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Overhead fisheye cameras for
indoor monitoring: challenges
and recent progress

Janusz Konrad*, Mertcan Cokbas, M. Ozan Tezcan and

Prakash Ishwar

Department of Electrical and Computer Engineering, Boston University, Boston, MA, United States

Monitoring the number of people in various spaces of a building is important for

optimizing space usage, assisting with public safety, and saving energy. Diverse

approaches have been developed for di�erent end goals, from ID card readers

for space management, to surveillance cameras for security, to CO2 sensing for

HVAC control. In the last few years, fisheye cameras mounted overhead have

become the sensing modality of choice because they o�er large-area coverage

and significantly-reduced occlusions but research e�orts are still nascent. In

this paper, we provide an overview of recent research e�orts in this area and

propose one new direction. First, we identify benefits and challenges related

to inference from top-view fisheye images, and summarize key public datasets.

Then, we review e�orts in algorithm development for detecting people from a

single fisheye frame and from a group of sequential frames. Finally, we focus on

counting people indoors. While this is straightforward for a single camera, when

multiple cameras are used tomonitor a space, person re-identification is needed

to avoid overcounting. We describe a framework for people counting using two

cameras and demonstrate its e�ectiveness in a large classroom for location-

based person re-identification. To support people counting in even larger spaces,

we propose two new person re-identification algorithms using N > 2 overhead

fisheye cameras. We provide ample experimental results throughout the paper.

KEYWORDS

fisheye cameras, overhead viewpoint, indoor monitoring, people detection, people

counting, person re-identification, surveillance, deep learning

1 Introduction

Knowing how many people are in various spaces of a building is important for

security/safety, space management, and saving energy. From the security standpoint, it

is critical to know where people are in order to ensure everyone is accounted for in an

emergency situation (e.g., fire). The recent experience with COVID-19 has shown the

importance of understanding occupancy patterns to assure public safety (e.g., monitoring

overcrowding). The pandemic has also dramatically impacted the office-building market,

leading to new office-usage patterns. A trend of “flexible workspace” is emerging, where

desks are not assigned to employees but can be reserved whenever employees return in-

person for work, meetings, etc. Real-time, accurate knowledge of workspace occupancy is

essential for an effective implementation of this concept. A similar knowledge of where

people are is essential in other industries, such as retail, e.g., the number of people

visiting a specific store isle or queuing for checkout. Finally, fine-grained occupancy

information plays increasingly important role in HVAC control; by matching air flow to

occupancy, significant energy savings can be realized compared to binary (on/off) control.

Frontiers in Imaging 01 frontiersin.org

https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://doi.org/10.3389/fimag.2024.1387543
http://crossmark.crossref.org/dialog/?doi=10.3389/fimag.2024.1387543&domain=pdf&date_stamp=2024-09-27
mailto:jkonrad@bu.edu
https://doi.org/10.3389/fimag.2024.1387543
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fimag.2024.1387543/full
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Konrad et al. 10.3389/fimag.2024.1387543

Many approaches have been proposed for occupancy sensing in

commercial buildings, such as activemethods that require carrying

a cell-phone or swiping an ID card, and passive indirect approaches

that use environmental data related to human presence (e.g., CO2

level, humidity, temperature). However, passive directmethods that

capture occupants’ features such as appearance, movement, body

heat, etc., are most robust and fine-grained. Unlike active methods,

passive direct methods do not require carrying a beacon, and

compared to passive indirect methods can provide fine granularity

in people counts and their locations.

In this paper, we focus on fisheye cameras mounted overhead

to capture appearance and movement of occupants. Figure 1

illustrates a potential deployment scenario of fisheye cameras in

a large space. Firstly, we review benefits and challenges related

to inference from top-view fisheye images. Then, we briefly

summarize key image datasets captured indoors by overhead

fisheye cameras. Subsequently, we review and evaluate five recent

people-detection algorithms on these datasets. Although the best

algorithms achieve excellent performance, we observe that under

severe occlusions or significant pose changes they intermittently

fail. To address this, we describe three extensions that leverage

spatio-temporal continuity of human motion to improve the

detection accuracy. As the space under monitoring increases in

size, a single fisheye camera becomes insufficient for accurate

detection of people. While a logical solution is to use multiple

overhead fisheye cameras, it is unclear how to count and track

people who simultaneously appear in the field-of-view (FOV) of

multiple cameras. In order to resolve this, a person re-identification

(ReID) algorithm is needed, but very few methods have been

proposed for fisheye cameras. We describe a location-based

ReID algorithm to match identities between two fisheye cameras

and demonstrate its effectiveness in people-counting in a large

classroom with highly-dynamic occupancy. To support even larger

spaces, we propose two novel extensions to N > 2 cameras and

evaluate them as well. Throughout the paper, we provide numerous

experimental results.

2 Related work

2.1 Fisheye cameras

Unlike standard surveillance cameras, fisheye cameras are

equipped with a wide-angle lens. This facilitates wide-area

coverage, but leads to various challenges that we discuss in

Section 3. Front-facing fisheye cameras have found applications

in autonomous navigation, primarily for pedestrian and obstacle

detection, and have been widely researched (Cordts et al., 2016;

Yogamani et al., 2019; Ye et al., 2020; Liao et al., 2023). Down-

facing fisheye cameras, mounted above the scene of interest,

have recently emerged as an alternative to standard side-

mounted surveillance cameras due to the wide-area coverage

and reduced occlusions. While in outdoor scenarios this is

very much limited by the ability to mount such cameras

above the scene (e.g., lamp posts), in indoor scenarios the

mounting is relatively straightforward (e.g., suspension from

the ceiling).

2.2 People detection

People detection in images from standard surveillance cameras

has rich literature spanning at least two decades, from classical

methods applying SVM classification to Histogram of Oriented

Gradients (HOG) features (Dalal and Triggs, 2005) or using

AdaBoost classifier with Aggregate Channel Features (ACF) (Dollár

et al., 2014) to more recent deep-learning methods such as YOLO

(Redmon et al., 2016), SSD (Liu et al., 2016) and R-CNN (Girshick,

2015; Ren et al., 2015). However, such methods directly applied to

top-view fisheye images perform poorly due to a dramatic range

of viewpoints in the same image (people under the camera are

seen from above, but those farther away are seen from a side

perspective) and arbitrary body orientations (e.g., standing people

appear radially in images and can be seen “upside-down”) as shown

in Figure 2. Furthermore, although more subtle, lens distortions

cause body-shape deformations, especially close to fisheye-image

periphery, which also penalizes person-detection performance. We

discuss these issues in more detail in Section 3.

In the last decade, person-detection methods have been

developed specifically for top-view fisheye images. Early attempts

focused on model-based feature extraction and various adaptations

to account for fisheye geometry. In perhaps the first work,

background subtraction was combined with a probabilistic body-

appearance model and followed by Kernel Ridge Regression (Saito

et al., 2011). Chiang and Wang (2014) rotated each fisheye image

in small angular steps and applied SVM to HOG features extracted

from the top-center part of the image to detect people. Krams and

Kiryati (2017) applied standard ACF classifier to dewarped features

extracted from a fisheye image. Demirkus et al. (2017) also used

ACF to learn different-size models dependent on the distance from

image center.

The most recent methods are CNN-based end-to-end

algorithms. Seidel et al. (2018) applied YOLO to dewarped versions

of overlapping windows extracted from a fisheye image, but tested

the algorithm on a private dataset only. Tamura et al. (2019)

introduced a rotation-invariant version of YOLO, that was trained

on rotated images from COCO 2017 (Lin et al., 2014), however the

inference stage assumed that bounding boxes are aligned with the

image radius thus not allowing for arbitrary body orientations. Li

et al. (2019) rotated each fisheye image in 15◦ steps and applied

YOLOv3 (Redmon and Farhadi, 2018) to the top-center part

of the image where people usually appear upright, followed by

post-processing to remove multiple detections of the same person.

They also proposed an extension in which the algorithm is applied

only to changed areas, as determined by background subtraction,

rather than to the whole image. Minh et al. (2021) proposed an

anchor-free CNN that allows bounding-box rotation and speeds

up the inference. Chiang et al. (2021) proposed to unwrap patches

from a fisheye image using simple fisheye-lens model in order to

compose a perspective image for inference by YOLO, followed by

post-processing to remove duplicate detections. Wei et al. (2022)

applied a CNN with deformable convolution kernels to account

for geometric distortions in top-view fisheye images, however

tested the approach only on their own dataset. Finally, Tamura

and Yoshinaga (2023) extended their earlier work by training on

rectilinear datasets while leveraging ground-truth segmentations

Frontiers in Imaging 02 frontiersin.org

https://doi.org/10.3389/fimag.2024.1387543
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Konrad et al. 10.3389/fimag.2024.1387543

FIGURE 1

Typical monitoring scenario in a large space—multiple fisheye cameras are needed resulting in field-of-view overlap and ambiguities in people

counting, tracking, etc. (photo by David Ili�. License: CC BY-SA 3.0).

to fit bounding boxes more tightly around human bodies. Since

deep-learning algorithms require extensive training data, a number

of top-view fisheye-image datasets aimed at people detection have

been published; we discuss the most commonly-used ones in

Section 4.

2.3 Person re-identification

Person re-identification is a key component of people counting

and by itself is a vast research area of critical importance for visual

surveillance. While a detailed review of methods proposed for

standard surveillance cameras is beyond the scope of this paper,

below we briefly summarize key challenges and types of methods

proposed.

Traditional person ReID is concerned with retrieving a person

of interest across multiple cameras with non-overlapping FOVs.

In closed-world person ReID, typically a single visual modality is

used (e.g., RGB), person detections (bounding boxes) are assumed

known and reliable, and the query person appears in the gallery

set. There exist many methods developed in this context but

they, in general, include three components: feature representation,

metric learning and ranking optimization. Open-world person

ReID attempts to address real-world challenges, such as multiple

data modalities (e.g., RGB, depth, text), end-to-end ReID without

pre-computed person detections (direct ReID from images/videos),

semi-supervised or unsupervised learning with limited/unavailable

annotations, dealing with noisy annotations, or open-set ReID

when correct match is missing from the gallery. Two recent surveys

by Ye et al. (2022) and by Zhang et al. (2024) discuss dozens of

methods proposed and include experimental comparisons.

However, person ReID methods developed for rectilinear

cameras perform poorly on top-view fisheye images, although

re-training on fisheye data somewhat improves performance

(Cokbas et al., 2022). In addition to arbitrary body orientations

(e.g., “upside-down”), dramatic viewpoint differences (e.g., from

above in one camera view, but from side-perspective in another

camera view) and lens-distortions (more significant when a person

appears at image periphery), another challenge for person ReID is

body-scale difference between cameras. Traditional person ReID

was developed for cameras with non-overlapping FOVs. Since

each camera is oriented toward its own area of interest, people

appearing in areas monitored by different cameras will often

appear at a reasonably-similar size. This is not the case for fisheye

ReID considered here. Since the overhead fisheye cameras have

overlapping FOVs and since ReID is performed on images captured

at the same time instant, a person might be under one camera but

far away from another camera. In addition to different viewpoints,

there will be a dramatic difference in person-image size and

geometric distortion (person under a camera will be very large

and seen from above, while person far away will be tiny and

geometrically-distorted). For a detailed discussion and examples,

please see Cokbas (2023) and Cokbas et al. (2023).

Very few methods have been proposed to date for person ReID

using overhead fisheye cameras. The earliest work by Barman et al.

(2018) considers only matching people who are located at a similar

distance from each camera, thus assuring similar body size (and,

potentially, similar viewpoint). Another work by Blott et al. (2019)

uses tracking to extract three distinct viewpoints (back, side, front)

that are subsequently jointly matched between cameras, which

is similar in spirit to multiple-shot person ReID developed for

standard cameras by Bazzani et al. (2010). However, this approach

requires reliable tracking and visibility of each person from three
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very different angles—neither can be guaranteed. Both works report

results only on private datasets. Another work somehwat related

to person ReID is on tracking people in overhead fisheye views

by Wang and Chiang (2023). The authors use their own person

detection method (Chiang et al., 2021) and then apply a variant of

DeepSORT for tracking.

3 Overhead fisheye cameras: benefits
and challenges

3.1 Benefits

3.1.1 Wide field of view
The key advantage of fisheye cameras over their rectilinear

counterparts is their wide FOV resulting from a particular lens

design. The fisheye FOV covers 360◦ in plane parallel to the sensor

and 165–200◦ orthogonally. In contrast, a typical surveillance

camera equipped with rectilinear lens covers 60–100◦ in horizontal

and vertical dimensions of the sensor. Suspended from the ceiling,

a fisheye camera can effectively monitor large area (depending on

the installation height). In comparison to rectilinear cameras, fewer

fisheye cameras are usually needed tomonitor a space thus reducing

system complexity and cost. Figures 2A–C show a conference

room and two classrooms with fisheye cameras suspended from

the ceiling, in which our datasets were recorded (Section 4).

Figures 2D–F show images from these cameras from typical testing.

Clearly, people detection in such images faces several challenges.

3.1.2 Reduced occlusions
In addition to the wide FOV, the overhead camera mounting

significantly reduces the severity of occlusions (by other people

or furniture), which can be seen in Figures 2D–F. However, the

overhead viewpoint results in certain challenges, discussed below.

3.2 Challenges

3.2.1 Circular field of view
In rectilinear-lens cameras, an RGB sensor records only the

central rectangular portion of the FOV and the lens is carefully

designed to project straight lines in the physical world onto

straight lines on the sensor surface. However, in fisheye cameras

only straight lines in the physical world that belong to a plane

orthogonal to the sensor and pass through its center result in

straight lines in the fisheye image; other lines are curved (e.g.,

horizontal edges of whiteboards in Figures 2D, E). This geometric

distortion introduced by the fisheye lens also affects human-body

shape, especially if a person is not in an upright position, thus

posing a challenge for both person detection and ReID.

3.2.2 Non-linear foreshortening
In order to capture a wide FOV, the fisheye lens is designed

in a particular way that introduces radial distortions (non-

linearity) in the captured images. For example, the projection

of a person standing directly under the camera (e.g., certain

shoulder width), becomes smaller at 3 m away from the camera

and even smaller at 6 m away. This size compression is linear

in standard cameras thanks to rectilinear lens, but in fisheye

cameras the doubling of the distance from the camera results in

size compression by more than 2, especially pronounced close to

FOVperiphery. This non-linearmapping of physical distances (and

of body sizes) poses challenges for person detection and ReID in

fisheye images.

3.2.3 Overhead viewpoint
It may result in unusual human-body appearance; people

directly under the camera are seen from above (Figures 2E, F)

but those farther away are seen from a side-view perspective.

This dramatic viewpoint variability is not encountered in images

captured by a side-mounted rectilinear camera. Another important

consequence of the overhead viewpoint is that standing people

appear in radial directions in a fisheye image, including horizontal

and “upside-down” orientations. In fact, people can appear at any

orientation in overhead fisheye images. This is unlike in images

captured by side-mounted rectilinear cameras, where standing

people appear upright and for which the vast majority of people-

detection algorithms have been developed (bounding boxes aligned

with image axes).

4 Overhead fisheye datasets

In order to develop people-detection algorithms for overhead

fisheye cameras, annotated image datasets are needed for

performance evaluation and, potentially, algorithm training. While

very large fisheye-image datasets have been collected in front-

facing scenarios for autonomous navigation (Cordts et al., 2016;

Yogamani et al., 2019; Ye et al., 2020; Liao et al., 2023), few

and much smaller fisheye-image datasets are available in overhead

scenario intended for indoor surveillance. A recent survey by Yu

et al. (2023) describes 16 natural and synthetic datasets collected

with top-view fisheye cameras, but most of them either focus on

action recognition, or contain very few frames, or do not provide

full-body bounding boxes. In Table 1, we summarize a subset of

these datasets that are composed of natural, as opposed to synthetic,

overhead images and annotated with full-body bounding boxes

either aligned with image axes or rotated.

These datasets are essential for training modern data-driven

person detection and ReID algorithms so that they can learn how

to handle various challenges, such as dramatic viewpoint changes,

arbitrary body orientations, geometric body-shape distortions and

dramatic body size (scale) differences (ReID), as already discussed

in Sections 2, 3.

5 Finding people in overhead fisheye
images

All people-detection algorithms for overhead fisheye cameras

discussed in Section 2 perform inference for each video frame

separately. In the next section, we show that while the performance

of such algorithms has steadily improved on “staged” datasets,
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FIGURE 2

Test spaces where most of the training/testing data were collected using Axis M3057-PLVE (3,072 × 2,048 pixels, 360◦×185◦ lens) fisheye cameras

mounted 3.15 m above the floor, indicated by red arrows: (A) conference room with single camera (where HABBOF was recorded); (B) classroom

with single camera (where CEPDOF was recorded); (C) large classroom with three cameras (where FRIDA was recorded). Corresponding typical

occupancy scenarios are shown in the second row (D–F).

when applied to real-life videos it significantly degrades. In the

subsequent section, we show that by leveraging the spatio-temporal

continuity of human motion, the detection performance can be

significantly improved.

5.1 Detection using a single video frame

Many recent approaches use RAPiD (Rotation-Aware People

Detection) (Duan et al., 2020) as a benchmark for performance

evaluation. RAPiD is a CNN based on YOLOv3 (Redmon

and Farhadi, 2018) adapted to accommodate bounding-box

rotation and trained using the original YOLOv3 loss function

augmented with a novel periodic loss for angle regression. RAPiD

handles unusual body viewpoints by training on a variety of

fisheye images and its source code is publicly available1. Table 2

compares performance of four recent algorithms against RAPiD.

All algorithms were pre-trained on COCO 2017 (Lin et al.,

2014) and then fine-tuned and tested on MW-R, HABBOF and

CEPDOF via cross-dataset validation. Specificallly, two datasets

1 vip.bu.edu/rapid

were used for training and the third one was used for testing,

and then the roles were swapped. This resulted in three sets

of performance measures that were averaged and are shown in

Table 2. The two versions of RAPiD differ in training/testing

image resolutions to allow comparison with other methods. Even

at the lower resolution, RAPiD significantly outperforms other

methods in all performance metrics. However, ARPD by Minh

et al. (2021) offers much faster inference than RAPiD at the cost

of accuracy.

We would like to point out that although the test datasets

consist of top-view fisheye images, challenges vary (Table 1). While

in MW-R and HABBOF people are either standing or walking,

CEPDOF is more challenging with many unusual poses, severe

occlusions and low-light conditions. Figures 3A–F show sample

detections produced by RAPiD under various challenges. Except

for extreme cases (people on the screen, low light), RAPiD

performs exceedingly well. This is confirmed by AP50 which

exceeds 93%, and Precision, Recall and F-score that are over

0.9. However, all three datasets were recorded using high-quality

cameras in “staged” scenarios (controlled environment, subjects

instructed to behave in a certain way). Would these algorithms

perform equally well “in the wild”, that is in uncontrolled

real-life situations?
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TABLE 1 Recent image datasets captured by overhead fisheye cameras in various venues and occupancy scenarios, annotated with full-body bounding

boxes either aligned with image axes or rotated.

Dataset Venue Num. of
videos /
frames

Resolution Max.
num. of
people

B-box
alingment

Challenges Sample
image

Mirror Worlds (MW)a Hallways,

medium-size

rooms

30 / 13k 1–2 MP 5 Axis Walking, sitting

Figures 3A, B

Mirror Worlds -Rotated

(MW-R)b
Hallways,

medium-size

rooms

19 / 8,752 1–2 MP 5 Rotated Walking, sitting

Figures 3A, B

Human-Aligned

Bounding Boxes from

Overhead Fisheye

Cameras (HABBOF)c

Computer lab,

conference

room

4 / 5,837 4.2 MP 4 Rotated Walking, sitting, varying

illumination Figure 2D

Challenging Events for

Person Detection from

Overhead Fisheye

Images (CEPDOF)d

Classroom 8 / 25,504 1.2–4.2 MP 13 Rotated Crowded, occlusions,

rare poses, camouflage,

people on a screen, low

light

Figures 2E,

3C–F

In-the-Wild Events for

People Detection and

Tracking from Overhead

Fisheye Cameras

(WEPDTOF)e

Varying, from

YouTube

16 / 10,544 0.6–5 MP 35 Rotated Crowded, occlusions,

camouflage, distorted

FOV, varying

illumination

Figures 3G, H

Fisheye Re-Identification

Dataset with

Annotations (FRIDA)f

Large

classroom

4 / 18,318

3 cameras

4.2 MP 20 Rotated Crowded, occlusions,

rare poses, far away

people
Figure 2F

See a survey by Yu et al. (2023) for additional fisheye-image datasets.
ahttps://www2.icat.vt.edu/mirrorworlds/challenge/index.html
bhttps://vip.bu.edu/projects/vsns/cossy/datasets/mw-r
chttps://vip.bu.edu/projects/vsns/cossy/datasets/habbof
dhttps://vip.bu.edu/projects/vsns/cossy/datasets/cepdof
ehttps://vip.bu.edu/projects/vsns/cossy/datasets/wepdtof
fhttps://vip.bu.edu/projects/vsns/cossy/datasets/frida.

TABLE 2 Performance of recent single-frame people-detection algorithms on MW-R, HABBOF and CEPDOF via 3-fold cross-dataset validation.

Algorithm Image resolution AP50 ↑ (%) Precision ↑ Recall ↑ F-score ↑ Run time [sec]

Tamura et al. (2019) 608× 608 75.5 0.906 0.704 0.778 0.098

Li et al. (2019) AB 1,024× 1,024 88.7 0.887 0.844 0.849 1.776

Li et al. (2019) AA 1,024× 1,024 83.3 0.919 0.775 0.816 1.477

Duan et al. (2020) RAPiD 608× 608 92.1 0.952 0.862 0.897 0.118

Duan et al. (2020) RAPiD 1,024× 1,024 93.5 0.932 0.903 0.913 0.223

Minh et al. (2021) ARPD 512× 512 90.5 0.931 0.845 0.884 0.066

All metrics are averaged over three splits, so the F-measure is not equal to the harmonic mean of Precision and Recall. The AB (activity-blind) algorithm by Li et al. (2019) applies YOLOv3 to all

rotated windows in the frame, while the AA (activity-aware) variant limits YOLOv3 to windows overlapping areas of change obtained from background subtraction. ARPD values are averages

obtained from the original paper by Minh et al. (2021). The average run times per image are obtained on NVIDIA Tesla V100 GPU except for ARPD measured on NVIDIA GTX 1070 Ti. The

best performance and lowest run time are shown in boldface.

TABLE 3 Performance of recent single-frame people-detection algorithms on WEPDTOF.

Algorithm AP50 ↑ (%) APS50 ↑ (%) APM50 ↑ (%) APL50 ↑ (%) Precision ↑ Recall ↑ F-score ↑

Tamura et al. (2019) 59.8 11.6 65.2 61.3 0.777 0.508 0.581

Li et al. (2019) AB 69.8 15.8 71.3 63.1 0.818 0.643 0.702

Li et al. (2019) AA 68.3 11.4 70.1 63.7 0.804 0.647 0.705

Duan et al. (2020) RAPiD 72.0 18.4 72.8 67.9 0.731 0.676 0.668

APS50 , AP
M
50 and APL50 are AP50 values for small (area ≤ 1,200), medium (1,200 < area ≤ 8,000) and large (8,000 < area) bounding boxes, with areas normalized to image size of 1,024×1,024.

The best performance is shown in boldface.
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FIGURE 3

Examples of people detections by RAPiD on videos with a wide range of challenges: (A) di�erent body poses (MW-R); (B) person directly under

camera (MW-R); (C) various body angles (CEPDOF); (D) occlusions (CEPDOF); (E) people visible on the screen (CEPDOF); (F) low-light scenario

(CEPDOF); (G) severe camouflage (WEPDTOF); and (H) tiny moving people (WEPDTOF). Green boxes are true positives, red boxes are false positives,

and yellow boxes are false negatives.

Table 3 shows performance of four of these algorithms2 on

the WEPDTOF dataset collected from YouTube, that includes

real-life challenges as detailed in Section 4. In addition to

AP50, similarly to the MS COCO challenge (Lin et al., 2014),

we report this metric for small, medium and large bounding

2 ARPD (Minh et al., 2021) was developed and evaluated prior to the

introduction of the WEPDTOF dataset.

boxes denoted as APS50, AP
M
50, and APL50, respectively. Clearly,

RAPiD outperforms other algorithms in terms of AP50 but is

outperformed by AA and AB in terms of Precision and F-

score. This is largely due to the fact that AA and AB compute

bounding-box predictions from overlapped crops of a rotated

image and combine these results in a post-processing step. Thus,

they analyze a person’s appearancemultiple times, each at a slightly-

different rotation angle, which boosts the confidence score of the
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bounding box for that person but hugely increases the complexity

(Table 2).

Note that all metrics in Table 3 are significantly lower than those

in Table 2 due to challenges captured inWEPDTOF.When visually

evaluating these results by playing video with superimposed

detections, we observed that some bounding boxes produced by

RAPiD appear intermittently (they disappear for a frame or two but

then reappear again) thus contributing to the reduced performance.

Visual examples of misses (false negatives) in two challenging

sequences fromWEPDTOF are shown in Figures 3G, H.

5.2 Detection using a group of video
frames

To address the intermittent behavior of detections and improve

performance, some form of temporal coherence of detections

should be incorporated into the people-detection algorithm since

people are either static or move incrementally in space-time. In this

context, we developed three extensions of RAPiD (Tezcan et al.,

2022) each leveraging temporal information differently, that we

briefly summarize below. The source code for these algorithms is

publicly available3.

5.2.1 RAPiD + REPP
This method first applies RAPiD to individual frames and then

revises the detections by applying post-processing based on Robust

and Efficient Post-Processing (REPP) algorithm proposed by

Sabater et al. (2020). Since REPP produces axis-aligned bounding

boxes, it was modified to account for bounding-box rotations. In

the training step, a similarity function is computed from annotated

data using the following features from pairs of bounding boxes

in consecutive frames: Euclidean distance between their centers,

ratio of their widths, ratio of their heights, absolute difference

between their angles, and Intersection over Union (IoU) between

them. In the inference step, first bounding boxes are detected by

RAPiD and linked between consecutive frames into “tubelets” using

similarity scores computed by the trained similarity function. Then,

the confidence score, location, size and angle of the bounding boxes

in each “tubelet” are smoothed out. This results inmore temporally-

consistent bounding-box characteristics potentially leading tomore

consistent behavior in time.

5.2.2 RAPiD + (FG)FA
This is an end-to-end approach that extends RAPiD by

integrating information from a group of neighboring video frames

to stabilize intermittent detections. The integrationmechanismwas

inspired by Flow-Guided Feature Aggregation (FGFA) proposed

by Zhu et al. (2017). More specifically, since RAPiD is a YOLO-

based algorithm, it first extracts feature maps from the input image

at three resolutions. In order to integrate temporal information,

at each resolution level feature maps from 10 past frames and

10 future frames are warped to the current feature map by

3 vip.bu.edu/rapid-t

means of motion compensation and all of them are linearly

combined. Unlike in Zhu et al. (2017), RAPiD + FGFA uses the

Farnebäck algorithm (Farnebäck, 2003) to compute optical flow

since it outperforms FlowNet (Dosovitskiy et al., 2015) on overhead

fisheye videos. The aggregated feature maps are then transformed

into bounding-box-related feature maps, and based on them the

detection head predicts bounding boxes. RAPiD + FA is a simplified

version of RAPiD + FGFA and applies feature aggregation with

adaptive weights but without motion compensation.

Table 4 shows performance of the three multi-frame detection

algorithms described above against single-frame algorithms from

Table 3 on the WEPDTOF dataset. The multi-frame algorithms

significantly outperform single-frame algorithms in terms of all

AP50 metrics. Interestingly, the AB algorithm by Li et al. (2019)

(YOLOv3 applied to all rotated windows) again achieves the

highest Precision although at the cost of very high computational

complexity. This is due to overlapping windows resulting in

multiple detections of the same person that pruned by subsequent

post-processing rarely results in a false positive. Among the multi-

frame algorithms, RAPiD + REPP turns out to be very complex

computationally. The other two algorithms are about 3 times

more complex than the one by Tamura et al. (2019) but offer

over 15% points boost in AP50. Figure 4 shows people-detection

examples produced by RAPiD and three multi-frame algorithms

for three challenging video sequences from WEPDTOF. While

RAPiD+REPP corrects one false positive and one false negative,

and RAPiD + FA corrects four false negatives and one false

positive, it also introduces one false positive. However, RAPiD +

FGFA corrects four false negatives and one false positive without

introducing any errors.

6 Counting people using overhead
fisheye cameras

6.1 Counting metrics

If a people-detection algorithm, such as those discussed in

Section 5, is perfectly accurate, then counting people is as simple

as counting bounding boxes. However, certain errors in people

detection may still result in a correct people count, for example

when a false positive and false negative occur in the same image.

These two errors cancel each other, so an accurate metric for

people counting should ignore such scenarios. Furthermore, we are

interested in how far off is an estimated count from a true count. In

this section, we use the following metrics to evaluate performance

of people-counting algorithms:

MAE =
1

M

M∑

i=1

|̂ηi − ηi|,

MAEpp =
1
M

∑M
i=1 |̂ηi − ηi|

1
M

∑M
i=1 ηi

,

AccX =
1

M

M∑

i=1

1(|̂ηi − ηi| ≤ X),
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TABLE 4 Performance of three multi-frame people-detection algorithms (Tezcan et al., 2022) against recent single-frame algorithms on WEPDTOF. The

average run times per image are obtained on NVIDIA Tesla V100 GPU.

Algorithm AP50
(%)

APS50
(%)

APM50
(%)

APL50
(%)

Precision Recall F-
score

Run time
(s)

Single-

frame

Tamura et al. (2019) 59.8 11.6 65.2 61.3 0.777 0.508 0.581 0.098

Li et al. (2019) AB 69.8 15.8 71.3 63.1 0.818 0.643 0.702 1.776

Li et al. (2019) AA 68.3 11.4 70.1 63.7 0.804 0.647 0.705 1.477

Duan et al. (2020)

RAPiD

72.0 18.4 72.8 67.9 0.731 0.676 0.668 0.118

Multi-

frame

RAPiD + REPP 73.7 19.8 74.2 70.2 0.794 0.679 0.703 1.667

RAPiD + FA 75.6 19.6 77.5 71.8 0.784 0.672 0.689 0.269

RAPiD + FGFA 76.6 20.9 77.9 72.0 0.803 0.691 0.725 0.300

The best performance and lowest run time are shown in boldface.

where ηi and η̂i are the true and estimated people counts

in frame number i, M is the total number of frames and 1(ε)

is an indicator function, that is 1(ε) equals 1 if ε is true

and 0 otherwise. While the Mean Absolute Error (MAE) is a

commonly-used metric, it is not meaningful when comparing

algorithms at different occupancy levels (e.g., 80 people vs. 8

people). This is addressed by the Mean Absolute Error per person

(MAEpp) which divides MAE by the average occupancy over

M frames. The X-Accuracy (AccX) quantifies people-counting

performance as “accuracy with slack of X”. For X = 0

this definition reverts to the traditional definition of accuracy,

but for larger values of X it tolerates the departure of η̂i

from ηi by up to X. For example, Acc5 gives the percentage

of frames in which the estimated count is within 5 of the

true count.

6.2 Dataset

To evaluate performance of various algorithms, we

recorded data over 3 days in a large classroom (Figure 2C)

equipped with three cameras. On day 1 there were 11

high-occupancy periods (lectures) with up to 87 occupants

(Figure 2F), on day 2 there were four such periods with

up to 65 occupants, while on day 3 the classroom was

mostly empty with maximum occupancy of 9 for a short

period of time. We annotated all frames in terms of the

number of people in the classroom, but not in terms of

bounding boxes.

6.3 Counting people using one camera

Table 5 shows the people-counting performance of RAPiD on

this dataset for each of the three cameras. The much larger values

of MAE on days 1 and 2 are due to high average occupancy on

these two days.MAEpp, on the other hand, is similar across all days

confirming its relative independence of occupancy scenarios. Its

value of about 0.4 suggests RAPiD commits an error of about 40%

per person which is high. This mediocre performance is confirmed

by the values of AccX . Cumulatively over 3 days, RAPiD produces

exact counts in 46–55% of frames depending on the camera and

only in 76–79% frames with count error of up to 10. Clearly,

a single camera is incapable of accurate counting in this large

a space.

6.4 Counting people using two cameras

Increasing the number of cameras to 2 creates a problem of

potential overcounting since the same person may be captured

by both cameras due to their wide fields of view (Figure 1). In

order to make sure that each person is counted only once, person

re-identification is needed.

6.4.1 Person re-identification between two
cameras

Traditional PRID considers scenarios where images of people

have been recorded by cameras with non-overlapping fields of

view at widely-varying times. For example, some cameras may be

mounted at entrances to an airport terminal, another group of

cameras may be placed at security checkpoints, and yet another

group—at the boarding gates. Images of people captured at the

entrances and security checkpoints are assumed known and form

the gallery set. Similarly, images of people captured at the boarding

gates are assumed known and form the query set. The traditional

person ReID attempts to match identities between these two sets.

For each identity in the query set, the goal is to find all matching

identities in the gallery set.

However, the ReID scenario we consider here is different since

multiple cameras with overlapping fields of view simultaneously

monitor a space (Figure 1). Person ReID for the purpose of people

counting can be performed in two steps: detect people in each

camera view at the same time instant and then use their appearance

(images) to match identities. Identities present in the view of one

camera are considered to be the query set and those in the view of

another camera are considered to be the gallery set. Therefore, a
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FIGURE 4

Qualitative results of RAPiD and its multi-frame extensions on videos from WEPDTOF. Green boxes are true positives, red boxes are false positives,

and yellow boxes are false negatives.

query identity can match at most one identity in the gallery set or

none at all, in the case of occlusion or failed person detection, which

is an example of the open-world scenario. Note, that in this work we

consider frame-to-frame identity matching (single shot), however

it would be interesting to extend this to multiple-shot fisheye

ReID similarly to a method proposed for rectilinear cameras by

Bazzani et al. (2010). However, this would require reliable tracking

in overhead fisheye cameras, a topic still in its infancy.

Traditional person ReID methods rely on appearance of a

person, such as color, hand-crafted features or deep-learning

features, but they tend to be unreliable for overhead fisheye images

since a person’s appearance and size dramatically differ depending

on this person’s location in the room (see Figure 2) as demonstrated

in Cokbas (2023) and Cokbas et al. (2023). However, in our scenario

of simultaneous image capture by cameras with overlapping fields

of view, a person can be also re-identified based on their location.

Since the cameras are fixed, a person appearing in a camera’s

FOV appears at a specific location of another camera’s FOV;

this location depends on intrinsic camera parameters, installation

height, distance between cameras, etc. A ReID method based on

this idea was developed by Bone et al. (2021) and shown to be

very effective. This method requires camera calibration, which we

summarize next. Then, we describe key ReID steps shown in a

high-level block diagram in Figure 5.

For a pair of identical and level ceiling-mounted fisheye

cameras (#K and #L), this method uses five intrinsic parameters [2-

D scaling factor, 2-D optical center offset, and a scalar parameter

of the unified spherical model for fisheye cameras (Geyer and
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TABLE 5 Single-camera people-counting performance of RAPiD in a 3-day test in large classroom (Figure 2C) equipped with three cameras. The last

column shows cumulative metrics computed over 3 days.

Camera Day 1 Day 2 Day 3 Cumulative

Average number of people 29.5 20.6 0.99 16.4

MAE ↓ #1 11.82 6.92 0.38 6.11

#2 11.60 8.55 0.48 6.61

#3 12.32 7.36 0.62 6.49

MAEpp ↓ #1 0.400 0.336 0.384 0.373

#2 0.393 0.415 0.480 0.404

#3 0.417 0.358 0.623 0.397

AccX [%] ↑ X=0/5/10 #1 45/53/59 43/64/70 74/100/100 55/73/77

#2 47/54/60 29/60/65 67/100/100 48/72/76

#3 38/59/64 42/64/70 55/100/100 46/75/79

FIGURE 5

Block diagram of location-based person re-identification (Bone et al., 2021). Locations of people detected by RAPiD in image from camera #K (blue

Ki ’s) and those predicted from camera #L (red Li ’s) are used to compute 2-D score matrix DKL using either the PPD or CBD distance metric. An

analogous score matrix is computed for locations of people detected in camera #L image (DLK ). A greedy algorithm applied to matrix

SKL = DKL + D
T
LK

matches identities (yellow table).

Danilidis, 2001; Courbon et al., 2012)] and two extrinsic parameters

(distance between cameras and relative rotation angle between

them). The distance between cameras was precisely measured using

a laser measure, but the remaining five parameters were estimated

using images of the test space with lights off when rolling a cart with

a spherical red LED light mounted at a fixed height. This allowed us

to record precise projection of the LED light on two fisheye images

at the same time instant. Such pairs of projections are related

through a bidirectional mapping (#K → #L or #L → #K) which

is a function of the intrinsic and extrinsic parameters (Bone et al.,

2021). In order to estimate the intrinsic parameters and rotation

angle, the Euclidean distance between 1,000+ projection pairs

was minimized using stochastic gradient descent by sequentially

iterating through the two bidirectional mappings. This calibration

has to be performed only once for a given camera model (intrinsic

parameters). The extrinsic parameters (camera installation height,

distance between cameras, rotation angle, etc.) need to bemeasured

or calibrated with each camera-layout change or when adding new

cameras. An interesting direction of research would be to develop

an unsupervised approach in such cases, similarly to adaptive ReID

proposed by Panda et al. (2017) for open-world dynamic networks

of rectilinear cameras.

During ReID (Figure 5), first RAPiD is applied to same-time

images from cameras #K and #L to detect people; the center of

each detected bounding box marks a person’s location (blue Ki’s

and Li’s). Then, using the intrinsic and extrinsic parameters, and

the average height of a person (168 cm), the detected locations

in each camera view (blue symbols) are mapped to predict these

locations in the other camera view (red symbols). Ideally, the

predicted locations should coincide with the detected ones, but

in reality this is not the case due to imperfect camera model and

calibration. In practice, the closer a predicted location (red) is

to a detected location (blue) the more likely it is that these are

locations of the same person. Bone et al. (2021) proposed four

different distance metrics to quantify the proximity of a predicted

location to detected locations in a given view. The fastest metric
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TABLE 6 Two-camera people-counting performance of RAPiD in a 3-day test in large classroom using cameras #2 and #3 (Figure 2C) and

location-based person-re-identification using the PPD or CBD distance-error metric.

ReID metric Day 1 Day 2 Day 3 Cumulative

Average number of people 29.5 20.6 0.99 16.4

MAE ↓ PPD 2.42 1.74 0.84 1.63

CBD 2.43 1.71 0.75 1.59

MAEpp ↓ PPD 0.082 0.084 0.849 0.100

CBD 0.082 0.083 0.752 0.097

AccX [%] ↑ X=0/5/10 PPD 41/84/96 36/92/99 50/98/100 42/92/98

CBD 41/84/96 37/93/99 51/99/100 43/92/98

The last column shows cumulative metrics computed across all days. The better performance is shown in boldface.

to compute is called Point-to-Point Distance (PPD). It calculates

the Euclidean distance between each predicted location and each

detected location to form a 2-D score matrix (Figure 5). The best-

performing metric in their tests is called Count-Based Distance

(CBD). Unlike PPD, which assumes average height of a person and

is not accurate for very tall and short individuals, CBD considers a

range of human heights (150–190 cm in 2 cm increments). For each

detected location in one view, it produces 21 predicted locations

in the other view (corresponding to different heights of a person).

Then, for each detected location the number of predicted locations

(out of 21) for which this detected location is closest establishes a

count. This count is subtracted from the total number of considered

person-heights (21) to establish a distance measure; the smaller

the measure (the larger the count) the more likely it is that the

detected and predicted locations have the same identity. Thismetric

is computed for each detected and predicted identity to form a 2-

D score matrix. Score matrix DKL (Figure 5) is computed for the

detections in camera #K and predictions from camera #L, while

score matrix DLK is computed for the detections in camera #L

and predictions from camera #K. Finally, to perform bidirectional

identity matching a combined score matrix SKL = DKL + D
T
LK is

used in a greedy fashion. First, the smallest entry in SKL is found,

the corresponding identities are considered a match, and their row

and column are removed from the matrix reducing its size by 1 in

each dimension. This process is repeated until no more matches

are possible.

This location-based approach to person ReID was shown

to outperform appearance-based methods by a large margin

(over 11% points in mAP for the PPD metric and over 14%

points for the CBD metric) on the FRIDA dataset (Cokbas

et al., 2023), and is our method of choice for people counting

discussed next.

6.4.2 Removal of double-counts
The ReID method discussed in the previous section is

essential for accurate people counting using two cameras. Let

η̂Ki and η̂Li be the estimated people counts in frame number

i from cameras #K and #L, respectively, for example obtained

by counting bounding boxes detected by a person-detection

algorithm, such as RAPiD. Let η̂KLi be the number of people

detections successfully re-identified between these two frames. The

people-count estimate for this pair of frames is then computed

as follows:

η̂i = η̂Ki + η̂Li − η̂KLi , (1)

where the subtraction of η̂KLi removes double counts discovered

by person re-identification.

6.4.3 Experimental results for two cameras
Table 6 shows a 2-camera people-counting performance of

RAPiD (to compute η̂Ki and η̂Li in each frame pair) followed by

location-based person re-identification with either the PPD or

CBD distance metric (to compute η̂KLi ). Compared to Table 5,

both cumulative MAE and MAEpp are reduced about 4 times for

both distance metrics. The CBD metric performs slightly better

than PPD achieving cumulative MAE of 1.59 and MAEpp of 0.097.

This is a huge performance improvement over the single-camera

results. In particular, theMAEpp value suggests that the two-camera

approach commits an error of less than 10% per person compared

to 40% for single camera. While the cumulative X-Accuracy for

X = 0 is slightly reduced compared to Table 5, the one for X = 5

is improved to 92% and one for X = 10 is 98%. Clearly, using two

cameras in a large space significantly improves the people-counting

accuracy of RAPiD.

7 Counting people in large spaces
using N > 2 overhead fisheye cameras

The results in Section 6 indicate that two overhead fisheye

cameras are sufficient for quite accurate people counting in a 187

m2 space (Figure 2C). However, in larger spaces more cameras

would be needed to maintain a similar level of performance.

This would require person ReID between more than two fisheye

cameras, a task unexplored to-date. In this section, we propose

two novel approaches to accomplish this and demonstrate

their performance for people counting using three overhead

fisheye cameras.

7.1 General person ReID based on
N-dimensional score matrix

We propose a general approach to person ReID using N-

D score matrices. Such matrices can quantify similarity between
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FIGURE 6

Venn diagram graphically illustrating people-counting scenario for

N = 3 cameras.

identities using people locations, as proposed by Bone et al. (2021),

or their appearance, as explored by Cokbas et al. (2023). We first

consider a 3-camera setup (N = 3) of our test classroom shown

in Figure 2C, however we note that, in general, cameras need not

be collinear. In Figure 6, we graphically illustrate (Venn diagram)

the general relationship between sets of person detections from

three cameras. In this diagram, C1,C2,C3 denote the sets of people

detections in images simultaneously captured by cameras #1, #2

and #3, respectively. The Venn diagram allows us to compute the

actual people count η as follows:

η = |C1| + |C2| + |C3| − |C1 ∩ C2| − |C1 ∩ C3|

−|C2 ∩ C3| + |C1 ∩ C2 ∩ C3|, (2)

where |C| denotes the cardinality of set C. Clearly, |C1|, |C2|,

|C3| are people counts in respective camera views provided by

a people-detection algorithm (e.g., RAPiD). The numbers of

identities matched between two cameras, namely |C1 ∩ C2|, |C1 ∩

C3|, |C2 ∩ C3|, are provided by a two-camera ReID algorithm, such

as the one described in Section 6.4.1. However, we still need to

identify the number of identities matched across all three cameras:

|C1 ∩ C2 ∩ C3|. This necessitates a 3-camera ReID algorithm.

As discussed in Section 6.4.1 and shown in Figure 5, person

ReID between two cameras results in a 2-D score (distance) matrix

D that is subject to a greedy search to match identities. With three

cameras, this matrix would become 3-dimensional with each entry

containing, for example, a measure of appearance similarity for a

triplet of people detections (one detection from each camera view),

or a distance metric computed from locations of this triplet. Rather

than defining a new 3-camera distance metric, we adopt 2-camera

metrics developed by Bone et al. (2021), apply them to 3 pairs of

cameras and average the resulting scores as follows:

S123(i1, i2, i3) =
1

3
×

(
S12(i1, i2)+ S13(i1, i3)+ S23(i2, i3)

)
, (3)

where S12, S13, S23 are 2-D score matrices (like those in

Figure 5), S123 is a 3-D score matrix and iK is the identity

detected in view from camera #K. Clearly, S12(i1, i2) quantifies the

location mismatch for identities i1 and i2 from cameras #1 and #2,

respectively, and S123(i1, i2, i3) represents the locationmismatch for

identities i1, i2, i3, each from its respective camera.

An extension to N > 3 is relatively straightforward but

one must carefully consider various combinations of n out of N

cameras, across which identities need to be matched. For example,

for N = 4 cameras, re-identifications between 2, 3, or 4 camera

views are needed in order to obtain the correct overall count.

For N cameras, the total number of camera combinations to be

considered is:

N∑

n=2

(
N

n

)
= 2N − 1− N, (4)

where the summation starts at n = 2 since re-identification

requires at least two camera views. For N = 3, this amounts to four

camera combinations which is consistent with four intersections

in the Venn diagram in Figure 6. For N = 4, there are 11

camera combinations (6 two-camera combinations, 4 three-camera

combination, and 1 four-camera combination), and forN = 5 there

are 26 camera combinations, rapidly increasing with a growing

number of cameras.

Clearly, score matrices S of up to N dimensions are needed

for N-camera re-identification. One possibility is to generalize

Equation (2) to N dimensions through the use of the well-known

inclusion-exclusion principle by van Lint and Wilson (1992) as

follows:

S12...N(i1, i2, ....., iN) =
1(N
2

)
N∑

k=1

N∑

l=k+1

Skl(ik, il). (5)

We would like to emphasize that this approach to N-camera

person ReID is general and can be applied to both appearance-

and location-based features. However, in the remainder of this

section we focus on location-based matching due to its superior

performance for overhead fisheye cameras (Cokbas et al., 2023)

and low computational complexity. The computational complexity

is a serious concern for large N since the number of camera

combinations that need to be considered grows exponentially with

a growing N (4).

7.2 Person ReID based on clustering of
real-world locations

The approach we proposed in the previous section is general

and applies to both appearance- and location-based features. If

applied to location-based features, it effectively performs identity

matching based on locations in the 2-D image plane (pixel

coordinates); identities are matched based on the proximity of

detected and predicted locations in a given camera view. All the

predicted locations are obtained by first inverse-mapping 2-D

locations detected in one camera view to 3-D coordinates and then

forward-mapping these 3-D coordinates to 2-D locations in the

other camera view (bidirectional location mapping in Figure 5).

Frontiers in Imaging 13 frontiersin.org

https://doi.org/10.3389/fimag.2024.1387543
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Konrad et al. 10.3389/fimag.2024.1387543

This may result in location-error imbalance since the detected

locations do not undergo any mapping, while the predicted

locations are obtained via inverse-forward mapping that uses

intrinsic and extrinsic parameter estimates4, unlikely to be perfectly

accurate.

In order to avoid this location-error imbalance, we propose

to perform identity matching in real-world coordinates, that

is map person-detection locations in all camera views to 3-

D coordinates. An explanation is required at this point. The

inverse mapping from a 2-D location in a camera view to

3-D coordinates must be constrained due to scale ambiguity

(the problem is underconstrained). In the scenario of indoor

monitoring, considered here, with people positioned on a room’s

floor, this ambiguity can be removed by assuming average height

of a person (168 cm). Then, the location of a person detection

(center of the bounding box) in any camera view can be mapped

to 3-D room coordinates such that the 3-D point is 84 cm above

the floor (vertical center of human body of average height). The

inverse mapping of all person-detection locations from N camera

views to 3-D space results in a point “cloud”, or rather a 2-

D point “spatter” on a plane parallel to and 84 cm above the

floor. We propose to cluster the locations in this “spatter” to

match identities.

We note that, ideally, the number of location clusters should

correspond to the number of people in the room. Therefore, we

cannot use a clustering algorithm such as K-means (Lloyd, 1982)

since we do not know the value of K in advance. We adopt

DBSCAN (Ester et al., 1996) since it requires no advance knowledge

of the number of clusters. DBSCAN is a density-based clustering

algorithm that has two parameters, ǫ and minPoints. In DBSCAN,

first one picks a random point as the point of interest and finds all

points that are within radius ǫ from it. All such points, including

the point of interest, get assigned to the same cluster. This process

is repeated; each point in the cluster is treated as the new point of

interest, thus enlarging the cluster. One continues to spread out

the cluster until there is no point within ǫ distance from any of

the points in the cluster. Then, one picks another point from the

dataset that has not been visited yet and repeats the process. For

a group of points to be considered a cluster, there should be at

least minPoints elements in the cluster. Also, if a certain data point

has no other data points within ǫ radius, it is labeled as noise and

gets discarded.

Similarly to DBSCAN, we propose clustering of the mapped

real-world coordinates using two parameters: ǫ and maxPoints.

While ǫ has the same role as in DBSCAN, maxPoints is used

differently. In DBSCAN, the size of a cluster has a lower bound

of minPoints with no upper bound. In our case, cluster size must

be between 1 and maxPoints due to the nature of person re-

identification and people counting that we are tackling. Each person

should have their own cluster, where each point in the cluster

corresponds to a detection of the same person in a different

camera view. In re-identification across N cameras, some people

4 We used the 2-camera calibration method described in Section 6.4.1

except that instead of iterating through 2 camera pairs (#K → #L and #L →

#K), we iterate through six camera pairs (#K → #L, #L → #K, #K → #M, #M →

#K, #L → #M, #M → #L) during stochastic gradient descent.

can get detected in one camera view only due to occlusions or

failed detections, potentially resulting in a single point in their

cluster. On the other hand, a person can be detected in at most

N camera views, so a cluster may have at most N points and so

maxPoints = N.

In experiments reported in the next section, we use 3-D

Euclidean distance as the distance measure between the mapped

real-world locations. However, since all such locations occur on

a plane, as discussed above, effectively this is a 2-D distance in

real-world coordinates.

7.3 Experimental results for 3 cameras

We evaluate the people-counting performance of both N-

camera person ReID algorithms on the 3-day dataset captured by

three cameras, that we introduced in Section 6.2. While in Table 5

we reported people-counting results using only camera #1 and in

Table 6 using cameras #2 and #3, here we report results using all

three cameras installed in the classroom.

We use location-based re-identification with the PPD distance

metric to evaluate both N-camera algorithms. Note, that in the

N-D score-matrix approach elements of S (PPD values) are

expressed in pixels (i.e., the lower the score/distance, the more

similar the identities). While the greedy algorithm (Figure 5)

performs identity matching until no more matches are possible,

some late matches may be unlikely if the corresponding element

in S is large. To avoid such unlikely matches, we introduce a

distance threshold λ (in pixels), and stop the matching once

all remaining elements in S exceed λ. The N-camera location-

clustering approach (Section 7.2) also has a tuning parameter ǫ,

expressed in centimeters, that quantifies a threshold on distance in

real-world coordinates.

In Figure 7, we show the people-counting performance of both

N-camera algorithms (N = 3) when their respective tuning

parameters vary. The N-D score-matrix approach yields the lowest

MAE value for λ = 400 pixels, while the real-world location-

clustering approach achieves the best performance for ǫ = 250

cm. We note that these values are relatively large considering the

fact that we are working with 2,048 × 2,048-pixel images in a 22 ×

8.5 m room. Very likely some identity matches are incorrect (as are

some RAPiD detections) and yet the people count is quite accurate.

However, since our dataset is labeled for people-counting only (no

bounding boxes or identity labels), we cannot report ReID accuracy

to verify this hypothesis.

While a low MAE is maintained by the N-D score-matrix

approach for a wide range of λ values (from about 100 pixels to

1,000 pixels), a high-performance range for the real-world location

clustering approach happens only for ǫ between about 200 and

300 cm. Outside of these ranges, MAE increases and especially

rapidly for small parameter values. For example, small values of

threshold ǫ allow little room for image-to-3-D mapping errors;

imprecisely mapped locations get absorbed into incorrect clusters.

The more accurate the mapping algorithm, the smaller the value of

ǫ that can be used. In the extreme case of ǫ = 0 cm, there is no

room for mapping errors. Unless same-identity locations from all

cameras are mapped to the same 3-D location, they cannot form
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FIGURE 7

People-counting performance (cumulative MAE across 3 days of the test) for: (A) N-D score-matrix approach with varying λ; and (B) real-world

location-clustering approach with varying ǫ, both for N = 3.

one cluster. Since error-free mappings are very unlikely, for ǫ = 0

cm very few identities can bematched, thus resulting in small η̂KLi in

Equation (1) and causing overcounting. As ǫ increases, the degree

of overcounting gets reduced. At the other extreme, if ǫ is too large

the mapped locations of different identities might fall into the same

cluster thus potentially resulting in too many matches and leading

to undercounting. Similar conclusions can be drawn for the impact

of λ on performance of the N-D score-matrix algorithm.

In order to confirm our observations about overcounting and

undercounting, Figure 8 shows the true occupancy during the 3-

day test (red line) and occupancy estimated by the N-D score-

matrix algorithm (blue line) for three values of λ: 100, 400 and

1,500 pixels. Notably, for λ = 100 pixels the algorithm significantly

overcounts, while for λ = 1, 500 pixels it largely undercounts.

However, for λ = 400 pixels, it closely follows the true people

count. Figure 9 shows similar results for the real-world location-

clustering algorithm and three values of ǫ: 50, 250, and 800 cm.

Again, for ǫ = 50 cm the algorithm severely overcounts, for

ǫ = 800 cm it largely undercounts, and for ǫ = 250 cm it is

most accurate.

Table 7 quantifies performance of both algorithms in terms of

MAE, MAEpp, AccX for the tuning parameters that yielded the

smallest cumulative MAE value (Figure 7), namely λ = 400 pixels

and ǫ = 250 cm. For ease of comparison, included are also

results for the 2-camera people-counting algorithms from Table 6

that employ greedy search of a 2-D score matrix populated by

either PPD or CBD values. We note, that in terms of cumulative

metrics the 3-camera score-matrix algorithm using the PPDmetric

slightly outperforms the same algorithm using 2 cameras. However,

it performs equally well-compared to the 2-camera score-matrix

algorithm with the CBD metric in terms of MAE and MAEpp,

and results are mixed in terms of AccX (slightly better for X =

5 and 10, and slightly worse for X = 0). As for the 3-camera

real-world location-clustering algorithm, it does not perform as

well; its cumulative MAE and MAEpp values are higher by 0.07

and 0.04, respectively, than corresponding values for the 3-camera

score-matrix algorithm, and the AccX values are lower by up to

1% point.

With respect to different occupancy scenarios, the 3-camera

score-matrix approach quite consistently outperforms other

algorithms on days 1 and 2 (high average occupancy), but is

outperformed by the 2-camera approaches on day 3 (mostly

empty). Interestingly, on day 3 the single-camera results (Table 5)

are even better than those for two cameras; for example, camera #1

mounted in the center of the classroom producesMAE andMAEpp
twice lower than those for the 2-camera algorithms. This is due to

the fact that the few occupants on day 3 are located in classroom

center which is effectively covered by camera #1.With no challenges

(people are directly under the camera, no occlusions, no occupants

at FOV periphery), people counting using one camera is erroneous

only if people detection fails. However, when multiple cameras are

needed for large-area coverage, additional errorsmay be introduced

by person ReID. Clearly, under spatially-localized low occupancy,

single-camera RAPiD may be sufficient. However, in large spaces

with spatially-distributed high occupancy, a multi-camera people-

counting system is essential.

The results in Table 7 may seem somewhat disappointing since

the better 3-camera approach only slightly outperforms the best 2-

camera approach and only in crowded scenarios. However, there

is a reason for this. The 2-camera score-matrix (CBD) approach

performs very well in this 187 m2 test space producing cumulative

MAEpp of only 0.097 (9.7% error per person) vastly outperforming

the 1-camera RAPiD performance (no re-identification) that

produced a 0.373 cumulative MAEpp (or 37.3% error per person)

as shown in Table 5. As reported in Konrad et al. (2024), RAPiD

applied to a single-camera video stream can deliver MAEpp of

0.065 (6.5% error per person) up to about 75 m2 (≈800 ft2) of

a square-room area and 0.133 (or 13.3%) up to about 116 ft2

(≈1,250 ft2). Considering that this is a 22 × 8.5 m space and that

each of the cameras used by the 2-camera score-matrix approach

(cameras #2 and #3 in Figure 2) roughly covers one half of the

classroom (about 11 × 8.5 m space with 93.5 m2 area), it is clear

that little improvement can be expected from additional cameras

in this case. However, the N-camera ReID algorithms proposed

in this paper are expected to be highly beneficial in larger spaces

in which two cameras would be insufficient. We believe that the
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FIGURE 8

Ground-truth people count (red line) and an estimate by 3-camera score-matrix algorithm (blue line) for three values of threshold λ. (A) λ = 100

pixels. (B) λ = 400 pixels. (C) λ = 1,500 pixels.

proposedN-camera methodology would be very valuable in scaling

up people-counting to much larger spaces such as convention halls,

food courts, airport terminals, train/bus stations, etc.

Theoretically, a fisheye camera with FOV covering 360◦ in

plane parallel to the sensor and at least 180◦ orthogonally should

capture an area of any size. However, due to radial distortions

of its lens and finite sensor resolution, details captured at FOV

periphery are insufficient for reliable person detection (and re-

identification). As discussed above, in our test scenario (Figure 2C)

a single camera mounted 3.15 m above the floor can produce

reliable detections up to about 8.7 × 8.7 m square area (≈75

m2). However, in a square area of 87 × 87 m, it is unlikely

that 100 fisheye cameras used jointly by person ReID methods

described in Sections 7.1 and 7.2 would produce reliable results

using a location-based approach (PPD or CBD). As the physical

distance between cameras increases, the bidirectional projection

errors will grow due to errors in intrinsic and extrinsic parameters.

Depending on the accuracy of these parameters, a very large

area may need to be partitioned into sections, each monitored

independently by a smaller group of cameras (e.g., 2 × 2 or 3

× 3). One could consider using the N-D score matrix approach

with appearance features (instead of location), but a person

captured by far apart cameras may appear dramatically smaller

in one FOV than in the other posing very serious challenges

for ReID. Again, small groups of nearby cameras would be

more effective.
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FIGURE 9

Ground-truth people count (red line) and an estimate by 3-camera real-world location-clustering algorithm (blue line) for three values of threshold

ǫ. (A) ǫ = 50 cm. (B) ǫ = 250 cm. (C) ǫ = 800 cm.

8 Conclusions and future directions

There exists a significant demand for occupancy analytics in

commercial buildings with applications ranging from security

and space management to reduction of energy use. Technologies

deployed today serve each of these needs individually (e.g.,

surveillance cameras for security, ID card access for space

management, CO2 sensing for energy reduction) and are not

easily adaptable to other uses. While surveillance cameras could,

in principle, serve all three applications, their usefulness is

limited by their narrow field of view (many cameras would

be needed, significantly complicating processing). Contrary

to that, top-view fisheye cameras have a wide field of view

and largely avoid occlusions, but few algorithms have been

developed to date for the analysis of human presence and behavior

using such cameras. In this paper, we reviewed some of the

recent developments in this field and demonstrated that in

small-to-medium size spaces (up to about 75 m2) one can very

accurately detect (and count) people using a single overhead

fisheye camera mounted about 3 m above the floor. However,

in larger spaces several cameras are needed requiring additional

processing to resolve ambiguities; for example, in counting and

tracking one needs to match identities between cameras. To

address this, we proposed two N-camera person re-identification

algorithms and demonstrated their efficacy in large-space

people counting.

Beyond detecting and counting people using overhead fisheye

cameras, another challenge is in tracking. While we have been
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TABLE 7 People-counting performance of the RAPiD detection algorithm combined with 2-camera or 3-camera location-based re-identification

algorithms in a 3-day test in the large classroom (Figure 2C).

Algorithm N Day 1 Day 2 Day 3 Cumulative

Average number of people 29.5 20.6 0.99 16.4

MAE ↓ 2-D score matrix (PPD) 2 2.42 1.74 0.84 1.63

2-D score matrix (CBD) 2 2.43 1.71 0.75 1.59

3-D score matrix (PPD) 3 2.31 1.62 0.93 1.59

Real-world location clustering 3 2.45 1.68 0.94 1.66

MAEpp ↓ 2-D score matrix (PPD) 2 0.082 0.084 0.849 0.100

2-D score matrix (CBD) 2 0.082 0.083 0.752 0.097

3-D score matrix (PPD) 3 0.078 0.079 0.941 0.097

Real-world location clustering 3 0.083 0.082 0.952 0.101

AccX [%] ↑ X=0/5/10 2-D score matrix (PPD) 2 41/84/96 36/92/99 50/98/100 42/92/98

2-D score matrix (CBD) 2 41/84/96 37/93/99 51/99/100 43/92/98

3-D score matrix (PPD) 3 39/86/96 35/95/100 48/98/100 41/93/99

Real-world location clustering 3 39/85/95 35/94/99 49/98/100 41/92/98

The best performance is shown in boldface.

successful in re-identifying people between calibrated cameras

based on location, reliable methods are needed for tracking

people across the field of view of one camera and between

cameras that do not have overlapping fields of view. This cannot

be performed based on location, so advanced appearance-based

methods are needed. Another unique challenge is in action

recognition. A particular difficulty is the unusual viewpoint if an

action is performed directly under the camera, not observed in

traditional action recognition. Also, if a person moves away from

under the camera while performing an action, even just a few

meters, a dramatic viewpoint change occurs, again uncommon

in typical action recognition studied today. There is also an

application-specific challenge. In this work, people are localized

in image coordinates but for security applications it would

be of interest to map these locations to 2-D room layout,

along the lines of real-world location clustering presented in

Section 7.2. Finally, there exists a substantial performance gap

between visual analysis methods developed for side-mounted

rectilinear cameras and top-view fisheye cameras that needs to

be closed; only then will fisheye-based indoor monitoring enter

the mainstream video surveillance market. One methodology

that can help achieve this goal is domain adaptation, for

example by leveraging the richness of algorithms and datasets

developed for front-facing fisheye cameras used in autonomous

navigation. All these challenges need to be addressed before

overhead fisheye cameras become ubiquitous in autonomous

indoor monitoring.
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