDMark study

adhered to the tenets of the Declaration of Helsinki and

was approved by the relevant institutional review boards.

Informed, written consent was obtained from all subjects prior to

participation.

The images have a size of 384 × 384 pixels, 8-bit gray levels,

and are stored in BMP format. To mitigate potential biases arising

from the relatively small sample size and the varying number of

images per subject, we employed a rigorous data splitting strategy.

The dataset was divided into training (60%), validation (20%), and

testing sets (20%). To ensure balanced representation across sets,

we performed stratified splitting based on subject-level allocation.

This ensured that no images from the same subject were included

in more than one set, preventing potential bias arising from inter-

subject variability.

2.2 Vision transformer

Introduced by Dosovitskiy et al. (2020), Vision Transformers

(ViTs) have quickly gained prominence in classification tasks,

often outperforming traditional methods (Bazi et al., 2021; Ding

et al., 2023; Long et al., 2024). The ViT model includes an

embedding layer, a transformer encoder, and an MLP head.

The input image is divided into non-overlapping patches, each

treated as a token, with position embeddings added to retain

spatial information. These embeddings are processed by the

encoder, which consists of stacked layers with multiheaded self-

attention (capturing relationships across image regions), an MLP

block (refining extracted information), and a normalization layer

(ensuring data stability). Finally, the MLP head translates encoded

information into the predicted class.

Our work leverages the capabilities of ViTs to construct a

robust and scalable system, while addressing technical complexities

associated with data preprocessing and model development. To

enhance efficiency and potentially improve performance, we

optimized the original ViT architecture (Dosovitskiy et al., 2020) by

reducing the number of Transformer layers, thereby streamlining

the model and overfitting. Furthermore, we decreased the MLP

size, leading to a substantial decrease in model parameters and

computational cost. We modified the input patch size. This trade-

off increases the effective sequence length for the Transformer while

simultaneously reducing computational complexity, as the number

of patches decreases quadratically with the increase in patch size.

These modifications resulted in a dramatic reduction in model

parameters from 86M to 6M, making our model significantly more

compact and potentially easier to deploy on resource-constrained

devices.

To enhance model performance and stability, we incorporated

a batch normalization layer after the Transformer block. Unlike the

original model’s layer normalization, which normalized across all

features within a sample, our batch normalization normalizes each

feature independently across the mini-batch. This modification

aims to improve training stability and potentially enhance

generalization. To further mitigate overfitting, we integrated

Dropout throughout the model architecture. Dropout randomly

deactivates a fraction of neurons during training, preventing

excessive reliance on specific features and encouraging weight

sharing across the network, ultimately leading to more robust and

generalizable models.

2.3 Model training

We trained our ViTmodel using Python 3.7.10 and TensorFlow

with Keras on a GPU P100 for 150 epochs. Images were resized to

256× 256 pixels and divided by the ViT into 144 patches of 20× 20

pixels each. During training, we applied a combination of feature

normalization and data augmentation techniques on each patch,

including horizontal flipping, zooming (height and width factor

0.2), and slight rotation (factor 0.02), to enhance model robustness.

Optimizing ViT’s complex structure is challenging, so we used the

AdamW optimizer with Decoupled Weight Decay Regularization,

with specific parameters listed in Table 1, carefully selected for

a balance of accuracy and efficiency (https://github.com/serag-ai/

ViT-CCM).
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FIGURE 1

Overview of the transformer-based model architecture for corneal nerve classification. The input image is divided into patches, which are linearly

projected and positionally embedded before being fed into the transformer encoder. The output representations are used for classification between

DPN and healthy cases through an MLP head. Additionally, Score-CAM generates heatmaps highlighting relevant regions in the patches, aiding

interpretability in classification.

TABLE 1 Parameters of the trained ViT.

Parameters Values

Learning rate 0.0001

Weight decay 0.0001

Patch size 20

Batch size 20

number of heads 6

Projection dimension 128

Number of training epochs 150

3 Evaluation metrics

We assessed ourmodel’s performance using several keymetrics:

Area Under the Receiver Operating Characteristic Curve (AUC),

Specificity, Sensitivity, and F1-score.

AUC is a threshold-independent metric that evaluates the

performance of a classification model. It represents the probability

that themodel will rank a randomly chosen positive instance higher

than a randomly chosen negative instance. The AUC ranges from

0 to 1, where a value closer to 1 indicates superior discriminative

ability. An AUC of 0.5 suggests no discriminative power, equivalent

to random guessing.

Sensitivity, also known as recall, measures the proportion of

true positives (TP) correctly identified out of all actual positives.

It is calculated as:

Sensitivity (Recall) =
TP

TP + FN
(1)

Specificity measures the proportion of true negatives (TN)

correctly identified out of all actual negatives. It is calculated as:

Specificity =
TN

TN + FP
(2)

The F1-score is a harmonic mean of Precision (Pre) and Recall

(Rec), combining them into a single metric. It is calculated as:

F1 = 2×
Pre× Rec

Pre+ Rec
(3)

Recall (Rec) is defined as in Equation (1), while Precision (Pre)

is defined as the proportion of true positives out of all positive

predictions:

Pre =
TP

TP + FP
(4)

In these formulas, TP (True Positives) refers to instances

correctly classified as positive, while FP (False Positives) denotes

negative instances that are incorrectly classified as positive.

Similarly, FN (False Negatives) represents positive instances that

are incorrectly classified as negative, and TN (True Negatives)

refers to instances correctly classified as negative.
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TABLE 2 Comparison of AUC, sensitivity, specificity, and F1-score

between the ViT model and other methods for the binary classification

task.

AUC Specificity Sensitivity F1-score

EfficientNetB7 0.96 91.35% 94.82% 91.66%

MobileNet 0.98 95.06% 96.55% 94.91%

ResNet50 0.98 96% 98% 96%

ViT 0.99 92% 98% 95%

The value in bold shows the highest AUC value.

3.1 Statistical analysis

We also performed a statistical analysis to test the differences

between classification results. A t-test was conducted, and a P-

value > 0.05 was interpreted as indicating insufficient evidence to

conclude a significant difference between the classification results.

4 Results

4.1 Model performance

The trained ViTmodel demonstrated outstanding performance

in this binary classification task, achieving an AUC of 0.99, which

underscores the effectiveness of ViT architectures in extracting

discriminative features from CCM images. Specifically, the model

correctly classified 75 out of 81 healthy controls, with only one

misclassification among DPN cases, resulting in a sensitivity of

98%, specificity of 92%, and a high F1-score of 95%.

4.2 Comparison against other methods

We further compared our method against ResNet50 pretrained

on ImageNet (Deng et al., 2009), which has previously been used

for detecting DPN in CCM images (Preston et al., 2022; Meng

et al., 2023). Table 2 presents the AUC, sensitivity, specificity,

and F1-scores for both methods. Our proposed ViT model

outperformed ResNet50, achieving a higher AUC compared to

ResNet50. Although ResNet50 exhibited a slightly higher F1-score

than the ViT model, the difference was not significant (P = 0.397).

Besides ResNet50, we have compared our results to well-

known DL models including the EfficientNetB7 (Tan and Le,

2019), andMobileNet (Howard, 2017), chosen for their exceptional

performance in tasks such as feature extraction and image

classification, particularly their capability to detect anomalies

within images. In Table 2, we reported a remakrbale AUC for

MobileNet of 0.98. However, our ViT beats all these models in term

of AUC and F1-score.

To enhance the interpretability of our model’s predictions

on test images and provide clinicians with greater insight, we

employed Grad-CAM (Selvaraju et al., 2017). This attribution

method uses the gradients flowing into the final convolutional

layer to generate a coarse “attribution map,” visually highlighting

the regions of the image with the strongest influence on the

classification outcome. In essence, the map reveals which parts of

the image were most significant in the model’s decision-making

process. Figure 2 illustrates original and Grad-CAM images from

healthy controls (Figure 2A) and patients with DPN (Figure 2B).

This clearly identifies areas where corneal nerves are located as

providing the most influence to identify DPN.

5 Discussion

In our research, e investigated the potential of the Vision

Transformer (ViT) model for classifying corneal confocal

microscopy (CCM) images. By splitting images into patches and

processing them within a transformer-based architecture, the ViT

model effectively captures both local and global features, making it

particularly well-suited for tasks requiring a comprehensive view

of image content. To our knowledge, this is the first study to apply

a ViT model for analyzing and classifying CCM images, achieving

a high AUC of 0.99, which surpasses results reported in previous

studies (Silva et al., 2015; Salahouddin et al., 2021; Alam et al., 2022;

Preston et al., 2022; Meng et al., 2023). These classification results

underscore the effectiveness of ViT in distinguishing between

healthy controls and individuals with DPN in this context.

To enhance model interpretability and provide clinicians

with insights into the ViT model’s predictions, we employed

Grad-CAM as an explainability tool. Recognizing that Grad-

CAM is traditionally designed for CNNs with their hierarchical

convolutional layers, we adapted this technique for our ViT

architecture. Instead of relying on convolutional feature maps,

we leveraged the attention maps generated by the Transformer

encoder. By analyzing the attention weights assigned to different

image patches, we effectively identified the regions within the

CCM images that most significantly influenced the model’s

predictions. The generated heatmaps, qualitatively validated for

their effectiveness, highlighted regions within images that are

clinically relevant for diagnosing DPN, such as corneal nerves.

This approach not only provides valuable insights into the model’s

decision-making process but also enhances clinician trust and

confidence in its predictions, thereby facilitating potential adoption

in clinical settings. To address this, one of the co-authors (RAM), a

pioneer of corneal nerve analysis undertook visual inspection of the

Grad-CAM heatmaps and confirmed that the highlighted regions

were identifying corneal nerve fiber loss, a hallmark of DPN.

While ResNet, a widely adopted CNN architecture,

demonstrated competitive results, it has certain limitations.

ResNet requires a fixed input size, which can be restrictive when

working with images of varying dimensions (Salehi et al., 2023),

and it struggles to capture long-range dependencies, which are

often essential for identifying complex patterns. In contrast, ViT

models, in principle, can process images of different dimensions

due to their inherent self-attention mechanisms and the fact

of processing images with patches. Practical implementations

often necessitate training with a specific input resolution for

computational efficiency. In our case, the input to our ViT model

consists of CCM images with their original size of 384× 384 pixels.

However, during the internal image augmentation process within

the model, these images are resized to 256× 256 pixels. This choice

was made to optimize training efficiency by enabling efficient batch

processing and optimized memory usage, leading to faster training

times. This approach, while introducing a degree of constraint,
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FIGURE 2

Example of CCM images of healthy controls and patients with and without DPN along with their corresponding Grad-CAM images. Grad-CAM

creates a heatmap where hotter colors (red) indicate the image regions that had the strongest impact on the model’s classification decision. Cooler

colors (orange, yellow, and green) represent progressively less influential areas, with shades of blue highlighting the regions with the weakest

influence. The top two rows (A) display images of healthy control subjects and the bottom two rows (B) present images of patients with DPN.

does not inherently limit the model’s generalizability to images

of different dimensions. ViT’s architecture, with its self-attention

mechanisms, allows it to flexibly handle varying input sizes while

capturing long-range dependencies, making it a more adaptable

and powerful choice for tasks that demand a deep understanding

of image-wide context. In real-world applications, this approach,

combined with the inherent flexibility of the ViT architecture,

allows for a degree of adaptability to varying input dimensions.

Furthermore, ViTs are renowned for their scalability (Pan

et al., 2021; Chen et al., 2022; Dehghani et al., 2023), as their

performance typically improves with larger datasets and increased

model complexity. This scalability is particularly advantageous for

medical applications, where large datasets and robust models are

often essential for achieving high diagnostic accuracy. Building

on this scalability, our research demonstrates that ViT models

can effectively detect DPN using CCM images without requiring
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complex pre-processing steps, segmentation, or adaptive feature

extraction techniques.

This study, while demonstrating promising results,

acknowledges several limitations. Firstly, the relatively small

sample size (692 images) may limit the generalizability of the

findings.

Secondly, the integration of this AI model into clinical practice

presents several challenges. The computational demands of ViT

models, while mitigated through optimizations employed in this

study, may still pose challenges in resource-limited clinical settings.

Furthermore, the use of AI in healthcare raises important

ethical considerations, including data privacy, algorithmic bias, and

the potential for unintended consequences. Ensuring responsible

and equitable AI development and deployment is paramount. To

safeguard patient privacy while advancing AI models in healthcare,

two promising approaches are federated learning and synthetic

data generation. Federated learning enables model evaluation

and refinement without transferring sensitive patient data, while

synthetic data generation creates artificial data that mimics real

data without containing any actual patient information. These

innovative solutions offer a balance between model improvement

and robust privacy protection.

These findings suggest that ViT models may offer a more

efficient and accurate approach to DPN diagnosis compared to

traditional methods. To fully harness the potential of ViTs, future

research should focus on developing training sets encompassing a

broader range of normal and abnormal pathologies, exploring the

practical implementation of this algorithm in clinical workflows,

and comparing its performance to existing diabetic neuropathy

screening techniques. This will be crucial for translating this

technology into real-world healthcare solutions.

This study serves as a foundation for future research that

will address the identified shortcomings. Further research with

larger, more diverse cohorts is warranted to confirm these

initial observations. Moreover, incorporating other medical image

modalities can be used to assess the robustness of the model in

peripheral neuropathies classification.

In conclusion, this study presents a novel application of AI

for the automated classification of CCM images, enabling rapid

and objective detection of DPN. Our vision transformer-based

model demonstrated remarkable accuracy in distinguishing

patients with DPN from healthy controls. By eliminating the

subjectivity and time-intensive processes of manual image

segmentation and interpretation, this approach offers a faster

and more consistent analysis. The integration of this AI-driven

tool into clinical workflows has the potential to revolutionize

DPN diagnosis by enabling quicker decision-making, facilitating

timely interventions, and ultimately improving patient outcomes.

While the results are promising, further research is needed to

refine the model and extend its applicability. Future studies

should utilize larger datasets, including diabetic patients

with diverse comorbidities, to enhance model interpretability

and provide clinicians with more actionable insights. This

research highlights the transformative potential of AI in medical

diagnostics. By automating complex tasks and improving

diagnostic accuracy, AI-driven solutions can advance patient care

and contribute to the effective management of diabetes-related

neuropathies.
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