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ChestBioX-Gen: contextual
biomedical report generation
from chest X-ray images using
BioGPT and co-attention
mechanism

Mohammed Yasser Ouis and Moulay A. Akhloufi*

Perception, Robotics and Intelligent Machines Research Lab (PRIME), Department of Computer

Science, Université de Moncton, Moncton, NB, Canada

E�cient and accurate radiology reporting is critical in modern healthcare for

timely diagnosis and patient care. In this paper, we present a novel deep

learning approach that leverages BioGPT and co-attention mechanisms for

automatic chest X-ray report generation. Our model, termed “ChestBioX-Gen"

is designed to bridge the gap between medical images and textual reports.

BioGPT, a biological language model, contributes its contextual understanding

to the task, while the co-attention mechanism e�ciently aligns relevant regions

of the image with textual descriptions. This collaborative combination enables

ChestBioX-Gen to generate coherent and contextually accurate reports that

embed complex medical findings. Our model not only reduces the burden

on radiologists but also enhances the consistency and quality of reports.

By automating the report generation process, ChestBioX-Gen contributes to

faster diagnoses and improved patient care. Quantitative evaluations, measured

through BLEU-N and Rouge-L metrics, demonstrate the model’s proficiency

in producing clinically relevant reports with scores of 0.6685, 0.6247, 0.5689,

0.4806, and 0.7742 on BLUE 1, 2, 3, 4, and Rouge-L, respectively. In conclusion,

the integration of BioGPT and co-attention mechanisms in ChestBioX-Gen

represents an advancement in AI-driven medical image analysis. As radiology

reporting plays a critical role in healthcare, our model holds the potential to

revolutionize how medical insights are extracted and communicated, ultimately

benefiting both radiologists and patients.

KEYWORDS

radiology reporting, contextual understanding, deep learning, medical imaging,

computer-aided diagnosis

1 Introduction

Medical imaging is an important aspect of modern healthcare, employing technologies

like X-rays, CT scans, MRI, and ultrasound to non-invasively visualize internal body

structures. These imaging modalities allow healthcare practitioners to observe and analyze

anatomical details, detect abnormalities, and guide medical interventions. By offering a

visual representation of the body structures, medical imaging aids in the early identification

of diseases, informs treatment strategies, and enables ongoing monitoring of patient

wellbeing. The continual advancements in medical imaging underscore the dedication

of scientists and healthcare professionals to refining precision, minimizing confusion,

and ultimately enhancing patient outcomes. In essence, medical imaging serves as a link
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between scientific understanding and practical clinical applications,

providing essential insights into anatomical structures and

pathological conditions for more effective and personalized

healthcare.

The advent of automatic report generation for medical images,

particularly in radiology, has emerged as a crucial area in

the intersection of machine learning and healthcare. This task

involves creating coherent and informative textual reports, with

the potential to enhance clinical workflows and elevate the

quality and standardization of care. Despite its potential benefits,

this process presents significant challenges. Traditional image

captioning approaches, designed for shorter and less complex

reports, often fall short in addressing the highly templated nature

of radiology reports. Generic natural language generation (NLG)

methods, while prioritizing descriptive accuracy, may not align

with the clinical priorities of accuracy and specificity in radiology

reports.

In this work, we present a novel approach named ChestBioX-

Gen for chest X-ray report generation, aimed at enhancing

the precision of diagnostic outcomes and reducing the burden

on radiologists. Leveraging advanced deep learning techniques,

our methodology leverages an encoder-decoder architecture. The

encoder utilizes the pretrained CheXNet model (Rajpurkar et al.,

2017), based on the DenseNet121 backbone, to extract meaningful

features from input chest X-ray images. Concurrently, we employ

the BioGPT Tokenizer (Luo et al., 2022) to extract relevant

embedding vectors from input captions, which are then combined

with visual features Learned using CheXNet. Where the co-

attention module computes attention weights, guiding the focus to

the most pertinent information within the input image. This not

only enhances the accuracy and informativeness of the generated

reports but also reduces the burden on radiologists by highlighting

the region of interest. The resulting vector serves as input to our

RNN, contributing to the generation of a final sentence. Evaluation

of the proposedmodel on the IU-X-Ray dataset (Demner-Fushman

et al., 2016) highlights the effectiveness of our approach, notably

demonstrated by its superior performance in the BLUE metric.

This underscores its capacity to greatly assist radiologists in their

diagnostic tasks.

2 Related works

In recent years, the field of chest X-ray image analysis

has witnessed the emergence of various deep learning-based

approaches. Liu et al. (2021) introduced an effective method that

leverages the attention mechanism through contrastive learning.

This model is specifically designed to enhance abnormal region

detection in chest X-ray images. The approach incorporates known

normal images, utilizing Aggregate and Differentiate Attention

to prioritize images similar to the input. By extracting common

features, the model augments abnormality detection. Evaluation

on two datasets, MIMIC CXR (Johnson et al., 2016) and IU-

X-ray (Demner-Fushman et al., 2016), demonstrates substantial

performance improvements over baselines, as evident in both

automated metrics and human assessments.

Another work was published by Liu et al. (2019), where the

authors proposed a new framework. The study focuses on a

domain-aware system employing a CNN-RNN-RNN architecture.

The idea is to predict report topics and generates corresponding

sentences, ensuring both readability and clinical accuracy. The

training process involves reinforcement learning guided by the

Clinically Coherent Reward. The image encoder CNN captures

spatial features, while the sentence decoder RNN generates

topics and stop signals. The word decoder RNN decodes words

based on topics, all within a fully differentiable CNN-RNN-RNN

architecture.

Kaur and Mittal (2023) presented a novel approach

leveraging a deep neural network architecture enhanced

with a multi-attention mechanism. The base model

employs convolutional neural networks (CNNs) for feature

extraction and multi-label classification, while attention

mechanisms focus on salient image regions. Then, using

LSTM networks, CheXPrune generates coherent reports

from CXR images. Furthermore, the model uses pruning to

reduce computational complexity, with experimental results

suggesting significant pruning percentages without compromising

accuracy.

Shetty et al. (2023) propose an encoder-decoder framework.

The encoder, comprising the Unimodal Medical Visual Encoding

Subnetwork (UM-VES) and the Unimodal Medical Text

Embedding Subnetwork (UM-TES), processes images and

corresponding reports during training. UM-VES extracts

visual features from frontal and lateral CXR images using a

depthwise separable convolutional neural network. UM-TES

preprocesses radiology findings and learns word embeddings

from medical terminology, combining glove word embeddings

(Pennington et al., 2014) with those from a large knowledge

base of Stanford reports (Zhang et al., 2018). The LSTM-

based decoder generates reports by integrating visual and

textual information aggregated by the encoder. Following

the same idea, Akbar et al. (2023) utilized a DenseNet121

for image feature extraction and a GRU decoder for text

generation, and categorical cross-entropy loss function is used for

optimization.

Yang et al. (2023) introduces a novel approach to automatic

chest X-ray radiology report generation. Their method features

a self-updating Learned Knowledge Base, extracting medical

knowledge from textual embeddings. The Multi-Modal Alignment

module ensures consistency across textual, visual, and disease

label modalities. The approach optimizes the bidirectional inter-

relationship between image and report features and aligns visual

features with disease labels. The training process involves balancing

these alignments using a versatile loss function.

Recently, many works have focused on the use of graph neural

networks (Wu et al., 2023), specifically, when the input data used

for a specific task presents dependencies. Consequently, Li et al.

(2023) introduced Dynamic Graph enhanced Contrastive Learning

(DCL). This method addresses limitations in existing systems

by incorporating a dynamic knowledge graph with contrastive

learning. The dynamic graph construction involves both general

and specific knowledge, enhancing relationships related to disease

keywords. The dynamic graph encoder propagates information,
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and the graph attention module integrates knowledge with visual

features. The paper also introduces image-report contrastive and

image-report matching losses to improve both visual and textual

representations.

In their recent work, Zhang et al. (2022) propose a framework

based on knowledge graphs, for improving reasoning driven report

generation. The framework is based on three main modules:

Classifier, Generator, and Interpreter. The Classifier module

integrates various submodules for disease topic extraction, multi-

view image encoding, and text representation. By leveraging a

Graph Convolutional Network, semantic information is extracted,

followed by the integration of disease representation with prior

knowledge. Subsequently, the Generator module, leveraging a

Transformer decoder, generates reports based on the classifier’s

outputs. To ensure consistency, the Interpreter module, inspired

by principles from CycleGan (Zhu et al., 2017), refines generated

reports by comparing them with classifier outputs.

Li et al. (2023) presented a method for generating reports

by utilizing a dynamic graph structure G that is enhanced with

both specific and general knowledge. Qi et al. (2020), a Python

natural language analysis package is used to extract anatomy and

observation entities, and the graph is dynamically generated using

insights from the topnT similar reports. Then, information flows

through the dynamic graph while specific node attributes are

learned with the help of a relational self-attention module and a

cross-attention module that combines graph and visual encodings.

Finally, the generated vector is fed into a Transformer decoder.

Kale et al. (2023) addresses the global challenge of timely

generation of radiology reports and diagnoses due to a shortage

of specialists. The proposed solution is a model called Knowledge

FIGURE 1

Sample images from diverse chest X-ray datasets. (A) chexpert, (B) padchest, (C) mimic, (D) Indiana University.
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Graph Augmented Vision Language BART (KGVL-BART). This

model takes two chest X-ray images, along with diagnostic tags, and

outputs patient-specific reports. The solution involves constructing

a Chest X-ray knowledge graph (chestX-KG), extracting image

features, and training the KGVL-BART model using visual, text,

and KG data.

3 Datasets

The advancement of deep learning models for automated

X-ray report generation has been facilitated by the availability

of comprehensive medical image datasets. Notable examples are

illustrated in Figure 1, while Table 1 provides a detailed overview of

the datasets utilized in the existing literature to support this task.

Among these, the ChestX-ray14 dataset stands out, comprising

112,120 frontal-view X-ray images from 30,805 unique patients,

each accompanied by corresponding reports. Additionally, datasets

such as MIMIC-CXR, IU X-ray, NIH Chest X-ray, PadChest, and

CheXpert have been used in automating X-ray report generation.

Despite certain limitations, including abnormalities and class

imbalances, these datasets, sourced from various institutions, have

significantly contributed to the advancement of automatic report

generation in the field. In the following, we present some of the

common ones:

• ChestX-ray14 (Wang et al., 2017): this dataset contains

112,120 frontal-view X-ray images and reports from 30,805

patients. It includes additional thoracic diseases compared to

the ChestX-ray8 dataset and is a collaboration between the

National Institute of Health Clinical Center and the Indiana

University School of Medicine.

• MIMIC-CXR (Johnson et al., 2016): with over 377,000 chest

X-ray images and reports from 227,835 patients, this dataset,

created by theMassachusetts Institute of Technology and Beth

Israel Deaconess Medical Center, stands as one of the largest

publicly available datasets for chest X-ray analysis.

• IU X-ray (Demner-Fushman et al., 2016): OpenI comprises

7,470 images (include both frontal and lateral views),

accompanied by their corresponding 3,955 reports. The data

was collected at various hospitals across the state of Indiana,

USA.

• PadChest (Bustos et al., 2020): this dataset, originating from

the University of Alicante in Spain, features 160,868 chest X-

ray images and 109,931 Spanish reports, annotated with over

174 radiographic findings.

• CheXpert (Irvin et al., 2019): Stanford University’s dataset

includes 224,316 chest X-ray images and reports from 65,240

patients, annotated for 14 common thoracic pathologies.

• VinDr-CXR (Nguyen et al., 2022): comprised of over

100,000 DICOM-format images retrospectively gathered from

Hospital 108 (H108) and Hanoi Medical University Hospital

(HMUH), VinDr-CXR constitutes 18,000 postero-anterior

(PA) view CXR scans. This dataset includes annotations for

critical findings’ localization and the classification of prevalent

thoracic diseases. It encompasses 22 critical findings (local

labels) and 6 diagnoses (global labels).

In our investigation, we exclusively used the IUX-ray (Demner-

Fushman et al., 2016). This dataset, contains 7,470 images and 3,955

reports, providing an optimal size for efficient model training and

testing. In our study, we focus on generating the impression section

illustrated in Figure 2 as it provides a comprehensive summary

of the findings, including the most significant observations and

possible causes. Furthermore, in order to enhance data quality,

we initiated a data preparation process. Initially, 7,460 images

were obtained, but after removing records lacking impressions,

we refined the dataset to 7,415 images. Subsequently, 500 images

were randomly selected for testing, leaving the remainder for

comprehensive model training.

4 Evaluation metrics

The assessment of machine learning models relies significantly

on evaluation metrics. In the context of generating chest X-ray

image reports, these metrics function as quantitative benchmarks,

enabling themeasurement of the quality and similarity of generated

reports in comparison to reference reports. Their important role

lies in objectively evaluating report generationmodels. In our work,

we adopt several different metrics that focus on different aspects

ranging from a natural language perspective to clinical adequacy.

• Bilingual evaluation understudy (BLEU) (Papineni et al.,

2002): BLEU, a commonly employed metric, assesses the

similarity between a generated report and a reference report

by considering n-grams of different lengths (BLEU-1, BLEU-

2, BLEU-3, and BLEU-4). It quantifies the overlap of n-grams

to evaluate the quality of the generated text. BLEU is computed

as follows:

BLEU = BP.exp

(

N
∑

n=1

wnlogpn

)

where pn is the modified precision for n-gram, the base of log

is the natural base e, wn is weight between 0 and 1 for logpn
and

∑N
n=1 wn = 1.

BP =

{

1 c > r

exp(1− r
c ) c ≤ r

where c is the number of unigrams (length) in all the candidate

sentences, and r is the best match lengths for each candidate

sentence in the corpus.

• Recall-Oriented Understudy for Gisting Evaluation-Longest

Common Subsequence (ROUGE-L) (Lin, 2004): ROUGE-

L is a metric designed to assess the similarity between a

generated report and a reference report by examining the

longest common subsequence (LCS) of words. It focuses on

recall, effectively capturing essential information from the

reference report. The mathematical formulation of Rouge-L

precision, recall is shown below

R− Lrecall =
LCS (gen, ref )

Num words in reference

R− Lprecision =
LCS (gen, ref )

Num words in generated text
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TABLE 1 Summary of datasets.

Dataset Images Reports Abnormalities Institution

ChestX-ray14 (Wang et al., 2017) 112,120 30,805 14 NIH Clinical Center

MIMIC-CXR (Johnson et al., 2016) 377,110 227,835 14 Massachusetts Institute of Technology

Indiana University CXR

(Demner-Fushman et al., 2016)

7,470 3955 – National Library of Medicine

PadChest (Bustos et al., 2020) 160,868 67,234 174 University of Alicante

CheXpert (Irvin et al., 2019) 224,316 191,027 14 Stanford University

VinDr-CXR (Nguyen et al., 2022) 18,000 – 28 Hanoi Medical University Hospital and the Hospital 108

FIGURE 2

An illustration of one sample from IU-X-Ray (Demner-Fushman et al., 2016).

• Consensus-based Image Description Evaluation (CIDEr)

(Vedantam et al., 2015): CIDEr is a metric that evaluates the

quality of generated text by comparing it to multiple reference

reports. It measures the consensus among the reference

reports and the generated report in terms of n-grams overlap

and term frequency-inverse document frequency (TF-IDF)

similarity.

CIDErn(ci, Si) =
1

m

∑

j

gn(ci) . g
n(si,j)

∥

∥gn(ci)
∥

∥

∥

∥gn(si,j)
∥

∥

where gn(ci) is a vector formed by gk(ci) corresponding to

all n-grams of length n and
∥

∥gn(ci)
∥

∥ is the magnitude of the

vector gn(ci). Similarly for gn(si,j).

• METEOR (Metric for Evaluation of Translation with Explicit

ORdering) (Denkowski and Lavie, 2014): METEOR measures

the similarity between the generated text and the reference

text based on a combination of word matching and word

order. Additionally, METEOR incorporates a set of pre-

defined synonyms to further enhance the matching accuracy.

The mathematical formulation is shown below:

Fmean =
10PR

R+ 9P

p = 0.5 (
c

um
)3

M = Fmean (1− p)

Where P, R are the precision and recall correspondingly.

5 Approach

Our approach uses a CNN-RNN architecture illustrated in

Figure 3, enhanced by the integration of a co-attention module (Lu

et al., 2016) that jointly reasons about image and caption attention.

This addition serves to focus on the most relevant regions within

the image, enhancing the model’s ability to extract and incorporate

critical information for report generation. In the following sections,

we explain our methodology by describing the different modules

used in our architecture.

5.1 Co-attention mechanism

The co-attention mechanism is applied to both the image and

caption as shown in Figure 4. We establish a connection between

the image and caption by computing the similarity between their

features across all pairs of image-locations and caption-locations.

More precisely, having an image features vector V ∈ Rembed and

a caption representation C ∈ RN×embed where Cn is the feature

vector for the n − th word. The attention scores S ∈ RN×embed are

determined through the calculation of

S = Linear (tanh(C + V))

We then apply the softmax function to the affinity matrix values

to transform them into a probability distribution, we call the result,

attention weights.

attention weights = softmax (S, dim = 0)
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FIGURE 3

An illustration of the proposed framework.

Finally, in order to get the attended vector that represents our

input image noted as AI ∈ Rembed

attended vector = sum (attention weights×
image features vector, dim = 0) (1)

5.2 Image encoder

In the encoder section, the model, referred to as CheXNet,

utilizes a pre-trained DenseNet121 (Huang et al., 2017) backbone.

The process involves passing an input image, denoted as I, through

the model layers to obtain a representative image features vector,V ,

of dimension Rembed. CheXNet, a 121-layer Dense Convolutional

Network, is trained on the ChestX-ray 14 (Wang et al., 2017)

dataset. It leverages DenseNets for efficient information flow and

gradient optimization. The final layer is replaced with a single-

output layer followed by sigmoid non linearity. Model weights are

initialized from ImageNet (Deng et al., 2009) and trained end-

to-end with the Adam optimizer using mini-batches of size 16.

For pneumonia detection, images with pneumonia annotations are

positive examples. The dataset is split into training, validation, and

test sets. Images are downscaled to 224× 224 and normalized using

ImageNet statistics, with additional data augmentation of random

horizontal flipping during training.

V = f (I) where V ∈ Rembed

5.3 BioGPT tokenizer

BioGPT stands out as a generative pre-trained Transformer

language model designed and optimized for the specific purpose

of generating and analyzing biomedical texts. It is based on

the architecture of the GPT-2 model. BioGPT can be fine-

tuned for various downstream tasks such as end-to-end relation

extraction, question answering (QA), document classification, and

text generation. The model was trained using a dataset comprising

15 million abstracts sourced from PubMed,1 with a vocabulary

size of 42,384. The backbone network, GPT-2 model, has 24

layers, a hidden size of 1,024, and 16 attention heads, resulting

in a total of 355 million parameters. In contrast, the BioGPT

model comprises 347 million parameters, with differences from

variations in embedding size and output projection size due to

distinct vocabulary sizes. It has been scaled up to a larger size

with the creation of the BioGPT-Large model using the GPT-2 XL

architecture. The core component of the model is the multihead

attention. Given the input, three linear transformations are applied

to produce the query Q, the key K and the value V, and then the

output is calculated as follows:

Multihead (Q,K,V) = Concat (head1, head2, . . . , headh)W,

headi = softmax

(

QiK
T
i√
d

)

Vi

where h represents the number of heads, Q, K, and V are equally

divided into Qi, Ki, and Vi along the feature dimension, denoted

by i ∈ {1, 2, . . . , h}. The operation Concat signifies concatenating

all inputs as a large tensor along the feature dimension, and W

serves as the parameter for the affine transformation. The output of

the multi-head attention layer is subsequently passed into a feed-

forward layer to construct a Transformer layer (or Transformer

block).

1 https://pubmed.ncbi.nlm.nih.gov/
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FIGURE 4

An illustration of the proposed co-attention module.

Pretrained BioGPT models are available in Huggingface

directory.2 And for text generation, we fine-tune

“microsoft/biogpt”3 on the IU-X-Ray dataset.

5.4 Sentence decoder

Given the attended vector AI , we used Long-Short Term

Memory (LSTM) and model the hidden state as hi,mi =
LSTM (Ai; hi−1,mi−1), where hi−1 and mi−1 are the hidden state

vector and the memory vector for the previous sentence. The LSTM

mechanism helps themodel understand the order of information in

the attended vector sequence. It learns subtle patterns and context.

The hidden state hi−1 keeps track of the evolving understanding of

the input, and thememory statemi−1 holds on to important context

over time.

Finally, the model generates the final sentence. This generation

process integrates the context and information Learned from

the attended vector, facilitating the generation of coherent and

contextually informed impression sections.

6 Results

In our algorithm’s implementation, we prioritize clinical

interpretability by adopting an encoder-decoder architecture

enhanced with attention mechanisms. This approach enables our

model to focus on salient regions within input data, ensuring

relevance to medical diagnosis and treatment. The validation of

our results is improved through the utilization of pretrainedmodels

2 https://huggingface.co/

3 https://huggingface.co/docs/transformers/model_doc/biogpt

such as CheXNet and BioGPT, which have been extensively trained

on diverse medical datasets.

Standardizing input images to a size of 512× 512 pixels ensures

consistency in the CheXNet (Rajpurkar et al., 2017) model by

allowing the model to detect multi-scale features. The BioGPT (Luo

et al., 2022) languagemodel was fine-tunedwith a vocabulary size of

42,384 to accommodate the terminology found in biomedical texts.

Batch training was employed to enhance computational efficiency,

and to handle varying sentence lengths, both < PAD > tokens

for padding and < eos > tokens to denote sentence endings

were incorporated. In our work, we used a batch size of 16 input

images. The CheXNet model (Rajpurkar et al., 2017) served as

the image encoder, generating a 1,024-dimensional output. The

captioning component of BioGPT (Luo et al., 2022) produced text

with a dimensionality of 1,024. Training parameters included a

learning rate of 0.0001, and the model was trained for 100 epochs

to facilitate learning and adaptation to the variations of biomedical

data. During training, our model is applied specifically to the

impression section only.

For the creation of our train and test subsets, we randomly

selected 500 images from the IU-X-Ray dataset for testing, while

the remaining images were used for training. Capturing a different

set of cases for training and evaluation purposes. During evaluation,

the model generates sentences, and once the predicted item token

is < eos > or reaches a maximum length of 100 tokens, the

model stops generating, thus providing coherent and complete

outputs. Our proposed model demonstrates remarkable results in

both quantitative and qualitative evaluations and surpasses many

other works by enhancing the selection of relevant regions that

contribute to generating the final output. The model provides

challenging evaluation metrics as shown in Table 2, particularly the

Blue 1 and Blue 2 metrics, in comparison to existing works in the
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TABLE 2 Evaluation results.

Model BLUE ROUGE-L CIDEr METEOR

1 2 3 4

Kaur and Mittal (2023) 0.5428 0.4451 0.3737 0.3197 0.5976 0.3215 –

Zhang et al. (2022) 0.505 0.379 0.303 0.251 0.446 – 0.218

Li et al. (2023) – – – 0.163 0.383 0.586 0.193

Shetty et al. (2023) 0.5881 0.4325 0.4017 0.3860 – – –

Yang et al. (2023) 0.497 0.319 0.230 0.174 0.399 0.407 –

Akbar et al. (2023) 0.558 0.463 0.311 0.097 0.448 – –

Ours 0.6685 0.6247 0.5689 0.4806 0.7742 0.4158 0.189

FIGURE 5

Figure illustrates qualitative results obtained through the proposed model on the IU-X-ray dataset, with reference images labeled as (A–D).

literature. However, our model presents some limitations in terms

of BLUE-3 and BLUE-4 metrics. We assume this limitation is due

to the utilization of the LSTM architecture in our current model.

Therefore, we suggest some potential solutions such as hierarchical

LSTM architectures Zhang J. et al. (2023), or transformers Zhang

H. et al. (2023) for the future. Furthermore, our qualitative

analysis shown in Figure 5 highlights the model’s capability to

create different and contextually fitting responses, showcasing its

adaptability in various situations.

7 Discussion

In our investigation, the integration of the co-attention module

helped improve ChestBioX-Gen. Our model helps radiologists

by reducing significantly time consuming burden during image

interpretation. This module facilitates the extraction of contextual

information from both image and text modalities, enabling a

more effective cross-correlation. The integration of visual and

textual information helps our model achieve a more sophisticated
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understanding of input images, allowing it to determine and

prioritize key features essential for accurate and contextually rich

medical report generation.

The utilization of BioGPT (Luo et al., 2022) as our

language model proves to be a strategic choice, demonstrating

significant success in generating medical sentences. In contrast to

conventional text generators not pretrained on medical images,

BioGPT shows its effectiveness in handling complex medical

keywords, thereby enhancing the precision and relevance of the

generated reports. This capability is crucial in the medical domain

where accuracy and context are essential for effective reporting of

diagnostic findings.

As we want to enhance our model capabilities, the exploration

of alternative sentence generators beyond the conventional LSTM

architecture such as hierarchical LSTM and transformers emerges

as a promising path. This potential solution could help our model

in generating longer, more detailed sentences, contributing to the

overall quality of medical reports produced by ChestBioX-Gen.

However, it’s important to acknowledge that AI-driven

solutions have their limitations, especially in the sensitive medical

domain where high precision and minimal error margins are

important. Achieving such precision requires extensive training

on larger datasets containing diverse real-world examples, such

as MIMIC-CXR. Therefore, ongoing efforts to expand training

datasets are essential to ensure the reliability and accuracy of

AI-driven solutions like ChestBioX. This expanded training,

covering a wider range of scenarios, will help validate the

robustness and generalizability of ChestBioX-Gen, offering a more

comprehensive understanding of its performance and highlighting

specific areas for improvement. In enhancing AI-driven medical

image analysis, improvements can target several key areas:

integrating pretrained image encoders trained on larger datasets

to capture crucial diagnostic information, diversifying datasets

with images from various angles to enhance model robustness

in detecting challenging anatomical structures, and incorporating

multimodality inputs such as X-ray and ultrasound images to

provide a comprehensive view of cases, potentially improving

diagnostic accuracy and patient care reports.

Finally, the integration of BioGPT and the cross-attention

mechanism in ChestBioX-Gen represents an interesting

advancement in AI-driven medical image analysis. The model’s

success in generating clinically relevant and coherent chest X-ray

reports demonstrates its potential to contribute to the field of

radiology reporting, benefiting both healthcare professionals and

patients.

8 Conclusion

In conclusion, our study presents a novel chest X-ray report

generation model incorporating a cross-attention module that

leverages information Learned from visual models and BioGPT,

a language model used as a tokenizer, showcasing its proficiency

in handling medical data. The collaborative functionality of these

components plays a crucial role in extracting pertinent information

from input X-ray images, consequently enhancing the coherence

and contextual relevance of generated sentences. When applied to

the IU-X-Ray dataset, the model demonstrates promising results in

terms of BLUE-N and ROUGE-L metrics. To advance our work, it

is crucial to test ourmodel on larger datasets and explore alternative

language models, especially for generating lengthy sentences. These

efforts are directed toward further enhancing and validating the

capabilities of the proposed model in the field of chest X-ray

report generation. Our model represents a promising advancement

in the field of medical image analysis, offering valuable insights

into pathologies present in X-ray images and serving as a

first-aided solution for radiologists. However, it is essential to

recognize that while our model provides valuable support and

guidance, the responsibility for diagnosis and treatment decisions

lies with the radiologists. Our model complements the expertise

and clinical judgment of radiologists, enhancing their workflow

and potentially improving diagnostic accuracy. Moving forward,

continued research and development in AI-driven medical image

analysis should focus on further enhancing models to better

assist healthcare professionals while ensuring that human expertise

remains crucial to patient care.
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