
TYPE Methods

PUBLISHED 02 December 2024

DOI 10.3389/fimag.2024.1443142

OPEN ACCESS

EDITED BY

Darren R. Tyson,

Vanderbilt University, United States

REVIEWED BY

Leonardo Rundo,

University of Salerno, Italy

Yajie Liang,

University of Maryland, United States

*CORRESPONDENCE

Mónica Suárez Korsnes

monica.s.korsnes@ntnu.no

RECEIVED 03 June 2024

ACCEPTED 11 November 2024

PUBLISHED 02 December 2024

CITATION

Korsnes MS, Ramberg HA, Taskén KA and

Korsnes R (2024) Video tracking of single cells

to identify clustering behavior.

Front. Imaging 3:1443142.

doi: 10.3389/fimag.2024.1443142

COPYRIGHT

© 2024 Korsnes, Ramberg, Taskén and

Korsnes. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Video tracking of single cells to
identify clustering behavior

Mónica Suárez Korsnes1,2*, Håkon André Ramberg3,

Kristin Austlid Taskén3,4 and Reinert Korsnes2

1Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology

(NTNU), Trondheim, Norway, 2Korsnes Biocomputing (KoBio), Trondheim, Norway, 3Department of
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Cancer cell clustering is a critical factor in metastasis, with cells often believed to

migrate in groups as they establish themselves in new environments. This study

presents preliminary findings from an in vitro experiment, suggesting that co-

culturing cells provides an e�ective method for observing this phenomenon,

even though the cells are grown as monolayers. We introduce a novel single-

cell tracking approach based on graph theory to identify clusters in PC3 cells

cultivated in both monoculture and co-culture with PC12 cells, using 66-h

time-lapse recordings. The initial step consists of defining “linked” pairs of PC3

cells, laying the foundation for the application of graph theory. We propose two

alternative definitions for cell pairings. The first method, Method1, defines cells

as “linked” at a given time t if they are close together within a defined time

period before and after t. A second potential alternative method,Method2, pairs

cells if there is an overlap between the convex hulls of their respective tracks

during this time period. Pairing cells enables the application of graph theory for

subsequent analysis. This framework represents a cell as a vertex (node) and a

relation between two cells as an edge. An interconnected set of high-degree

nodes (nodes with many connections or edges) forms a subgraph, or backbone,

that defines a patch (cluster) of cells. All nodes connected to this backbone are

part of the subgraph. The backbone of high-degree nodes functions as a partition

(or cut) of the initial graph. Two consecutive clusters in the video are considered

to share the same identity if the following cluster contains at least p = 75% of the

cells from the preceding cluster, and the mean positions of their cells are within

△r = 75µm. PC3 cells grown in co-culture appear to form persistent clusters

exceeding 10 cells after 40–50 h incubation following seeding. In contrast, PC3

cells cultured alone (mono-culture) did not exhibit this behavior. This approach

is experimental and requires further validation with a broader dataset.

KEYWORDS

cell clustering, single-cell tracking, migration, co-culture, prostate cancer, perineural

invasion

1 Introduction

This work aims to improve access to data on clustering within cancer cell populations.

A cluster is defined as a small group of cells that maintain spatial proximity and exhibit

coordinated behavior over time (Gopinathan andGov, 2019). This phenomenon is thought

to play a critical role in metastasis, and new observations could enhance our understanding

and lead to novel approaches to cancer treatment. Understanding the characteristics and

dynamics of these clusters is essential for uncovering the mechanisms behind cancer

progression, and single-cell clustering assays offer a powerful approach to studying how

such cell groups form, interact, and evolve over time.
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Single-cell clustering assays can reveal how cells communicate

and influence each other, particularly when they cluster and

respond collectively. Analyzing clustering can help identify early

patterns of abnormal cell behavior, potentially leading to earlier

disease diagnosis. Several authors have contributed to advancing

this field (Liu et al., 2023; Maity et al., 2024; Shannon et al., 2024).

The present preliminary in vitro experiments suggest that co-

culturing cells may promote increased clustering. This finding

stems from a clustering analysis approach inspired by graph

theory (Ioannides et al., 2022). Our method utilizes cell movement

data to identify clusters, as demonstrated by analyzing 66-h time-

lapse recordings of PC3 prostate cancer cells in both monoculture

and co-culture with PC12 nerve cells. These data suggest that PC3

cells interact in ways that influence their movements, particularly

when co-cultured with PC12 cells. Lasting clusters begin to form

after∼35 h of recording when PC3 cells are co-cultured with PC12

cells.

The current focus on using monolayer (2D) cells can, in

principle, be generalized to apply to analyze recordings of cells

grown in 3D, which offer an environment more similar to in

vivo situations. However, it is advantageous to first test the 2D

approach, as it can more easily provide tracking data over several

generations. Recent advances in deep learning-based cell tracking

may change this situation (Mosier et al., 2021; Wen and Kimura,

2022; Merino-Casallo et al., 2022; Freckmann et al., 2022; Wiggins

et al., 2023).

The rationale for this showcase of methods is the general idea

that unicellular organisms can exhibit collective behavior, such

as flocking (Ling et al., 2019). Bacterial biofilms, where bacteria

work together to form complex structures, are well-established

examples of how unicellular organisms can enhance their survival

and proliferation. Cells are in general competent to produce a

quorum signal (Niu and Wang, 2012). Cooperation is useful for

individuals to reach a collective benefit, share information or

neutralize threats (Wrenn et al., 2021).

Cancer cells are often associated with selfish behavior. However,

they can cooperate and maintain physical contacts by forming

clusters. This may facilitate the metastatic cascade and promote

disease progression (Archetti and Pienta, 2019). Such clusters

of cells appear to include distinct cellular states/phenotypes in

which “leaders” and “followers” can affect the migratory pattern of

clusters, as observed in melanoma and breast cancer Haeger et al.

(2020); Khalil et al. (2017). Such “leaders” and “followers” need

to sense the attractant through the extracellular matrix integrin

signaling and adhere to each other to coordinate their movements

with robust directionality (Colak-Champollion et al., 2019).

A leader-follower organization among cells is important for

successful invasion and metastasis (Wrenn et al., 2021). Disrupting

this organization can therefore greatly suppress the collective

migration and metastatic potential (Cheung et al., 2013; Gao et al.,

2017; Zhang et al., 2019; Yang et al., 2019; Khalil et al., 2020).

A recent study by Gómez-de Mariscal et al. (2024) demonstrated

collective cell behavior over a 14-h period, with images captured

at 10-min intervals. They showed, for example, that cells closer to

the leading edge exhibited more directional movement compared

to those farther away. While the distance of cells to the leading edge

remained constant from the beginning to the end of the tracking

period, the distribution of the data was broad.

Co-culture experimental systems to identify cooperative

phenotypes between “leaders” and “followers” have shown that

leader cells can maintain their invasive phenotype and that the

traditional EMT signature alone cannot be utilized to identify

them (Konen et al., 2017). Differences in metabolism, epigenetic

modifications and gene mutations might also be important

for identification of cooperative behavior (Zoeller et al., 2019;

Commander et al., 2020; Summerbell et al., 2020).

The outline of this paper is as follows. Sections 2.2–2.4 detail

the production of test video of PC3 cells in mono-culture as well

as in co-culture with PC12 cells. Sections 2.5.1–2.5.2 describes

refinement of cell positional data obtained from singe-cell tracking,

as well as demonstrating how to distinguish between PC3 and PC12

cells in video based on a nearly simultaneous fluorescence image

at start. Section 2.5.3 provides two alternative methods to identify

patches among PC3 cells based on track data from them. Section 3.1

brings a comparison between these two methods, suggesting that

the choice of method may not be critical for identification of

patches. Section 3.2 shows an example where PC3 cells in co-culture

seem to form more stable clusters as compared to when they live

in mono-culture. Section 4 discusses the limitations of the present

method showcase, which is based on limited test data.

2 Materials and methods

2.1 General work flow

Our approach for cluster identification involves the following

steps:

1. Cultivation of PC3 and PC12 cells (Section 2.2).

2. Capture a still image of the cells (with PC3 cells labeled with

GFP) and record a video of them in monoculture and co-culture

with PC12 cells (Section 2.4).

3. Identify PC3 and PC12 cells in the co-culture by comparing the

still image to the video image nearest in time (see Section 2.5.2

and Figure 1).

4. Track individual cells, ensuring that PC3 cells maintain their

GFP label throughout their lineage. Refine and manually correct

the tracks as needed (Section 2.5.1).

5. Identify clusters based on the refined tracks (Section 2.5.3).

2.2 Cell culture

Prostate cancer PC-3 luc2-GFP cells were purchased from

Caliper (# 133416) and neuronal PC-12 Adh cell lines were

purchased from ATCC (# CRL-1721.1). The PC-3 cells were

maintained in RPMI-1640 (# R8758; Sigma) with 10% FBS

(fetal bovine serum)(androgen-proficient medium; F7524; Sigma)

and the PC-12 Adh cells were cultivated in F-12K medium ((#

21127022; Thermo Fisher Scientific) with 2.5% FBS and 15%

horse serum (# 16050122); Thermo Fisher Scientific). Cells were

maintained at 37 ◦C in a humidified 5% CO2 atmosphere. During

the cell tracking experiments, both cell lines were maintained in

phenol red-free RPMI1640 (# 32404014; Thermo Fisher Scientific)

with 10% FBS. Cells were routinely checked for mycoplasma

contamination.
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FIGURE 1

Manual classification of cells in a label-free video image [(right), at the start of recording] using nearly simultaneous GFP fluorescence imagery (left),

where GFP labels PC3 cells with green fluorescence. Green dots in the label-free video image correspond to GFP-labeled PC3 cells, while red dots

indicate classified PC12 cells. Classifying a single cell in the video image based on its GFP fluorescence (green) allows for the classification of all

members of its lineage.

2.3 Co-culture establishment

Prostate cancer PC-3 luc2-GFP and PC-12 Adh cells were

added in co-culture in a 48 wells plates from Costar (# 3548).

Both cell lines were cultured at a density of 1,500 cells per well

in RPMI-1640 (# R8758; Sigma) medium without phenol red and

10% FBS. Cells were then incubated at 37 ◦C in a humidified 5%

CO2 atmosphere for 48 h. Cells in mono-culture were also seeded

at a density of 3,000 cells per well and incubated using the same

conditions as the co-culture. All wells were visually inspected to

confirm that there were no abnormalities in the wells and that cells

look viable.

2.4 Time-lapse video microscopy

PC-12 Adh and PC-3 GFP cells were cultured in mono- or co-

culture for time-lapse imaging. Cells were imaged with Cytation5

(BioTek) with temperature and gas control set to 37 ◦C and 5%

CO2 atmosphere, respectively. Sequential imaging of each well was

taken using 10× objective and with an interval of 5min for 66 h

incubation period. Four images with. 5% overlap from each well

were used to stitches together the images used for tracking (Gen5

software; BioTek).

2.5 Video-tracking of cells

2.5.1 Cell positional data
Single-cell tracking was performed using the in-house

experimental software Kobio_Celltrack1 for convenience.

Alternatively, Fiji (Schindelin et al., 2012) and TrackMate (Ershov

et al., 2022) could also generate the required tracking data. Another

viable option is Btrack (Ulicna et al., 2021). The in-house system

1 https://www.korsnesbiocomputing.no/

allows users to define a rectangular region in the center of the

video, sized to contain a specifiedminimum number of cells of each

type at the start of recording (Korsnes and Korsnes, 2015, 2018;

Quinsgaard et al., 2024). In the co-culture experiment, a frame

was set to include 40 PC3 cells at the start, which automatically

included 80 PC12 cells. In the monoculture experiment, the

frame was defined to contain 50 PC3 cells. These cells and their

descendants were tracked throughout the experiments. Videos

demonstrating the performance of the tracking system are available

for validation through sample tests (Korsnes et al., 2024b,c).

The initial step of the tracking provides cell positional data,

which is susceptible to errors that can influence estimates of

track length and cell speed. Irregularities in cell movements can

inherently make track length scale-dependent or dependent on

both temporal and spatial resolution (Korsnes and Korsnes, 2023).

Also note that the current sampling interval of 5 min results in

missing intermediate positions. Additionally, the precise definition

of a cell’s position may not be straightforward. While the center

of the nucleus might be considered a natural reference point, it’s

not always discernible in various scenarios, and some cells exhibit

multiple nuclei.

The present work takes a pragmatic approach to the above

problematic issues and employs a Gaussian filtering of the track

positions as follows (Quinsgaard et al., 2024). Assume that the

positional vector ri represents the location of a cell at time ti. Define

the (Gaussian) weighted sum for all these n observed positions of

the cell:

si =
1

Mi

n∑

k=1

rk exp(−
(ti − tk)

2

T2
). (1)

for i = 1, 2, . . . , n and where Mi =
∑n

k=1 exp(−
(ti−tk)

2

T2 ).

This renders si as a smoothed (filtered) version of the time

series ri with bandwidth T. This work applies T = 15min,

considering the sample period is 150 s and that cells tend to

move a distance less than their diameter during 15min. Tests
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FIGURE 2

Illustration of two methods, based on call trajectories (black curves), to identify a patch of PC3 cells (green labels) among PC12 cells (red labels).

• (Upper left) Subset of video image showing a patch of PC3 cells among PC12 cells at 50h after the start of recording. The patch is identified as “id4”

(cf. Figure 4 below).

• (Upper right) Trajectories of cells in the patch within during their lifetime, starting at 35h from the beginning of the recording until its end,

suggesting a stable cluster.

• (Lower left) Illustration of Method1 for patch identification.

• The black curves here represent trajectories of cells 2.5h before and after the image time.

• Red and blue lines depict the backbone and peripheral parts of the network, respectively (see Section 2.5.3).

• Backbone nodes (cells) have at least five connections (G(x) = Gmin ≥ 5), in contrast to others.

• (Lower right) Illustration of Method2 where aquamarine lines show the convex hull of the tracks of individual cells during 2.5h before and after the

image time (total 5 h). Overlapping convex hulls of two cells’ tracks define a link between them, creating a network (red lines) that defines a patch.

show that final results seem not to be sensitive to perturbations

of T.

2.5.2 Cell type identification
Video tracking enables the classification of cells into

distinct cell types based on single, near-simultaneous GFP

fluorescence images, typically acquired at the commencement

of the recording. Once a cell’s classification is determined, its

entire lineage inherits the same designation. Figure 1 exemplifies

this approach.

2.5.3 Automatic patch identification
This work demonstrates two types of algorithms for identifying

clusters of PC3 cells that move together as a unit, even as individual

cells within the cluster rearrange positions. The approaches rely on

analyzing cell movement data over short time periods, limiting the
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FIGURE 3

Comparison of Method1 and Method2 for identifying clustering in PC3 cells (green) in co-culture with PC12 cells (red). The images were captured

50 h after the start of recording. Method,2 relies more heavily on cell movement compared to Method,1, leading to di�erences in results, particularly

for short-lasting patches. The labels provide the patch ID, duration of the patch, and the current number of cells within the patch.

temporal resolution of the methods. These methods, exemplified

by Figure 2, differ in how they define which cells are considered

“linked” or “related” based on their movement patterns. Graph

theory then serves as the basis for the subsequent data treatment,

where cells are represented by vertices (also known as nodes. When

two cells are defined to be related or “linked”, this relation is called

an edge. The number of edges (links) of a node x is normally written

G(x).

2.5.3.1 Method1: Contact Network Formation

This method defines two PC3 cells as “linked” at time t if

they come within △d = 30 µm of each other within a time

frame of △t = 2.5 h before and after t. A patch (of PC3 cells)

is then defined as a collection of nodes (cells) connected via a

“backbone” of nodes x with degree G(x) ≥ Gmin = 5. Cells directly

linked to this backbone are also considered part of the patch. The

backbone network serves to avoid the influence of stray cells on the
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FIGURE 4

Development of PC3 cell patch sizes in mono-culture and co-culture with PC12 cells, derived from the present experiment data (Korsnes et al.,

2024c,b). Both cultures included 12 patches, identified as id1, id2, ..., id12. The thickness of the elongated green spots represents the number of cells

in a patch at a given time after recording began. The numbers to the right of each green spot tells the number of cells at the end of its observation.

The blue dotted line indicates the end of the video recording. This figure includes only patches lasting longer than 5h, which is presumably well

above the temporal resolution of the current method for identifying patches (cf. 2.5.3). Notably, patches in the mono-culture appear to dissolve

shortly after 10h. In contrast, many patches in the co-culture persist to the end of recording.

identification of patches. It also prevents groups of stationary cells

from forming patches, as it is unlikely for a cell to have at least five

close neighbors simultaneously. Note that the use of a backbone

can reduce the ability to observe small clusters of size less than

five cells.

2.5.3.2 Method2: Convex Hull Overlap

This method relies on computing the convex hulls of PC3

cell tracks within △t = 2.5 h before and after t. Two cells

are considered linked at time t if their respective convex hulls

overlap. In this case, the illustrations below do not apply

a backbone as in Method,1, and a patch is simply defined

as an interconnected subset of the linked PC3 cells. This

method serves only as an example to illustrate approaches

alternative to Method,1. It may be of interest as an alternative

or complement to Method,1 since it enables the identification of

small clusters.

2.5.3.3 Identity of patches during time

The following outline applies for both methods above. Let C1

and C2 represent the set of cells in patches at subsequent image

times t1 and t2, respectively. They are given the same unique

identity if

|C1 ∩ C2|

|C1|
≥ p (2)

where p = 0.75 and | · | represents the size (cardinality) of a set

(i.e., the number of cells). Additionally, the mean positions must be

within △r = 75 µm. In other words, patches retain their identity

across subsequent image times if most of the cells at one time step

remain in the next, and the patches do not move too much. ID

conservation enables determination of duration of patches. This is

important to distinguish between behaviors of cells under different

treatments.

3 Results

3.1 Two methods for patch identification

Figure 2 illustrates the above two approaches (Method 1 and

Method 2) to identify patches of PC3 cells in co-culture with PC12

cells.

These methods differ in that Method 2 relies more on cell

movements compared to its counterpart,Method 1, which links two

cells at a specific time point, t, if they are close together (within

a distance △d = 30 µm) for a moment within a time window

△t = 2.5 h before and after t. This means cells don’t necessarily

need tomovemuch to be linked. However, a cell must link to at least

five other cells to become part of the actual network’s backbone,

which prevents groups of stagnant cells from forming a patch (see

Section 2.5.3). Hence, if cell density makes cells to slow down

their movements, Method 1 is not likely to find patches among

them.

Method 2 uses cell movements to define links between

cells. Two cells are considered “linked” at time t if the

convex hulls of their respective paths intersect during the

same time window, as in Method 1. This means that the

cells must cross each other’s paths to be linked. Therefore,

the two methods for patch identification can yield different

results (Figure 3).
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FIGURE 5

Trajectories of the initial PC3 cells in patch id4 of the co-culture

example, including their descendants. Blue and Green represent the

first and second generations from the start of the patch,

respectively. There is no third generation. The patch appears at 35h

from the start of video recording and persists throughout the

recording, which ends at 66h.

3.2 Comparison of cells in mono- and
co-culture

The following data treatment uses Method 1 for patch

identification, leavingMethod 2 as a potential alternative for further

work.

Patch formation among PC3 cells seems to depend on their

environment, with patches appearing to dissolve in mono-culture

(Figure 4).

Several of these short-lived patches of PC3 cells in mono-

culture may be artifacts of the current identification method.

Patches observed among PC3 cells in co-culture appear to

persist longer than those seen in monoculture. Notably, the patch

labeled id4 in the co-culture appears around 35 h and remains

throughout the entire recording (Figures 4, 5). Figure 2 shows this

same patch at 50 h, along with the tracks of the cells contained

within it. These tracks indicate cell-cell cohesion. If the cells were

moving independently, the observed track lengths suggest that they

would disperse across a much larger area. Hence, the patch cannot

be merely an artifact of the patch identification method. Figure 5

further supports this conclusion by depicting the tracks of the initial

cells in id4 and their descendants.

It also indicates movement of the whole patch.

The observed data, visualized in Figure 6, reveals segregation

among PC3 cells in mono-culture. Here, groups of cells exhibit

distinct movement speeds. This segregation of cells suggests

intriguing cellular interactions, deserving further investigation

through concepts like flocking or synchronization.

Figure 7 further supports the concept of segregation among the

PC3 cells.

It shows distributions of 6-h average cell speed of PC3 cells in

mono-culture and co-culture. Compared to co-culture, PC3 cells in

mono-culture exhibit a broader distribution of speeds, indicating a

greater heterogeneity in their movement patterns.

A linear increase in the mean squared displacement (MSD)

suggests diffusive motion (Qian et al., 1991; Huda et al., 2018;

Reynolds, 2018). Figure 8 builds on this concept and offers a

preliminary test for potential cell clustering. It illustrates the

temporal evolution of the MSD of PC3 cells in both mono-

and co-culture over the period from 40 to 60 h after recording

began. The movement of PC3 cells in mono-culture follows a

pattern characteristic of diffusive motion, whereas in co-culture,

the cells appear to be more confined to clusters. Figure 9 further

indicates that cohesion between spatially close PC3 cells affects their

movements, leading them to form clusters.

4 Discussion

The current data suggest that PC3 cells in co-culture with

PC12 cells tend to form lasting clusters. A simple intuition is that

cohesion between PC3 cells causes them to expel PC12 cells, leading

to the formation of clusters. Subsequently, they may synchronize

internal processes and become a distinct and prevailing entity. This

presumably depends on the size of the patches. Contact with an

environment of similar (PC3) cells may lead to the dissolution

of a patch, as indicated by Figure 4. This could prevent further

synchronization to initiate. A treatment that affects cell cohesion

could help test this hypothesis.

The tendency to form persistent clusters in co-culture

provides an opportunity for more in-depth study of clustering.

The approach used to identify clusters, inspired by graph

clustering theory (Schaeffer, 2007), seems to offer a valuable tool

for such investigations. However, developing a generic cluster

identification algorithm that can be applied across a wide range

of experimental conditions and cell types would require more

extensive testing. For example, the current algorithm, Method 1,

relies on specific values for the parameters p, △t, △d, Gmin,

and △r. A potential generalization could involve calculating these

parameters automatically to identify the most persistent clusters

below a certain size, as long-lived small clusters may be particularly

relevant to many applications related to cancer spread.

The following equation can replace Equation 2 to define the

conservation of patch identity over time:

|C11C2|

|C1 ∪ C2|
≤ q (3)

for a value of q well below 1, where 1 represents the symmetric set

difference (i.e., |C11C2| is the number of cells that are in either C1
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FIGURE 6

PC3 cells in monoculture: Illustration of di�erences in cell velocity among groups of cells 40 h after start of recording. The blue and yellow curves

represent the trajectories of cells within 30min before and after the image time, respectively. Therefore, the length of the tracks indicates individual

cell velocities. The cells encircled by the aquamarine curve (in the lower left corner) are significantly more stagnant than those in the patches

encircled by magenta lines. As in Figure 3, the labels provide the patch ID, duration of the patch, and the current number of cells within the patch.

FIGURE 7

Probability density function (PDF) for 6-h average cell speed during the period from 10 to 55h after the start of video recording for all tracked PC3

cells in mono-culture (left) and co-culture with PC12 cells (right). The scale bar indicates the color coding corresponding to di�erent levels of

probability density. The cells in mono-culture show a broader variation compared to the cells in co-culture.

or C2 but not in both). This ensures that identified patches do not

conserve identity if they suddenly increase in size.

The current video recordings are too short to capture situations

where cells slow down due to high confluence, whereas Method 1

and Method 2 depend on cell movement. If the cells in a patch

or their descendants do not (slowly) disperse, then the patch may

be assumed to exist. Notably, if cells within certain clusters have

entered a migratory state, one might expect them to be the last

to slow down due to increased confluence. This could provide an

opportunity for video-based observation of such changes in states.

Theories on clustering graph 2 are relevant for a wide range of

applications and provide inspiration for generalizing the present

approach. Note that a graph consists of vertices (nodes) that are

2 https://www.sciencedirect.com/topics/computer-science/clustering-

graph
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pairwise connected by edges, with associated weights reflecting

“similarities” between two vertices (cells) or their spatial distance. A

possible modification of Method 1 is to apply as weight a Gaussian

kernel:

K(ri, rj) = exp(−γ ‖ri − rj‖
2) (4)

where γ = 1/(2σ 2) and σ determines the width of the kernel

(Von Luxburg, 2007). Here, ri and rj represent the spatial position

of the nodes i and j.

Several measures of “similarities” between two cells can be

combined to reflect membership in a cluster or partition of a

graph through cutting wedges based on “cost” of cuts (Nascimento

and De Carvalho, 2011). This approach provides the opportunity

to include cellular phenotypes in addition to movements in the

process of identifying cellular clusters. The present test data

indicate that distributions of cell speed, displacement and clustering

parameters differ for PC3 cells in mono- and co-culture (cf.

Figures 4, 7, 8). Such distributions may therefore serve as simple

general indicators of clustering tendencies and help check for

consistency of results from experiments. A more comprehensive

data analysis is necessary to definitively incorporate cell speed and

morphology into an algorithmic method for cluster identification.

The framework of graph theory allows for the application

of theories on percolation and diffusion on graphs (Stauffer and

Aharony, 2018; Chung, 1997) to further refine cluster identification

from basic tracking data. These theories provide measures of how

well a graph or cluster (subgraph) is connected.

An intriguing speculation is that small clusters of closely

interacting cells may serve as potential “sites of ignition” for

collective changes in behavior among cancer cells through

synchronization, a well-documented phenomenon observed

in interacting organisms that influences fundamental cellular

processes (Hannon and Ruth, 2014). The present identification of

clustering may therefore represent only an initial step in exploring

collective changes among subsets of cells. The current co-culture

experimental setup has the potential to facilitate the formation

of small clusters, supporting such investigations of collective

behavior. Qualitative studies are a natural initial step in exploring

this theory of possible sporadic “sites of ignition.”

A simple, intuitive analogy for this work is that juggling

multiple challenges at once is akin to being caught in a

“fire overlap” situation, where things become significantly more

complex compared to handling each challenge individually. This

creates opportunities for cancer cells to migrate as a group.

There may be links between cell cluster formation, poor disease

prognosis, and resistance to drug treatments (Au et al., 2016;

Lee et al., 2017; Bithi and Vanapalli, 2017; Andrei et al., 2020).

Their greater colonization efficiency may stem from factors such

as protection against anchorage-dependent apoptosis, cooperation

among heterogeneous cell phenotypes within the clusters, and

protection from assaults by immune cells (Hou et al., 2012; Yu et al.,

2013; Hong and Zu, 2013).

Knowledge of cell cluster biogenesis and organization can

contribute to a better understanding of cancer dissemination.

Clusters serve as useful monitoring tools and prognostic

biomarkers, especially in metastasis, likely due to cell jamming

or collective migration mechanisms that remain largely

FIGURE 8

Mean square displacement (MSD) for all complete PC3 cell

trajectories between 40 and 60h from the start of video recording.

The orange curve represents PC3 cells in mono-culture (35

trajectories), while the blue curve represents PC3 cells co-cultured

with PC12 cells (30 trajectories). Please note that these descriptive

statistics are based on a single experiment, where cells in the

co-culture appear to follow a particular configuration. Therefore,

this data summary does not provide an average across multiple

experiments.

unknown (Amintas et al., 2020). A promising therapeutic

approach suggests that inhibiting or disrupting cluster formation

could reduce cancer dissemination (Au et al., 2016; Gkountela

et al., 2019).

The present data analysis shows that PC3 cells can exhibit

coordinated movement within stable clusters when grown in co-

culture with PC12 cells. Cluster sizes from these data align with

previous findings of Au et al. (2016), who identified clusters of 20

cells in malignant melanoma. However, clusters of 2–6 cells are

more commonly reported in the literature (Molnar et al., 2001).

One aspect worthy of investigation is whether cancer

cells may collaborate to achieve perineural invasion (PNI), a

complex phenomenon characterized by reciprocal interactions

between cancer cells and the surrounding nerve micro-

environment (Magnon, 2015; Grigore et al., 2015; Bakst and

Wong, 2016). PNI can occur in various malignant tumors (Demir

et al., 2012; Schmitd et al., 2018) and it is believed to play a

role in the development of neuroendocrine prostate cancer

(NEPC), an aggressive variant of prostate cancer where

prostate adenocarcinoma cells (PCA) trans-differentiate into

a neuroendocrine (NE) cell phenotype to escape anti-androgen

therapies (Braadland et al., 2015; Kaarijärvi et al., 2021). The

infiltration of cancer cells into this space can actively stimulate

cancer progression and metastasis (Chen et al., 2019; March et al.,

2020).

Schwann nerve cells can act as “leaders”, reorganizing cancer

cell clusters to facilitate PNI when in contact with them (Deborde

et al., 2016). They can also collectively function as tumor-activated
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FIGURE 9

Cell trajectories reveal dynamic interactions between PC3 cells. (Left panel) Phase contrast image of PC3 cells in mono-culture at the start of

recording. Colored arrows mark four cells. (Right panel) Trajectories of the marked cells over 15 h, highlighting intercellular interactions. These

observations suggest that dynamic cell-cell interactions contribute to the initiation of clustering. See supplementary video (Korsnes et al., 2024a).

Schwann cell tracks (TAST), promoting cancer cell invasion and

migration (Deborde et al., 2022). Physical contact among cells

is required to enhance cancer invasion. Cluster detection often

correlates with higher rates of disease progression and poorer

treatment responses (Wrenn et al., 2021).

It is becoming evident that single-cell profiling allow

researchers to address the co-occurrence of molecular events in

individual cells, however, it does not need to be limited to gene

expression (Kumar et al., 2017). The incorporation of visualization

data on a per-cell basis will complement the knowledge gained from

single-cell molecular profiling, including epigenetic modifications,

which often contributes to “stochastic” expression (Angermueller

et al., 2016).

There have been some limited contributions using in vitro co-

cultures to study cell clustering behavior (Wrenn et al., 2021).

Recent research, however, emphasizes the role of specific molecular

mechanisms in promoting cluster formation, which is linked to

an increased risk of metastasis. Tumor cells that cluster within

the tumor microenvironment (TME) tend to gain an evolutionary

advantage. The TME is a complex ecosystem comprising tumor

cells, immune cells, fibroblasts, blood vessels, and extracellular

matrix (ECM). Clustering facilitates cooperation among tumor

cells, enhancing their ability to survive, migrate collectively, spread,

and evade the immune system. The presence of cell clustering is

often associated with poor prognosis and a heightened likelihood

of metastasis in various cancer types (Rozenberg et al., 2023).

Disrupting these mechanisms could offer a promising avenue for

cancer treatment, making efforts to uncover them of significant

interest.

5 Conclusions

PC3 cells cultured in monolayers in test wells, alongside PC12

cells, tend to form stable clusters. This behaviormay be attributed to

cohesion between PC3 cells, providing an opportunity to generate

data on cell clustering that could be of interest for further studies

and may promote new therapeutic ideas. Graph theory offers a

framework for developing tools to identify clusters within cell

populations. A key step in this process is defining relationships

(“similarities”) between pairs of cells, which creates an initial large

graph. This pairing can be based on tracking individual cells over

time. The next step involves partitioning the initial large graph

into disjoint subgraphs (clusters). A third step is to find similarities

between consecutive clusters. This study demonstrates an example

of applying this approach.
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