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Introduction: Multidrug-resistant Enterobacteriaceae are among the most

urgent global public health threats associated with various life-threatening

infections. In the absence of a rapid method to identify antimicrobial

susceptibility, empirical use of broad-spectrum antimicrobials such as

carbapenem monotherapy has led to the spread of resistant organisms.

Rapid determination of antimicrobial resistance is urgently needed to overcome

this issue.

Methods: By capturing dynamic single-cell morphological features, including

growth-independent, antibiotic-induced changes, of cells from 19 strains of

Klebsiella pneumoniae, we evaluated data processing strategies based on time

and concentration di�erentials to developmodels for classifying its susceptibility

to a commonly used carbapenem, meropenem, and predicting their minimum

inhibitory concentrations (MIC).

Results and discussion: We report morphometric antimicrobial susceptibility

testing (MorphoAST), a growth independent, computer vision-based machine

learning workflow, for rapid determination of antimicrobial susceptibility by

single-cell morphological analysis within sub-doubling time of K. pneumoniae.

We demonstrated the technological feasibility of predicting MIC/antimicrobial

susceptibility in a fraction of the bacterial doubling time (<50min). The classifiers

achieved as high as 97% accuracy in 20 min (two-fifths of the doubling time)

and reached over 99% accuracy within 50 min (one doubling time) in predicting

the antimicrobial response of the validation dataset. A regression model based

on the concentration di�erential of individual cells from nineteen strains

predicted the MIC with 100% categorical agreement and essential agreement

for seven unseen strains, including two clinical samples from patients with

urinary tract infections with di�erent responsiveness to meropenem, within

50min of treatment. The expansion of this innovation to other drug-bug

combinations could have significant implications for the future development of

rapid antimicrobial susceptibility testing.
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Introduction

The emergence ofmultidrug-resistant pathogens is a worldwide
calamity. Multidrug-resistant bacteria, such as the carbapenemase-
producing Enterobacteriaceae, pose an increasing threat to public
health due to their high mortality rate and rapid acquisition
of resistance to available antimicrobials (Nordmann et al., 2011;
Durante-Mangoni et al., 2019). Klebsiella pneumoniae, a member
of the Klebsiella genus of Enterobacteriaceae, is an emerging
multidrug-resistant opportunistic pathogen that causes a wide
range of diseases, including pneumonia, meningitis, and liver
abscess. As with the case for Enterobacteriaceae nosocomial
infections, broad-spectrum carbapenems like meropenem, an
intravenous beta-lactam antimicrobial, are often prescribed until
the antimicrobial susceptibility test (AST) results are available
to guide more targeted therapy. In the absence of a rapid
method to determine antimicrobial susceptibility, empirical use
of antimicrobials is warranted as urgent treatment is linked with
improved outcomes. Inappropriate antimicrobial treatment results
in almost twice the higher mortality rate in infected patients
and accelerates the emergence and spread of superbugs (Jernigan
et al., 2020). Therefore, rapid determination of antimicrobial
susceptibility to guide treatment is crucial to save lives and curb
the widespread of multidrug-resistant pathogens.

Phenotypic AST, such as broth microdilution and ETEST,
evaluates the ability of an antimicrobial to inhibit bacteria
growth and is the gold standard for determining antimicrobial
susceptibility. The turbidity of liquid media or the formation of
bacterial colonies provides a measure of bacteria growth with the
presence of an antimicrobial and generates quantitative minimum
inhibitory concentration (MIC; Jorgensen and Ferraro, 2009).
Nevertheless, phenotypic AST, which relies on bacterial growth
for 18 h or more, is incompatible with a rapid turnaround. This
limitation of current AST propelled the development of novel
approaches to improve both speed and accuracy (Vasala et al., 2020;
Tjandra et al., 2022; Baltekin et al., 2017; Li et al., 2019; Choi
et al., 2014). Single-cell imaging analysis is an emerging strategy
that offers the possibility of reducing the turnaround time and
improving the diagnostic resolution. By visualizing the replication
of individual cells, the response of bacteria to antimicrobials can
be in principle reduced to one or a few doubling times of the
bacteria (Li et al., 2019; Choi et al., 2014; Lu et al., 2013; Zhang
et al., 2020; Choi et al., 2013). However, rapid AST techniques that
rely on the area occupied by the cells as a measure of the growth
could mistake a transient increase in cell sizes due to antimicrobial
tolerance as growth (Choi et al., 2014). Phenotypic variants, drug
accumulation, and growth phase can also introduce uncertainties
in rapid AST assays (Łapińska et al., 2022; Brauner et al., 2016).
Therefore, existing approaches relying on cell replication often
require at least 2 h, if not more, to deliver reliable results, especially
for slow-growing and fastidious bacteria (Choi et al., 2014; Veses-
Garcia et al., 2018; Matsumoto et al., 2016; Avesar et al., 2017;
Kalashnikov et al., 2017). While there are ample examples of rapid
AST, the search for a technique that can deliver AST results (1)
rapidly in a point-of-care timeframe, (2) quantitatively with MIC
determination, and (3) efficiently with a small inoculum size is
still ongoing.

A promising strategy for rapidly determining bacteria response
to antimicrobials is to monitor their morphological changes
(Bourne, 2021). In addition to growth and replication, bacteria
undergo a wide variety of morphological changes in response
to the environment (Yang et al., 2016). These changes, such as
filamentation, bulging, and lysis, indicate stress in bacteria and
have been applied for investigating the mechanisms of action of
antimicrobials (Baltekin et al., 2017; Bruus, 2012; Zahir et al.,
2019; Nonejuie et al., 2013). For instance, distinct morphological
transformations could be induced in Escherichia coli depending
on the type of beta-lactam antimicrobials (Yao et al., 2012).
Pseudomonas aeruginosa, which are known to be highly tolerant
against beta-lactams, undergo a transition from rod-shaped to
viable spherical cells when treated with meropenem (Monahan
et al., 2014). The minute change in the bacterial morphology could
be indicative of the bacterial response to antimicrobials before
cell replication.

Many promising examples of bacterial analysis at the single-
cell level have emerged (Rosłoń et al., 2022; Scherer et al., 2021;
Kaushik et al., 2021). A successful example of the use of imaging
modality for ID/AST is the FDA-cleared AcceleratePheno system
by Accelerate Diagnostics. Their assays track changes in bacteria
growth kinetic and cluster morphology to assess any anomalies
in cell growth and division, which then translate into information
about antibiotic responses (Shamsheyeva et al., 2013). The strength
of this method is its robust inputs ranging from cell mass, division,
fluorescence, and colony formation, achieving ID information in
2 h and antibiotic susceptibility in 7. Gathering such comprehensive
data to achieve this result was possible with the use of high-
end instrumentation and modeling. Others such as the Sysmex
Astrego’s AST offers susceptibility information (S/R) in <30min
after the bacteria were grown for 2 h, but without an MIC
(Baltekin et al., 2017). Meanwhile, the Gradientech QuickMIC
system delivers susceptibility information with MIC after 3–4 h
of live imaging (Malmberg et al., 2022). These commercial AST
systems depend on cell growth and replication as the key marker
of antibiotic response.

We sought to develop a truly growth and replication
independent, morphometric approach for rapid AST and MIC
before cell doubling. Herein, we devised a proof-of-concept
computer vision-based machine learning workflow, termed
morphometric antimicrobial susceptibility test (MorphoAST), and
demonstrated with Klebsiella pneumoniae and meropenem that
we can achieve both AST and MIC quantification in a fraction of
the bacterial doubling time. The workflow combines single-cell
imaging, computer vision feature extraction, and supervised
machine learning models for predicting the response of bacteria
to antimicrobials. We measured dynamic morphological features
of individual K. pneumoniae in the presence of meropenem.
We initially assessed time and concentration differential data
processing strategies on a set of five K. pneumoniae strains and
trained machine learning models to classify the antimicrobial
response. We then expanded the concentration differential strategy
on a more diverse set of 19 K. pneumoniae strains to develop a
regression model to predict MIC. The models were cross-validated
and tested against cells from seven unseen strains, including two
samples from patients with urinary tract infections to provide an
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unbiased evaluation of the trainedmodel. The results were reported
according to the CLSI performance standards for antimicrobial
susceptibility testing (M100) guideline.

Materials and methods

Bacteria culture

Klebsiella pneumoniae isolates (Supplementary Table 1) from
the CDC & FDA Antimicrobial Resistance (AR) bank, Johns
Hopkins University, and American Type Culture Collective
(ATCC) were grown in Mueller Hinton Broth (MHB) at 37◦C
overnight. The next day, cells were sub-cultured in fresh MHB
media for 3 h (growth phase) to a density equivalent to OD600 =

0.5. Bacteria cells (10 µL) were treated with 10 µL meropenem
at varying final concentrations of 0 (control), 0.05, 0.5, 5, and
50µg/mL to ascertain the physiological responses of cells. A subset
of these isolates was treated with finer range of antimicrobial
concentrations (0.02, 0.04, 0.016, 0.032, 0.064, 0.125, 0.5, 1, and
2µg/mL) to train the algorithm for quantitative prediction of
MIC. The MICs of the isolates were experimentally obtained
and confirmed in triplicate using broth microdilution method
according to CLSI guidelines.

Bacteria imaging

Bacteria cells and meropenem in liquid media are briefly
vortexed before mounting on a 1% (v/v) UltraPure agarose
pad (10 x 20mm, Invitrogen US) in M9 minimal media
(Gibco, US) on a micro slide covered with a glass coverslip
(#1.5, 22 x 30mm). Bacteria imaging was performed using
a Nikon Ti2-E inverted microscope equipped with a DS-Qi2
CMOS camera and an Okolab stage-top temperature control
chamber (37◦C, 5% CO2). Images were acquired using a Nikon
CFI Plan Apochromat l DM 100X oil objective lens and
an external Phase Contrast (Ph3) module. Each isolate was
observed over a period of 75min (15–90min after mixing
with the antimicrobial). One field of view is collected for each
time point.

Feature extraction

Time-series images were stacked and corrected for shifts in
the time series using the Template Matching and Slice Alignment
ImageJ plugin (Qingzong, 2022). Each stack was then analyzed
using the MicrobeJ plugin for ImageJ (Ducret et al., 2016). The
plugin, designed for the detection and analysis of bacterial cells,
uses computer vision algorithms to automatically identify a cell and
determine a suite of morphological features, such as its area, length,
circularity, and perimeter (Supplementary Table 2). The tracking
data were summarized as a table and exported as a .csv file for
further analysis.

Data analysis and machine learning

The morphological data were analyzed to predict the
susceptibility and MIC of the bacterial strain before the average
doubling time (∼50min). Two differential strategies based on
the time-dependent or antimicrobial concentration-dependent
changes of the bacteria were applied. The processed data were
then applied for susceptibility classification and MIC prediction. A
schematic of the workflow is shown in Figure 1.

In the time differential (or dynamic) approach, processed
image stacks for Klebsiella pneumoniae isolates (KP_016, KP_0140,
KP_1705, KP_0153, and KP_0142) at various antimicrobial
concentrations were evaluated. The cells were labeled as division
(resistant) or no division (susceptible). Data analyses were
performed using Python with data analysis and machine learning
libraries (Wes McKinney, 2017; Harris et al., 2020). To explore
AST in a sub-doubling time, time-lapse data from the first 35min
(corresponding to 15–50min after antimicrobial exposure) at a 5-
min interval were analyzed. Erroneous data (e.g., missing bacteria)
were detected and removed. Feature-changing rates of individual
cells were determined by fitting the time-lapse data with the
exponential function to accommodate non-linear behaviors. The
area, aspect ratio, circularity, length, and perimeter were the most
relevant dynamic features. The data were separated into training
(75%) and validation (25%) sets. The changing rates of these
features for each cell, along with the meropenem concentration,
time of tracking, the bacterial strain, and the label for division/no
division, were used to train the K-Nearest Neighbor and artificial
neural network (MLPClassifier) models from the scikit-learn
machine learning library (Pedregosa et al., 2011). For the K-Nearest
Neighbor model, k was optimal at 20. The optimal structure of the
artificial neural network was found at three hidden layers with five
neurons each, even though a simple grid (two hidden layers with
two neurons each) was sufficient for well-separated data (e.g., 50-
min data). The accuracy of each model was obtained by averaging
the values of 10 runs. The best model was assessed against the cells
in the validation set.

In the concentration differential approach, the effect of each
concentration of meropenem on individual cells of the same 5
strains as above was determined as a deviation from the population
mean of untreated cells at the same time point for each of the 19
features, concentrations, and strains. Only cells detected within the
first three time points and with no missing data were included
in the analysis. If a cell died within the observation timeframe,
the subsequent time points were marked with zero values for
the features. The best modeling strategy for the classification
of the normalized data was chosen among Random Forest,
Naive Bayes, K-Nearest Neighbor, and Support Vector Machine
based on the accuracy of models trained at the first time point
(Supplementary Table 3). Random Forest classification models
were trained against the reported susceptibility on normalized
dataset for 80% of the cells for each time point with 5-fold cross-
validation and 10 repetitions using the R package caret (Kuhn,
2008). The models with the highest accuracy were retained and
tested against the 20% leave-out test set.

To develop the regression model for MIC prediction, processed
image stacks for 24 K. pneumoniae strains (Supplementary Table 1)
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FIGURE 1

A schematic flowchart of the single-cell MorphoAST workflow for susceptibility classification and minimum inhibitory concentration (MIC) prediction.

(A) The workflow starts with time-lapse imaging of individual bacteria under various antimicrobial concentrations. The morphological features of the

bacteria are extracted automatically using MicrobeJ, an ImageJ plugin. (B) In the time di�erential approach, the feature changing rates are extracted

by exponential curve fitting from the time-lapse data. (C) In the concentration di�erential approach, all features extracted from MicrobeJ are

normalized against the feature mean of the control population. All datasets are visualized and separated into training and validation sets. (D, E) The

feature-changing rate datasets are applied to train an artificial neural network to create a classification model. In parallel, the normalized dataset is

trained using a random forest classifier with cross-validation. The trained models are then validated with the validation dataset for analyzing the

prediction accuracy for susceptibility classification. (F) A Random Forest regression model is generated by the normalized data. The regressor model

is validated through cross-validation and tested against unseen cells for evaluating categorical agreement and essential agreement of the assay.

that spanned 10 resistant, 12 susceptible, and two intermediate
against meropenemwere used.We searched for an optimal training
set of 19/24 strains (∼80%; eight resistant, 10 susceptible, and

one intermediate) that encompasses the diverse morphological
changes and has the best model performance through 30
iterations of the possible combinations. The data were normalized
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as described above in the random forest. The best modeling
strategy for the prediction of MIC was chosen among Linear
Regression, Neural Net, Random Forest, K-Nearest Neighbor,
Support Vector Machine, and Gaussian Process Regression based
on the lowest root mean square error (RMSE) and highest
coefficient of determination (R2) for models trained at the first
time point (Supplementary Table 4). Training data with the optimal
combination of strains were weighted to account for any class-
level imbalance by dividing the number of cells in the intermediate
category by the number of cells in the corresponding susceptible,
resistant, and intermediate categories. Random Forest regression
models were trained for each time point with 5-fold cross-
validation and five repetitions using R packages ranger (Wright
and Ziegler, 2017) and caret (Kuhn, 2008). Models were trained
against the experimental MIC for these strains, and the model
with the lowest RMSE, mean absolute error (MAE), and highest
R2 was selected. The final models were tested against the five
left-out unseen strains (two resistant, two susceptible, and one
intermediate) and an additional two clinical isolates from patients
with UTI. Mode MIC for the population of cells for each strain
was attributed as the MIC for the strain. Categorical agreement
(CA) and essential agreement (EA) for the cross-validated test
as well as the validation datasets were determined. The major
error (ME) and very major error (VME) rates were calculated for
the model.

Clinical urine samples

Two de-identified, remaindered urine samples (10mL) from
patients infected with Klebsiella pneumoniae were collected from
the Veterans Affairs Palo Alto Health Care System clinical
microbiology laboratory. Klebsiella was identified by the clinical
lab and confirmed by plating on ChromAgar Orientation (BD).
The urine samples were stored in the −80◦C freezer until
used. Next, the urine samples were streaked on ChromoSelect

selective agar (Millipore) and grown overnight to obtain isolated
colonies. The MIC for these strains against meropenem was
determined through micro-broth dilution in triplicate. The
isolates were grown, treated with meropenem, and imaged as
described above.

Results

The MorphoAST workflow for rapid
Klebsiella pneumoniae AST

We developed a machine learning workflow for rapid AST
determination for K. pneumoniae against meropenem in a sub-
doubling time of the bacteria (Figure 1A). The MorphoAST
workflow started with imaging of individual bacteria under various
antimicrobial concentrations. Cells were grown to a log phase
and treated with varying concentrations of meropenem. Cells
without any antimicrobials were imaged in the same manner
as controls for the experiment. Live bacteria were mounted
on an agarose pad to minimize cell movement due to cell
motility and Brownian motion. Time-lapse images were taken

every 5min. Images were aligned to match the location of
individual cells at each frame and then subject to MicrobeJ
analysis for extracting morphological features (Ducret et al.,
2016). Visual observation of the bacterial cell division showed
that untreated cells divide at between 40 and 50min depending
on the strain. A total of 21 automatically-extracted parameters
(Supplementary Table 2) describing the cellular dimension and
orientation were generated. The data have been analyzed either
fitting with an exponential function to extract the feature changing
rates (Figure 1B) or normalized against the untreated control
to extract the feature differentials (Figure 1C). The data were
applied to train and validate machine learning classifiers to
predict the antimicrobial response (Figure 1D) and regressors to
predict the MIC of the bacterial strain against the antimicrobial
(Figure 1E).

Single-cell imaging and feature extraction

A total of 24 K. pneumoniae strains bearing various
carbapenem resistance genes and sensitivity toward meropenem
were monitored over time (Supplementary Table 1). Changes
in bacterial morphology were observed over 90min post-
antimicrobial incubation. Only the first 50min, which is
approximately the doubling time of K. pneumoniae (Hafza et al.,
2018), was analyzed. Each strain showed a unique morphological
response to the varying antimicrobial concentration based on
their MIC. Figures 2A, B show and example of K. pneumoniae

(KP_0142) treated with and without meropenem. Bulging
of the bacteria was only observed in the meropenem case.
Supplementary Figure 1 compares three strains (KP_0016—
Susceptible, KP_0142—Intermediate, and KP_0143—Resistant)
at the early time points (see also Movies S1–3). Similarly, at
5µg/mL meropenem, which is higher than the breakpoint MIC
for meropenem, susceptible and intermediate strains (KP_0016
and KP_0142) showed noticeable “bulging” or protrusion around
the center of the cell that was not observed in the resistant
strain (KP_0143).

To automate the analysis and avoid subjectivity, the MicrobeJ
plugin was applied for recognizing bacteria and extracting
morphological features (Figure 2C). The cell behaviors were
summarized by extracting the changing rates of each feature from
the data (Figure 2D and Supplementary Figure 2). Figure 2E shows
an example of the distributions of length and area changing
rates of a single strain (KP_0142) under various meropenem
concentrations. The centroids of the changing rates varied with the
antimicrobial concentration. However, there were large variations
among individual bacteria at the same concentrations and
substantial overlaps between different concentrations. It could be
challenging to accurately predict the bacteria response based on one
or two features. A statistical approach, specificallymachine learning
algorithms, is required to analyze the multiparametric data for
improving classification accuracy. Subsequently, we next set forth
to independently develop the time differential and concentration
differential strategies of data processing and machine learning on a
subset of bacterial strains prior to developing a final working model
on the larger, complete set of bacterial strains.
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FIGURE 2

Representative results of single cell MorphoAST of K. pneumoniae treated with an intravenous β-lactam antibiotic, meropenem. (A) Time-lapse

images of a K. pneumoniae strain (KP0142) without any antibiotic treatment. A yellow box denotes a cell that undergoes cell division. (B) Time-lapse

images of the same KP strain treated with meropenem concentrations at 5µg/ml. The minimum inhibitory concentration of KP0142 was clinically

determined to be 2µg/ml. Time-lapse cell imaging was performed at a 5-min interval 15min after mixing with meropenem. The doubling time of the

bacteria was ∼50min. A white box denotes a cell undergoing shape changes. The cells did not display any observable cell division within the duration

of the experiment (90min). (C) Morphological analysis with an ImageJ plugin for extracting the area, length, width, circularity, curvature, sinuosity,

angularity, solidity, and intensity. (D) Examples of two growth curves for fitting the exponential area growth rate. (E) Distributions of area (µm2/m) and

length (µm/m) growth rates of single bacteria extracted using procedures in (C, D). Cells in whole imaging frame is taken into account for the actual

experiment to avoid bias. Scale bars: 5µm.
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Classification of bacterial response to
antimicrobial with dynamic features

We first evaluated the dynamic (or time differential) approach
for predicting the bacterial response to meropenem. The dynamic
features of a total of 1,338 bacterial cells from 5 KP strains
(KP_016, KP_0140, KP_1705, KP_0153, and KP_0142) from
various antimicrobial concentrations were measured. The cells
were labeled as 1 (resistant or division) or 0 (susceptible
or no division) at the strain-concentration combination based
on the CDC-reported meropenem MIC for K. pneumoniae.
Since the behaviors of individual bacteria were highly diverse,
one to seven bacteria under the same strain-concentration
combinations were randomly grouped. The average feature
changing rates were calculated for each group. As shown
in the principal component analysis (PCA) plots (Figure 3A),
grouping bacteria substantially reduced the variation within a
group and increased the separation between the “resistant”
and “susceptible” groups. The separation between the groups
increased with the number of bacteria in the group. The
grouped data were trained and validated using the training and
validation datasets with the K-Nearest Neighbors and artificial
neural network classifiers (Figures 3B and C) owing to its
simplicity and parameter optimization, respectively. For the 35-
min data (i.e., 15–50min of exposure), groups of one bacterium
resulted in an accuracy of 89 and 90% with the K-Nearest
Neighbors and artificial neural network classifiers, respectively.
The prediction accuracy was generally improved by increasing
the number of bacteria (Figure 3D). With groups of seven
bacteria, both classification algorithms reached over 99% accuracy.
The improvement can be understood by a reduction of the
statistical variation of individual cells by averaging data from
multiple bacteria.

We then evaluated the accuracy of the classification model
with sub-doubling times. The feature change rates were extracted
using different durations of the data (5–35min), corresponding
to 15–50min of antimicrobial incubation. Similarly, the data are
summarized and visualized by the PCA plots (Figure 4A). The
data with a 5-min duration (i.e., between 15 and 20min after
antimicrobial exposure) displayed a considerable variance and
overlapped substantially. Nevertheless, the centroids of division
and no division groups were distinct, and the separation improved
with data of a longer duration. Clear separations between the
groups could be observed in data with 25- or 35-min durations.
Again, we trained machine learning classifiers, including the
K-Nearest Neighbors and artificial neural network algorithms
(Figures 4B, C) on averaged features from groups of seven cells
to result in a class ratio of ∼2:1 for susceptible (273) to resistant
(128). These algorithms exhibited similar performances and had
an accuracy of ∼80% with the 5-min data. The results reached
around 95% with the 25-min data and over 99% with the 35-
min data. The confusion matrices indicated a false positive rate
close to zero and a false negative rate of ∼1.1% (Figure 4D)
against the 25% validation dataset. These results support the
use of dynamic morphological features, i.e., the time differential
approach, for predicting the antimicrobial response in a sub-
doubling time.

Susceptibility classification with
concentration di�erential features

We next evaluated the concentration differential approach
for predicting antimicrobial susceptibility. A total of 5,050
bacterial cells from 5 KP strains (KP_016, KP_0140, KP_1705,
KP_0153, and KP_0142) with various antimicrobial concentrations
were included in the prediction of resistance and susceptibility
to antimicrobial exposure. The deviations of morphological
features from the population means of untreated cells were
calculated at each time point. Since the bacterial features
against various antimicrobial concentrations were measured,
the differential data were applied to classify the interpretive
categories (i.e., Susceptible “S,” Intermediate “I,” and Resistant
“R”) according to the CLSI guideline. Figure 5A shows the
PCA plots of the data. The centroids of the S, I, and R
groups are separated after 20min of antimicrobial exposure, and
there was a considerable amount of overlap. The separation
widened when the antimicrobial exposure time increased. We
trained and cross-validated 80% (4,040 cells) of the data with
various classification algorithms, including Random Forest, Naive
Bayes, K-Nearest Neighbor, and Support Vector Machine. The
results suggest the Random Forest algorithm outperformed other
models (Supplementary Table 3). The categorical agreement (CA),
which is the percentage of interpretive agreement between
the predicted and true labels, was determined in the training
set (Figure 5B). The Random Forest model achieved a 97%
accuracy in as early as 20min (two-fifths of the doubling
time) and reached over 99% accuracy in 40min (four-fifths
of the doubling time). In contrast to the dynamic approach,
grouping multiple bacteria, however, did not improve the accuracy
(Supplementary Figure 3).

Next, the accuracy of predicting each class was estimated by
examining the confusion matrices (Figure 5C). With 20min of
meropenem exposure, the Random Forest model had a multiclass
area under the curve (AUC) of 94.5%, error rate of 2.8%, and
precision and recall of 94.4% each against the validation dataset
with >98% of the resistant cells being accurately predicted. The
performance of the Random Forest model further improved with
an increase in the antimicrobial exposure time. Within just 40min
of exposure, this model achieved a multiclass AUC of 97.85%, error
rate of 1%, and precision and recall of 97.8% each against the
validation dataset supporting the use of morphological features for
rapid single-cell AST.

Minimum inhibitory concentration
prediction in sub-doubling times

We further expanded on the use of the concentration
differential data processing to evaluate its utility for MIC
prediction. A Random Forest regressor was trained on a total
of 39,135 cells from an optimal combination of 19 strains
(KP_0004, KP_0005, KP_0010, KP_0016, KP_0034, KP_0120,
KP_0140, KP_0160, KP_0542, KP_0548, KP_0555, KP_0556,
KP_0558, KP_1705, KP_700603, KP_U2, KP_U4, KP_U5, and
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FIGURE 3

Classification accuracy of bacteria groups using the time di�erential approach. (A) Principal component analysis plots of dynamic features of 1,338

bacteria from five KP strains (KP_0142, KP_135, KP_120, KP_016, and KP_0010) and antimicrobial concentrations. The data are labeled as 1 (division

or resistant, green points) or 0 (no division or susceptible, black points). Bacteria are randomly selected from the same strain-concentration

combination to form a group, and the dynamic features are averaged for groups of 1, 3, 5, and 7 bacteria from the training dataset (75%). (B, C)

Prediction accuracy was obtained by (B) K-Nearest Neighbors and (C) artificial neural network algorithms for di�erent group sizes in the validation

dataset (25%). For single bacteria, the accuracy was slightly higher for the artificial neural network (∼90%). With groups of seven bacteria, both

models obtained over 99% accuracy. The accuracy values are an average of 10 repetitions. (D) Evolution of confusion matrices of neural network

classifiers with groups of 1–7 bacteria. Both the major error (true susceptible and predicted resistant) and the very major error (true resistant and

predicted susceptible) were reduced with an increasing number of bacteria.

KP_U7) across the concentrations. The model, including historic
data (i.e., earlier time points), had a cumulative improvement
in performance measured by the root-mean-square error

(RMSE =

√

∑N
i=1(Predictedi−Actuali)

2

N ), R-squared (Rsquared =

1 −
Sum of squared residuals
Total sum of squares

), and mean absolute error (MAE

=

∑n
i=1 |Predictedi−Actuali|

n ) values with increased exposure time
(Figure 6A). The Random Forest regressor predicted the MIC in
the 5-fold cross-validated training dataset with an RMSE of 0.8,
MAE of 0.2, and an R2 of 0.93. The performance of the model
was assessed against 5 unseen KP strains (KP_003, KP_0142,
KP_139, KP_552, and KP_U3), which comprised 6,067 cells. The

experimental MIC and predicted MIC of the 5 unseen strains based
on the Random Forest regressor are compared in Figure 6B. The
data showed a strong correlation, and the regressor collectively
predicted the MIC within plus or minus, 1-2-fold dilution for all
strains, resulting in an 80% essential agreement (EA) with 40min
of antimicrobial exposure that increases to 100% EA with 50min
of exposure.

The predicted and experimentally reported labels (i.e.,
Susceptible “S,” Intermediate “I,” or Resistant “R”) were also
compared. Based on the predicted MIC for each strain within
30min of exposure, the model performed poorly against the
resistant strains but correctly predicted 100% (2/2) of the

Frontiers in Imaging 08 frontiersin.org

https://doi.org/10.3389/fimag.2024.1418669
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Tjandra et al. 10.3389/fimag.2024.1418669

FIGURE 4

Classification accuracy of sub-doubling time susceptibility prediction using the time di�erential approach on five KP strains (KP_0142, KP_135,

KP_120, KP_016, and KP_0010) treated with meropenem in log phase. (A) Principal component analysis plots of feature changing rates with

20–50min of antimicrobial exposure, which correspond to 5–35min duration of dynamic data. The data are labeled as 1 (division or resistant, green

points) or 0 (no division or susceptible, black points) at the strain-concentration combination with groups of seven bacteria. (B, C) Prediction

accuracy against validation dataset (25%) was obtained by (B) K-Nearest Neighbors and (C) artificial neural network algorithms trained on 75% of the

dataset for di�erent durations of data. The accuracy was ∼80% for a 5-min duration, and the value improved to over 99% accuracy with a 35-min

duration of data. The accuracy values are an average of 10 repetitions. (D) Evolution of confusion matrices of neural network classifiers with groups

of 20–50min of antimicrobial exposure. Both the major error (true susceptible and predicted resistant) and the very major error (true resistant and

predicted susceptible) were reduced with the duration of the data.

susceptible and intermediate (1/1) bacteria. Similar to the
classifier models, the performance of the model increased with
the antimicrobial exposure time and achieved 100% CA with
0% ME and 0% VME in 50min. We then evaluated the model
performance in predicting the MIC for individual cells within
each population of the unseen strains tested (Figure 6C). While
there is heterogeneity in calls for individual cells from a single
population, ∼79.9% of cells from 3/5 strains tested (KP_003,
KP_139, and KP_U3) had predicted MICs within 1-2-fold
dilution from the experimental MIC after 20min of antimicrobial
exposure. After 50min of exposure, ∼85.1% of all cells from 5/5
tested strains had predicted MICs within 1-2 fold dilution from
experimental MIC.

In addition to validation against unseen strains, the model
was tested against imaging data from two clinical samples of KP
obtained from patients visiting the VA (Palo Alto) with urinary
tract infections (Figures 6D, E). The experimental MICs for these
clinical samples (VA_1 and VA_2) was 0.5µg/mL, i.e., susceptible.
Within 20min of meropenem treatment, the model did not observe
patterns for susceptibility it had learned from the training data and
predicted both strains to be resistant with anMIC of 8 and 7µg/mL,
respectively. When the incubation time was increased to 50min,
both strains were predicted to have a mode MIC of 1µg/mL which
accurately classifies both clinical isolates as susceptible with an
MIC within 1-2 fold dilution from the experimental MIC resulting.
Notably, heterogeneity within the population is more readily
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FIGURE 5

Classification accuracy of sub-doubling time susceptibility prediction using the concentration di�erential approach. (A) Principal component analysis

plots of the normalized data with 20–50min of antimicrobial exposure. The data are labeled based on the susceptibility to meropenem—red for

resistant, black for intermediate, and green for susceptible. (B) Prediction accuracy of random forest classifiers trained on 80% of the data with

di�erent durations of antimicrobial exposure. Median accuracy was determined using 5-fold cross-validation and 10 repetitions. Multiclass prediction

accuracy was >96% as early as 15min of antimicrobial exposure with increasing accuracy over time. (C) Evolution of confusion matrices of Random

Forest classifiers against the 20% test dataset with groups of 20–50min of antimicrobial exposure. Resistant cells were classified with 98.8% accuracy

in 20min. The accuracy increased to 99.7% in 50min.

apparent with the clinical isolates where even after the 50min
of exposure, only a subset of the population started portraying
susceptibility features as determined by the predicted MIC—∼45%
of VA_1 and ∼23.3% of VA_2 had predicted MICs within 1-2 fold
dilution with the mode MIC of 1µg/mL. These results suggest a
sufficient number of bacteria should be considered to compensate
the heterogeneity of clinical samples in order to accurately predict
the MIC (Smith and Kirby, 2018).

Discussion

This study demonstrated a rapid, growth independent
strategy for determining the antimicrobial susceptibility of K.

pneumoniae against meropenem using time-lapse single-cell
imaging, computer vision, and machine learning models. By
tracking the antimicrobial-induced morphological changes
of individual cells, the MorphoAST workflow predicted the
susceptibility category and MIC with high accuracy within
doubling time of the bacteria. We compared two data processing
strategies based on the time and concentration differentials. Both
strategies successfully predicted the susceptibility of left-out cells

from the same strains used in the training in as few as 20min
(two-fifths of the doubling time) of antimicrobial exposure with
high accuracy. The concentration differential approach with the
random forest classifier achieved an overall better accuracy and
resolution for predicting the susceptibility category (CA >97% in
as few as 20min) against the test cells. Therefore, the concentration
differential approach should be applied whenever possible. The
time differential approach, however, could be useful when only
a small number of bacteria is available (e.g., direct detection of
bacteria from clinical samples) and only limited antimicrobial
concentrations can be measured (e.g., a point-of-care device
that detects only a small number of conditions). Our data also
suggested that the prediction accuracy was generally improved
with the antimicrobial exposure time, the number of bacteria being
analyzed, and the number of testing conditions. These results
underscore important considerations and tradeoffs in the design of
the single-cell AST workflow and provide examples of future assay
designs (Li et al., 2023).

Our results showed that morphological features alone,
including growth-independent changes induced by antibiotics, are
useful information for rapid AST. In particular, the formation of
bulges among K. pneumoniae with varying meropenem MIC are
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FIGURE 6

Minimum inhibitory concentration prediction with a random forest regressor using the concentration di�erential approach. (A) Evaluation of the

regression model with root-mean-square error (RMSE), R-squared and mean absolute error (MAE) values. The regression model trained on the best

set of 19 strains was assessed for the lowest RMSE and MAE and highest R-squared values. With historical data and accumulated time, the model

performs better as seen in all metrics. (B) Mode of predicted MIC for each unseen test strain in comparison to the experimental MIC for each strain.

The regressor achieved 100% essential agreement in the predicted mode MIC within 50min. (C) Histogram of the log2 dilution of the ratio between

experimental MIC (MICexp) and CDC reported MIC (MICp) for all the cells in the test strains. ∼85.1% of all cells had predicted MIC within 1-2-fold

dilution from the experimental MIC after 50min of exposure to meropenem. (D) MIC prediction and susceptibility classification of two clinical

isolates from patients with urinary tract infections with 922 (VA_1) and 648 (VA_2) cells imaged across multiple concentrations of meropenem. The

model predicts the mode MIC for VA_1 and VA_2 to be 1µg/mL and accurately classified both to be susceptible. (E) Histogram of the log2 dilution of

the ratio between reported MIC (MICrep) and CDC reported MIC (MICpred). Extensive heterogeneity in the populations of the clinical isolates, even

within 50min, only ∼40% of the cells from the two isolates starts to show susceptibility phenotype.
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distinct and allowed us to classify susceptibility in a sub-doubling
time. Bulge formation has been associated with the disruption
of peptidoglycan and cell wall degradation before cell lysis (Yao
et al., 2012). Prior studies have also reported the formation
of cell-wall deficient spheroplasts in carbapenem-tolerant K.

pneumoniae strains, after exposure to meropenem (Cross et al.,
2019; Murtha et al., 2022). While antimicrobial-induced shape
changes in bacterial cells are not fully understood in general,
recent quantitative modeling reveals potential advantages of this
physiological adaptation, which include decreasing antimicrobial
influx and diluting intracellular antimicrobials, leading to a higher
tolerance (Ojkic et al., 2022). The size and shape regulation
differs from one organism to another, but importantly, provides
a general reflection of their response in a short time frame
(Ojkic and Banerjee, 2021). As demonstrated in this study,
MorphoAST provides a workflow for utilizing the potential of
morphological features for rapid AST. The workflow should
be compatible with various morphological features, such as
filamentation, bulging, and lysis, induced by specific antimicrobial-
bacteria combinations. The methodical procedure identifies and
distinguishes key morphological features that can be captured
before and after the treatment (time differential) or with various
antimicrobial dilutions (concentration differential).

The bacteria used in this study to demonstrate the proof-of-
concept methodology typically takes 2.5-−3 h to reach the mid-log
phase, followed by as little as 20min of imaging after antimicrobial
treatment to obtain results. Compared to commercial systems such
as AccelerateDiagnostics’ PhenoTest and Gradientech’s QuickMIC
systems which provide MIC information in 7 and 3 h respectively,
the MorphoAST can potentially match or shorten the time-to-
result by about 3 h (Malmberg et al., 2022; Ullberg and Özenci,
2020). MorphoAST can also deliver categorical (S/I/R) information
in less time (20min), with a turnaround time that is on par
with commercial system, such as the Sysmex Astrego system
(Baltekin et al., 2017). Given thatMorphoAST achieves these results
without the need to determine growth rates of the bacteria, it
could potentially shorten turnaround times when dealing with
fastidious organisms.

As the morphological features can be captured in a fraction
of the doubling time, it reduces the assay time compared to
the standard phenotypic AST (e.g., broth microdilution), which
typically requires one or more days. The approach bypasses the
requirement of cell replication in other single-cell AST techniques
(Pancholi et al., 2018). This characteristic will be particularly useful
for diagnosing slow-growing and difficult-to-culture bacteria in
normal laboratory conditions. As imaging is common in AST (Song
and Lei, 2021; Salido et al., 2022) and low-cost microscopes are
readily available, theMorphoASTworkflowwhich offers a relatively
simple setup consisting mainly of agar pads and a microscope can
be integrated with existing systems and implemented in a variety
of settings. These advantages and characteristics will potentially
increase the utility of MorphoAST for direct sample AST testing,
especially in critical diseases like sepsis where the bacteria load
in the blood is typically very low. The small inoculum will also
considerably reduce the time to AST results at the point of care.

In both validation strains and clinical isolates, results from
our MIC predictor regressor model demonstrate outstanding
categorical agreement (100%) and essential agreement (100%),

which are above the FDA acceptable level (≥90%) for new
AST devices. The machine learning models consistently had 0%
VME after 50min of antimicrobial exposure, which is ideal and
substantially better than the acceptable VME rate (≤1.5%). A low
VME rate is particularly important as missing a resistant strain
could result in the prescription of an ineffective antimicrobial for
the patient.

While we demonstrated the utility of MorphoAST with a
single drug-bug combination as proof of concept, the extension
of MorphoAST upon future validation with other drug-bug
combinations, diverse resistance mechanisms, and inoculum sizes
will potentially accelerate microbiological analysis for combating
multidrug-resistant bacteria while accounting for the varied
factors that affect susceptibility and MIC. The effect of various
antimicrobials on the shape and size of organisms such as
Acinetobacter baumannii, and Bacillus subtilis has been described
elsewhere and serves as a useful reference for future studies that
seeks to apply similar imaging approaches (Ojkic and Banerjee,
2021). Further optimization by incorporating population size and
dynamics into the training methodology could shorten the time
to decision and potentially increase the accuracy with smaller
population sizes. Bacterial populations are heterogenous, and cells
do not all portray susceptibility phenotypes simultaneously, and
hence, deciphering the dynamics of a population trending toward
susceptibility early can accelerate AST further. Toward clinical
translation of the proof-of-concept MorphoAST, additional drug-
bug combinations should be tested to evaluate the accuracy of
the approach in other settings. Automation of the drug mixing
and bacteria trapping steps will shorten the initial preparation
time and capture changes in bacterial morphologies at earlier
time points. Implementing the workflow in an integrated, low-cost
imaging system, instead of a microscope, will also be important
for translating the computer-based workflow for managing a wide
spectrum of infectious diseases.
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