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Height reverse perspective
transformation for crowd
counting

Xiaomei Zhao*, Honggang Li, Zhan Zhao and Shuo Li

Shandong Key Laboratory of Intelligent Buildings Technology, School of Information and Electrical

Engineering, Shandong Jianzhu University, Jinan, China

Introduction: Crowd counting plays a critical role in the intelligent video

surveillance of public areas. A significant challenge to this task is the perspective

e�ect on human heads, which causes serious scale variations. Height reverse

perspective transformation (HRPT) alleviates this problem by narrowing the height

gap among human heads.

Methods: It employs depth maps to calculate the rescaling factors of image

rows, and then it performs image transformation accordingly. HRPT enlarges small

human heads in far areas to make themmore noticeable and shrinks large human

heads in closer areas to reduce redundant information. Then, convolutional

neural networks can be used for crowd counting. Previous crowd-counting

methods mainly solve the scale variation problem by designing specific networks,

such as multi-scale or perspective-aware networks. These networks cannot be

conveniently employed by other methods. In contrast, HRPT solves the scale

variation problem through image transformation. It can be used as a preprocessing

step and easily employed by other crowd-counting methods without changing

their original structures.

Results and discussion: Experimental results show that HRPT successfully

narrows the height gap among human heads and achieves state-of-the-art

performance on a large crowd-counting RGB-D dataset.

KEYWORDS

crowd counting, scale variation problem, perspective e�ect, height reverse perspective

transformation, RGB-D image

1. Introduction

Crowd-counting technology estimates the number of people in images, which is

instrumental in intelligent video surveillance. It plays a vital role in safeguarding public safety

by recognizing abnormal crowd gatherings automatically.

Over the past decades, countless researchers have focused on improving the accuracy

of crowd-counting techniques (Sindagi and Patel, 2018; Gao et al., 2020; Fan et al., 2022).

One standard method is to count the number of human heads captured by surveillance

cameras, since occlusions on human heads are less severe than the other parts of human

bodies. However, the perspective effect can cause significant scale variations in human head

size, posing a critical challenge to accurate counting. This study proposes a novel height

reverse perspective transformation (HRPT) method to alleviate the scale variation problem.

This technique creatively narrows the height gap among human heads, particularly enlarging

small human heads in far areas and shrinking large human heads in closer areas. Figure 1

displays a group of crowd RGB images to demonstrate the effect of HRPT.

Existing crowd-counting methods are categorized into detection-based, regression-

based, and density map-based methods. Detection-based methods generally count people

by detecting people or their heads (Idrees et al., 2015; Stewart et al., 2016; Liu Y. et al., 2019),

while regression-based methods extract image features from the whole crowd image and
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FIGURE 1

A group of crowd RGB images to show the e�ect of HRPT: (A) original crowd RGB image; (B) crowd RGB image transformed by HRPT. The heads of

three pedestrians are marked in (A, B). Their head heights, measured in pixels, are shown on the right of the images.

regress the number of people according to these features (Liu and

Vasconcelos, 2015; Wang et al., 2015; Shang et al., 2016). Density

map-based methods count people by estimating the density map

and summing the density over the whole image (Ma et al., 2022;

Wang et al., 2022, 2023; Yan et al., 2022). Detection-based methods

usually perform poorly when dealing with dense crowds far from

the camera (Liu et al., 2018; Xu et al., 2019; Fan et al., 2022), and

regression-based methods ignore spatial information (Gao et al.,

2020). Therefore, density map-based methods are more popular

than the other two types of methods.

Many density map-based methods solve the scale variation

problem using multi-scale networks (Liu W. et al., 2019; Ma

et al., 2022; Wang et al., 2022, 2023). However, these networks

only consider a finite number of discrete scales, limiting their

ability to handle scale variations (Yan et al., 2022). Therefore,

many researchers have focused on solving the scale variation

problem by utilizing perspective-aware approaches (Yan et al.,

2022; Zhang and Li, 2022). Perspective-aware approaches generally

extract perspective information from RGB images (Yan et al., 2022;

Zhang and Li, 2022). In contrast, a depth map can be directly

used as perspective information, and it is more accurate than the

perspective information extracted from an RGB image. Using a

depth map to its maximum capacity can alleviate the scale variation

problem caused by the perspective effect.

RGB-D cameras capture both RGB images and depth maps,

which contain complementary information. Applying multiple

complementary information is popular in many areas, such as

automatic malfunction detection (Jing et al., 2017) and automatic

driving (Wang et al., 2019; Zhuang et al., 2021). This is because

using multiple types of complementary information can improve

the robustness and accuracy of automatic systems. At present,

although the RGB-D camera is less popular than the RGB camera

owing to its higher cost, as the economy develops, the RGB-D

camera is expected to be used more widely.

This study proposes the HRPT method, developed based

on RGB-D images, to solve the scale variation problem in

the crowd-counting task. By narrowing the height gap among

human heads according to the perspective information in the

depth map, HRPT alleviates the scale variation problem, reduces

redundant information in near areas, and makes small human

heads in faraway areas more visible. As shown in Figure 1, HRPT

successfully narrows the height gap among human heads. It

enlarges small human heads in far areas, making them more

visible, and it shrinks large human heads in closer areas to reduce

redundant information, making the counting network focus more

attention on remote areas where the human heads are denser and

harder to detect.

Previously developed crowd-counting methods often use

specialized networks to tackle scale variation, employing multi-

scale or perspective-aware strategies. Other methods must change

their original network structures to employ these strategies. In

contrast, the proposed HRPT can be used as a preprocessing step

and easily integrated into existingmethods without modifying their

original network structures. This study combines HRPT with four

well-performing crowd-countingmethods: CSRNet (Li et al., 2018),

DM-Count (Wang B. et al., 2020), GL (Wan et al., 2021), and CLTR

(Liang et al., 2022) to produce promising results.

In addition to narrowing height gap among human heads by

HRPT, we also try to narrow the width gap among human heads.

However, narrowing the width gap does not achieve promising

results. Section 5.2.1 details the discussion. Furthermore, if we

ignore the human height, the perspective effect on the 2D ground

can be eliminated using a homograph (Hartley and Zisserman,

2003). However, experimental results show that even though the

homograph successfully eliminates the perspective effect on the

2D ground, it cannot achieve satisfactory results in alleviating the

scale variations of human heads. Section 5.2.2 presents a more

detailed discussion.
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In summary, our main contributions are given below.

1) HRPT is a novel technique to alleviate the scale variation

problem in the crowd-counting task. It uses the perspective

information in depth maps and creatively narrows the height

gap among human heads via image transformation. After HRPT,

small human heads in outlying areas are enlarged and become

more apparent, and large human heads in closer areas are

shrunken to reduce redundant information.

2) HRPT is integrated with the following well-performing crowd-

counting methods: CSRNet (Li et al., 2018), DM-Count

(Wang B. et al., 2020), GL (Wan et al., 2021), and CLTR

(Liang et al., 2022), and experimental results demonstrate

that HRPT successfully improves crowd-counting performance.

Our method (GL+HRPT) achieves state-of-the-art results and

outperforms other methods that employ depth maps.

3) Another two image transformation methods (i.e. a shape-

changing method that narrows the width gap among human

heads and a geometric method that attempts to eliminate the

perspective effect) are also experimented to solve the scale

variation problem. Experimental results show that these two

methods have poorer performance than the proposed HRPT.

2. Related work

The proposed method aims to alleviate the scale variation

problem in crowd-counting tasks by making use of depth maps and

image transformation. This problem has traditionally been tackled

by employing multi-scale or perspective-aware crowd-counting

methods. The following section first introduces these two types of

previous methods, and then presents other related crowd-counting

methods that also employ depth maps and image transformation.

2.1. Multi-scale crowd-counting methods

Multi-scale crowd-counting methods solve the scale variation

problem by employing multi-scale network structures. Wang et al.

(2022) and Wang et al. (2023) built multi-scale networks by

employing multiple branches with different convolutional dilation

rates. Liu W. et al. (2019) built a multi-scale network by using

multiple branches with different pooling sizes. Jiang et al. (2019)

andMa et al. (2022) built multi-scale networks by combining image

features of multiple layers. Jiang et al. (2020) and Du et al. (2023)

built multi-scale networks by combining the estimated crowd

density maps of multiple scales. However, multi-scale methods only

consider a finite number of discrete scales, limiting their potential

to solve the scale variation problem (Yan et al., 2022).

2.2. Perspective-aware crowd-counting
methods

Many impressive perspective-aware methods have been

proposed. For example, Zhang et al. (2015) estimated the number

of pixels representing one meter and used this perspective

information to normalize the density map. Yan et al. (2022)

estimated the same perspective information as Zhang et al. (2015)

and used it to select different dilation kernels. Zhang and Li

(2022) embedded perspective information into a point-supervised

network to better handle the scaling problem. Wan et al. (2021)

used a perspective-guided cost function with a larger penalty to

density far from the camera. Zhao et al. (2019) used the depth

map predicted from RGB image as perspective information

and embedded it into their density map prediction network.

The abovementioned methods extract perspective information

from RGB images, which is complicated and inaccurate. In

contrast, depth maps can be directly used as accurate perspective

information. In the following subsection, we introduce methods

that employ depth maps.

2.3. Depth maps and crowd counting

Depth maps are the source of information, more accurate than

the perspective information extracted from RGB images. Thanks

to the current development of RGB-D cameras, several excellent

crowd-counting methods have emerged to take advantage of depth

maps. As density map-based crowd-counting methods have better

performance in dealing with far-view areas, and as detection-

based methods have better performance in dealing with near-view

areas, Xu et al. (2019) used depth maps to segment RGB images

into the far-view and near-view areas, and used density map-

based and detection-based methods to deal with these two areas,

respectively. However, the density map-based and detection-based

methods employed in their framework do not use depth maps

during counting. Liu et al. (2021, 2023), Zhang et al. (2021), and Li

et al. (2023) proposed cross-model frameworks to estimate density

maps, fusing image features extracted from RGB images and depth

maps to make use of the complementary information in these two

kinds of images. They only used depth maps as input and did not

explicitly utilize the perspective information contained in depth

maps. Lian et al. (2019) used depth-adaptive Gaussian kernels and

depth-aware anchors to improve crowd-counting and localization

results, using the perspective information in depthmaps to improve

the quality of ground-truth density maps and human head anchors.

Additionally, Lian et al. (2022) used depth-guided dynamic dilated

convolution to further improve the method proposed by Lian

et al. (2019). Compared with the above methods, the proposed

HRPT utilizes the perspective information in depth maps more

intuitively, narrowing the height gap among human heads through

image transformation to alleviate the scale variation problem in

crowd counting.

2.4. Image transformation and crowd
counting

Yang et al. (2020) proposed a reverse perspective network to

evaluate and correct the perspective distortion in crowd images.

Both Yang et al.’s (2020) method and our HRPT attempt to

narrow the scale gap among human heads by image transformation.

However, the two methods use different perspective information.

Theirs uses the perspective information extracted from RGB
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images; our HRPT uses the perspective information in depth maps.

The perspective information in depth maps is more accurate than

that extracted from RGB images. Moreover, Yang et al. (2020)

designed a specific network structure to estimate and correct

perspective distortion. Other methods must change their original

network structures to employ this approach. In contrast, they can

easily employ our HRPT approach without changing any part of

their original network structures.

3. Methods

Figure 2 depicts the flowchart of our crowd-counting

framework. As shown in this figure, the original RGB-D image is

first sent into the proposed HRPT module. HRPT employs the

perspective information in the depth map to narrow the height gap

among human heads in the RGB image by image transformation.

Afterward, the transformed RGB image is sent into a density

map-based crowd-counting network to estimate the crowd density

map, and the counting result is calculated by summing the density

over the whole image. The proposed HRPT comprises two main

steps: rescaling factor calculation and height transformation. In the

following, we first introduce each step of HRPT in detail and then

briefly introduce the crowd-counting networks employed in our

framework.

3.1. Rescaling factor calculation

The proposed HRPT is designed to narrow the height gap

among the human heads in RGB images. To accomplish this goal,

the rescaling factor should be inversely proportional to the height

of the head in the original RGB image:

s =
a1

h
, (1)

where s denotes the rescaling factor; h denotes the head height in

the original RGB image; and a1 is a hyper-parameter that equals

the rescaled head height.

According to Lian et al. (2019), the head height h is inversely

proportional to the depth d. We formulate their relationship

as follows:

h =
a2

d
, (2)

where a2 is a parameter related to camera intrinsic parameters, such

as focal length. After combining Equations (1, 2), we deduce the

relationship between the rescaling factor s and depth d as follows:

s =
a1

a2
· d. (3)

As each pixel has a different depth value and the depth map

always misses the depth value of some areas, such as the top-left

area in the original depth map shown in Figure 2, transforming

the crowd image according to the rescaling factors calculated by

Equation (3) is hard. Fortunately, the depth usually complies with

the following rule: pixels with smaller y-coordinates generally have

higher depth values. Considering Equation (3) and the above rule,

we conclude that it is possible to find the general relationship

between the rescaling factor and y-coordinate. According to

Rodriguez et al. (2011), under the assumption that people stand

on the ground plane and the camera has no horizontal or in-plane

rotation, the relationship between head height and y-coordinate is

formulated as follows:

h = a3 ·
(

yo − yo
)

, (4)

where yo denotes the y-coordinate in the original RGB image; yo
denotes the y-coordinate of the horizon in the original RGB image;

and a3 is a parameter related to camera extrinsic parameters, such

as the camera height above the ground. We obtain the relationship

between y-coordinate yo and depth d by substituting Equation (4)

into Equation (2):

1

d
=

a3

a2
· yo −

a3

a2
· yo. (5)

We set a3
a2

= a4 and −
a3
a2

· yo = b4 to simplify Equation (5).

Then, Equation (5) is rewritten as follows:

1

d
= a4 · yo + b4. (6)

According to Equation (6), 1
d
is positively correlated with yo.

Next, we obtain the relationship between y-coordinate yo and

rescaling factor s by substituting Equation (6) into Equation (3):

s =
a1

a2 · a4
·

1

yo +
b4
a4

. (7)

We compute rescaling factors using Equation (7), where a1
is a parameter whose value is determined by experience; a2 is

related to intrinsic camera parameters; and a4 and b4 are related to

both extrinsic and intrinsic camera parameters. In general, camera

intrinsic parameters can remain unchanged. The value of a2 is

the same for images captured by cameras with identical intrinsic

parameters, and it can be determined by fitting Equation (2). In

contrast, it is difficult to keep the camera’s extrinsic parameters

constant. As a result, the values of a4 and b4 should be recalculated

for each image by fitting Equation (6) based on its associated

depth map.

3.2. Height transformation

Height transformation is implemented according to the

rescaling factors calculated by Equation (7), showing that each

image row has a specific value of rescaling factor. Thus, height

transformation can be performed by adjusting the height of each

image row according to its rescaling factor. Figure 3 displays the

height transformation principle using a toy example, where Io
denotes the original RGB image; It denotes the RGB image after

height transformation. The heights and y-coordinates of image

rows are displayed in Io and It . These heights aremeasured in pixels.

As shown in Figure 3, before height transformation, the height of

each row is 1. After height transformation, the height of each row

is multiplied by its corresponding rescaling factor. For example,

in Io, the height of the image row with y-coordinate y∗o is 1. After
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FIGURE 2

Flowchart of our crowd-counting framework.

height transformation, the height of its corresponding row in It
is changed to 1 s

(

y∗o
)

= s
(

y∗o
)

, and the y-coordinate is changed

to y∗t =
∑y∗o

yo = 1 s
(

yo
)

. s
(

yo
)

denotes the rescaling factor of the

image row with y-coordinate yo. It is calculated by Equation (7).

s
(

y∗o
)

= s
(

yo = y∗o
)

.

The toy example shown in Figure 3 depicts an ideal height

transformation process. In the ideal process, the calculated heights

and y-coordinates of image rows in It have a high probability

of being decimals. However, in practice, they should be integers.

Therefore, this ideal process cannot be implemented in practice. To

solve this problem, we approximate this ideal height transformation

process using some equations that can be easily implemented

in practice.

As shown in Figure 3, the relationship between y∗t and y∗o is

y∗t =
∑y∗o

yo = 1 s
(

yo
)

. We use integration to replace summing:

y∗t =

∫ y∗o

1
s(yo)dyo. (8)

Then, we substitute Equation (7) into Equation (8) and obtain

the following expression:

y∗t =
a1

a2 · a4
· ln

(

a4 · y
∗
o + b4

a4 + b4

)

. (9)

In Equation (9), a4, b4, and y∗o are above 0. Equation (9) can be

reformulated as:

y∗o =
1

a4

(

e
a2 ·a4
a1

·y∗t
(

a4 + b4
)

− b4

)

. (10)

The y-coordinates of image rows in the RGB image after height

transformation are integers, y∗t = 1, 2, 3, . . . , Ht , where Ht

denotes the height of the RGB image after height transformation.

For a particular y∗t , we can use Equation (10) to calculate its

corresponding y∗o . Let us use Io(y
∗
o) to denote the image row with

y-coordinate y∗o in Io, and use It(y
∗
t ) to denote the image row with

y-coordinate y∗t in It . In our height transformation process, the

pixels in Io(y
∗
o) are assigned to the pixels in It(y

∗
t ). We use linear

interpolation to calculate Io(y
∗
o) since the calculated y∗o has a high

probability of being a decimal:

It
(

y∗t
)

= Io
(

y∗o
)

=

(

y
∗

o −
⌊

y∗o
⌋

)

Io
(⌈

y∗o
⌉)

+

(

⌈

y∗o
⌉

− y
∗

o

)

Io
(⌊

y∗o
⌋)

. (11)

where
⌊

y∗o
⌋

denotes the nearest integer lower than y∗o;
⌈

y∗o
⌉

denotes

the nearest integer higher than y∗o ,
⌈

y∗o
⌉

−
⌊

y∗o
⌋

= 1.
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FIGURE 3

Height transformation process of a toy example. Io denotes the original RGB image; Ho denotes the height of Io; It denotes the RGB image after

height transformation; s(yo) denotes the rescaling factor calculated using Equation (7), and s (1) = s (yo = 1) , . . . , s
(

y*o
)

= s
(

yo = y*o
)

, . . . ,

s(Ho) = s(yo = Ho). The height of It is Ht =
∑Ho

yo=1 s (yo).

3.3. Crowd-counting networks

The proposed HRPT can be used as an image preprocessing

step in crowd-counting networks. Then, this study selects four

well-performing crowd-countingmethods: CSRNet (Li et al., 2018),

DM-Count (Wang B. et al., 2020), GL (Wan et al., 2021), and CLTR

(Liang et al., 2022) with their brief introductions presented below:

CSRNet (Li et al., 2018) is a representative crowd-counting

method based on density map estimation. It generates ground-

truth density maps by blurring the dot annotations of human

heads with Gaussian kernels. CSRNet uses VGG-16 (Simonyan

and Zisserman, 2015) as its backbone and uses the L2 loss

between predicted density map and ground-truth density map

as its loss function. A popular tactic used in density map-

based methodologies is to generate ground-truth density maps

using Gaussian kernels. Their counting performance is strongly

associated with the quality of generated ground-truth density maps

(Ma et al., 2019). However, a recent study indicates that using

Gaussian kernels is detrimental to the generalization performance

(Wang B. et al., 2020). DM-Count (Wang B. et al., 2020) is proposed

to solve the above problem by abandoning Gaussian kernels. It does

not generate any ground-truth density maps in advance, and it uses

optimally balanced transport to calculate the training loss between

the predicted density map and dot annotations of human heads. GL

(Wan et al., 2021) offers a similar technique to DM-Count (Wang

B. et al., 2020). Differently from DM-Count (Wang B. et al., 2020),

GL (Wan et al., 2021) uses unbalanced optimal transport, which

preserves the predicted and annotated counts and generates pixel

and point-wise loss.

The above three methods are based on Convolutional

Neural Networks (CNNs). In recent years, transformer has been

successfully used in many computer vision tasks and has achieved

higher performance than CNN (Han et al., 2023). Therefore, we

also employ a transformer-based crowd counting method, CLTR

(Liang et al., 2022). CLTR takes image features extracted by CNN

and trainable embeddings as input of a transformer-decoder. It

directly predicts the localizations of human heads.

3.4. The processing steps of our method

The processing steps of our method are shown in the following

Algorithm 1, where n denotes the nth crowd image in the dataset;N

denotes the total number of images in the dataset. The meanings

of a1, a2, a4, and b4 have been introduced in Section 3.1. The

meanings of y∗o , y
∗
t , Io(y

∗
o), It

(

y∗t
)

, Ht , and It have been introduced

in Section 3.2.

As shown in the above algorithm, a2 is set by fitting Equation

(2), and a4 and b4 are set by fitting Equation (6). We need to use

the depths in depth maps to fit these two equations. Thus, the depth

information is used in the above step (2) and step (4).

4. Experiment

The proposed HRPT requires the perspective information

in depth maps to accomplish image transformation. However,

most public crowd-counting datasets only contain RGB images
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Input: Crowd RGBD dataset, where images are

captured by cameras with same intrinsic

parameters.

(1) Set a1 by experience.

(2) Set a2 by fitting Equation (2) on the

training subset. The value of a2 is the same for

all images in this dataset. We need to use the

depths in depth maps to fit Equation (2).

(3) For n=1 to N do

(4) Set a4 and b4 by fitting Equation (6). The

values of a4 and b4 are recalculated for each

image.

We need to use the depths in depth maps to fit

Equation (6).

(5) For y∗t =1 to Ht do

(6) Calculate the corresponding y∗o of each y∗t

according to Equation (10).

(7) Calculate Io(y
∗
o ) using linear interpolation

according to Equation (11).

(8) Assign Io(y
∗
o ) to It

(

y∗t
)

.

(9) Count the number of people by sending It to

the crowd counting networks.

Output: The crowd-counting results.

Algorithm 1. Our proposed crowd-counting method.

(Wang Q. et al., 2020). Fortunately, Lian et al. (2019) released a

large RGB-D crowd-counting dataset called ShanghaiTechRGBD

in 2019, comprising 1193 training images and 1000 testing images.

Most of our experiments are done on this RGBD dataset. Besides,

our method can be extended to the RGB dataset by predicting the

depth maps of the RGB images. We choose ShanghaiTech PartB

dataset (Zhang et al., 2016) to evaluate the performance of our

method on the RGB dataset. Our experiments are implemented

with Pytorch framework. We use one Nvidia RTX 2080ti GPU and

one Intel Core i7 9700k CPU.

The image transformation and crowd-counting performances

of our method are discussed in the subsequent subsections.

4.1. Performance of image transformation

We use our experience to set a1 to 40. The counting

performances with different values of a1 are shown in Section 4.2.4.

Then, a2 is set to 350 by fitting Equation (2), and its value is the

same for all images. Using the least-square algorithm, a4 and b4 are

set by fitting Equation (6). Their values differ based on different

images. The distributions of a4 and b4 are shown in Section 4.2.4.

HRPT uses image processing to narrow the height gap among

human heads. Figure 4 depicts three groups of crowd RGB images

to demonstrate the effectiveness of HRPT. The heads of three

pedestrians are marked in each RGB image. Their pixel-measured

head heights are indicated on the left side of the images. HRPT

stretches the top areas of RGB images and shrinks the bottom

areas of RGB images, as shown in Figure 4. By comparing the

head heights shown in Figure 4, we observe that HRPT successfully

narrows the height gap among human heads. After HRPT, the head

heights are approximated to the value of a1.

In Figure 5, we compare the head heights to demonstrate the

effectiveness of HRPT. As shown in this figure, HRPT successfully

enlarges the heights of small heads in far areas, reduces the heights

of large heads in near areas, and narrows the height gap among

human heads.

4.2. Performance of crowd counting

4.2.1. Training details and metrics
To verify the effectiveness of HRPT on crowd counting, we

combine four well-performing crowd-counting neural networks,

CSRNet (Li et al., 2018), DM-Count (Wang B. et al., 2020), GL

(Wan et al., 2021), and CLTR (Liang et al., 2022), with HRPT.

During training of these four neural networks, Adam (Kingma and

Ba, 2014) is used as the optimizer, and the learning rate is set to

1× 10−5. The performance of different methods is evaluated using

the mean absolute error (MAE) and mean square error (MSE),

as follows:

MAE =
1

N

∑N

i=1

∣

∣

∣
C
p
i − C

gt
i

∣

∣

∣
, (12)

MSE =

√

1

N

∑N

i=1

(

C
p
i − C

gt
i

)2
, (13)

where N is the number of testing images; C
p
i and C

gt
i are

the predicted and ground-truth number of people in ith testing

image, respectively.

4.2.2. Comparisons to the baselines
This study combines HRPT with four well-performing crowd-

counting methods: CSRNet (Li et al., 2018), DM-Count (Wang

B. et al., 2020), GL (Wan et al., 2021), and CLTR (Liang et al.,

2022). Therefore, we use CSRNet, DM-Count, GL, and CLTR as our

baselines. Comparisons to these four baselines are shown in Table 1.

As shown in Table 1, CLTR is built based on transformer

(Liang et al., 2022), while CSRNet, DM-Count, and GL are

built based on CNN. Many studies have proved that transformer

has higher performance than other types of networks, such

as CNN (Han et al., 2023). However, the transformer-based

crowd-counting method CLTR has poorer performance than the

other three CNN-based methods in our experiments. This is

because, transformer models are more sensitive to the hyper-

parameters for training, such as batch size, and are huger and

more computationally expensive (Han et al., 2023). However,

we only have one Nvidia RTX 2080ti GPU. To train CLTR

on our device, we set a much smaller batch size than the

authors of CLTR. As a result, the maximum performance

of CLTR is not achieved. Even so, our experimental results

still demonstrate that HRPT can improve the crowd-counting

performance of CLTR.

Table 1 also demonstrates that HRPT offers a more significant

improvement to CSRNet than to DM-Count and GL. This is

because CSRNet uses Gaussian kernels to generate ground-truth

density maps. Its performance is highly dependent on the quality

of the generated ground-truth density maps, which is reduced due
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FIGURE 4

Three examples show the e�ectiveness of HRPT. The heads of three pedestrians are marked in each RGB image. Their head heights, measured in

pixels, are shown on the left of the images. In this figure, Ho denotes the height of the original crowd RGB image; Ht denotes the height of the crowd

RGB image transformed by HRPT; Cgt denotes the ground-truth number of people; Cp denotes the predicted number of people; and AE denotes the

absolute error.
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FIGURE 5

Comparisons of head heights to show the e�ectiveness of HRPT: (A) head heights in Example 1 of Figure 4; (B) head heights in Example 2 of Figure 4;

and (C) head heights in Example 3 of Figure 4.

TABLE 1 Comparisons to the baselines on the ShanghaiTechRGBD dataset.

Methods Architecture Speed (ms) MAE MSE

Preprocessing (CPU) Neural network (GPU)

Baselines CLTR (Liang et al., 2022) Transformer 0 249 5.29 7.70

CSRNet (Li et al., 2018) CNN 0 164 5.11 9.99

DM-Count (Wang B. et al., 2020) CNN 0 149 4.00 5.95

GL (Wan et al., 2021) CNN 0 152 3.96 5.97

Ours CLTR+HRPT Transformer 268 173 4.61 6.71

CSRNet + HRPT CNN 268 124 3.76 5.65

DM-Count + HRPT CNN 268 108 3.78 5.59

GL + HRPT CNN 268 111 3.70 5.42

Scores marked in bold indicate the best results on the corresponding metric.

to the scale variations of human heads (Ma et al., 2019). The above

quality reduction is narrowed since HRPT can narrow the height

gap among human heads. In contrast, DM-Count and GL do not

use Gaussian kernels to generate ground-truth density maps. Their

sensitivities to the scale variations of human heads are smaller

than those of CSRNet. Therefore, HRPT offers a more considerable

improvement to CSRNet than to DM-Count and GL. In addition,

because GL uses unbalanced optimal transport, which preserves

the predicted and annotated counts, it has better performance than

CSRNet and DM-Count. Therefore, GL+HRPT achieves the best

crowd counting performance.

Besides the evaluation scores of MAE and MSE, the processing

speeds are also shown in Table 1. The baselines do not employ the

preprocessing step. Therefore, they spend 0ms in the preprocessing

step. Our methods use HRPT as the preprocessing step. HRPT

spends 268ms for each image, which is a considerable amount of

time. This is because our current version of HRPT is operated in

CPU. In the future, we will put the for-loop in step (5) of Algorithm

1 in GPU to increase the processing speed. In addition, as shown

in Table 1, after HRPT, the processing speeds of neural networks

are faster than the baselines. This is because HRPT effectively

reduces much redundancy information in the near areas. Image

examples in Figure 4 show that, in the original crowd RGB images,

the near areas contain much fewer people but take up much more

image spaces. In contrast, in the crowd RGB images transformed by

HRPT, the near areas are shrunken by a large margin. The average

image size is reduced by HRPT.

Figure 4 also depicts the density map estimation results of GL

and GL+HRPT, displaying the effectiveness of HRPT on crowd

counting qualitatively. By comparing these density map estimation

results, we can see that HRPT distributes human heads more

evenly. In the density map estimation results of Example 1, a couple

of corresponding regions located at the top of images are marked.

After comparing these two regions, it becomes clear that without

HRPT, it is hard to distinguish between human heads that are far

from the camera. However, with HRPT, it is much easier to identify

these heads based on the estimated density map. Although these

two regions have different heights, they correspond to the same area

in the actual scene.

As GL+HRPT achieves the best performance, in the following,

we focus on the experiments of GL+HRPT, and use ours to

denote GL+HRPT.

4.2.3. Comparisons to other methods
In this subsection, we compare our method with other crowd-

counting methods that also use depth maps. Evaluation results of
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TABLE 2 Comparisons to other crowd-counting methods that also use depth maps on the ShanghaiTechRGBD dataset.

Methods Year Backbones MAE MSE

RDNet (Lian et al., 2019) 2019 ResNet-101+ VGG-16 4.96 7.22

CSRNet+ IADM (Liu et al., 2021) 2021 VGG-16× 3 4.38 7.06

DPDNet (Lian et al., 2022) 2022 ResNet-101+ VGG-16 4.23 6.75

Cross-model (Zhang et al., 2021) 2021 VGG-16× 2 3.76 5.46

Li et al. (2023) 2023 VGG-16× 2 4.03 5.81

CCANet (Liu et al., 2023) 2023 VGG-16+ Designed 3.78 5.56

Ours 2023 VGG-19 3.70 5.42

Scores marked in bold indicate the best results on the corresponding metric.

different methods on the ShanghaiTechRGBD dataset are shown in

the following Table 2.

In addition to the evaluation results of different methods,

Table 2 also displays their type of backbones. In Table 2, “Designed”

denotes that the authors designed the network backbone; “VGG-

16 × 3” depicts that the network contains three branches whose

backbones are VGG-16 (Simonyan and Zisserman, 2015), as do

“VGG-16 × 2”; “ResNet-101 + VGG-16” means that the network

contains two branches whose backbones are ResNet-101 (He et al.,

2016) and VGG-16. Similarly, “VGG-16 + Designed” means that

the network contains two branches whose backbones are VGG-16

and Designed.

As shown in Table 2, our method outperforms other methods

that also employ depth maps. This demonstrate that, although

employing depth maps improves the crowd-counting results,

different methods have different performances. Compared with

other methods, the proposed HRPT more efficiently uses depth

maps and improves the crowd-counting performance. Moreover,

other depth mapmethods use complex network backbones because

they employ additional network branches to deal with depth maps.

In contrast, our method uses depth maps in the HRPT module,

serving as a preprocessing step of an excellent crowd-counting

network. Therefore, our method can use depth maps without

changing any part of the original network structure. Thus, the

backbone used in our method is much simpler than those used in

other methods, which also use depth maps.

4.2.4. Study on image transformation parameters
a1 is a hyper-parameter of HRPT. As shown in Equation (1), it

represents the head height after HRPT. To study its effectiveness on

crowd-counting performance, we change its value to 10, 20, 30, and

40, and then evaluate the corresponding crowd-counting results.

Evaluation results with different values of a1 are shown in Table 3.

Table 3 shows that with the increase of a1, the crowd-counting

performance improves. a1 represents the head heights after HRPT.

The smaller the value of a1, the more image details are lost by

HRPT, which is detrimental to crowd counting. When we set a1
to 50, some images in our experimental dataset will become very

large and cannot be processed by the crowd-counting network on

our device. Therefore, we finally set a1 to 40.

In addition, the processing speeds in Table 3 show that, with

the increase of a1, the processing speed becomes slower and slower.

TABLE 3 Evaluation results with di�erent values of a1 on the

ShanghaiTechRGBD dataset.

a1 Speed (ms) MAE MSE

Preprocessing
(CPU)

Neural network
(GPU)

10 147 29 4.43 6.63

20 166 55 3.74 5.51

30 188 81 3.70 5.60

40 268 111 3.70 5.42

Scores marked in bold indicate the best results on the corresponding metric.

This is because, the larger the value of a1, the larger the images

outputted by HRPT. Then, the preprocessing step and neural

network need to spend more time to deal with these images.

a4 and b4 are set by fitting Equation (6). Their values

differ based on different images. Their distributions on the

ShanghaiTechRGBD dataset are shown in Figure 6. As shown in

this figure, in both the training and testing datasets, the maximum

number of a4 falls into (3, 4)× 10−4, and the maximum number of

b4 falls into [2.5, 4.0]× 10−2. In addition, the distribution of a4 on

the training subset is similar to the distribution of a4 on the testing

subset; the distribution of b4 on the training subset is similar to the

distribution of b4 on the testing subset.

4.2.5. Evaluation on RGB dataset
Our method can be extended to the RGB dataset by predicting

the depth maps of the RGB images (Lian et al., 2022). HRPT

estimates the relationship between the y-coordinate and rescaling

factor. It is built under the assumption that in each image, people

stand on the same ground plane and the camera has no horizontal

rotation. Therefore, HRPT suits images captured from flat areas

with surveillance views, and it requires the horizontal lines of

captured images to be parallel to the image rows. In addition, HRPT

narrows the head height gap by stretching the far areas. If some

rows in the image are close to or above the horizontal lines, the

depths of these rows are infinite. According to Equation (3), the

rescaling factors of these rows are also infinite. Thus, HRPT does

not suit images that contain image rows close to or above the

horizontal lines. Images in the ShanghaiTech PartB dataset (Zhang

et al., 2016) satisfy the above requirements. Therefore, we choose
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FIGURE 6

The histograms of a4 and b4 on ShanghaiTechRGBD dataset: (A) the histogram of a4 on the training subset; (B) the histogram of b4 on the training

subset; (C) the histogram of a4 on the testing subset; (D) the histogram of b4 on the testing subset.

ShanghaiTech PartB to evaluate the performance of our method on

the RGB dataset. Evaluation results of our method and many other

well-performing methods are shown in Table 4. As shown in this

table, our method achieves high performance.

5. Discussion

In this section, we first analyze why the proposed HRPT can

improve the crowd-counting performance from another point of

view. Afterward, we discuss another two image transformation

methods, the drawbacks of our methods and our future work.

5.1. Analysis

The proposed HRPT is designed to improve the crowd-

counting performance by alleviating the scale variation problem.

In the following, we analyze why the proposed HRPT can improve

the crowd-counting performance from another point of view.

First, we analyze the effect of HRPT on the bottom areas of

crowd RGB images. Human heads in the bottom areas are large

and sparse before HRPT, as shown in Figure 4. Larger human heads

contain muchmore detailed information. However, current crowd-

counting methods do not require so much detailed information

to pick out human heads. Therefore, the bottom areas of crowd

RGB images containmuch redundant information. Moreover, large

TABLE 4 Evaluation results of di�erent methods on the ShanghaiTech

PartB dataset.

Methods MAE MSE

MCNN (Zhang et al., 2016) 26.4 41.3

DecideNet (Liu et al., 2018) 20.8 29.4

CSRNet (Li et al., 2018) 10.6 16.0

RDNet (Lian et al., 2019) 8.8 12.9

DM-Count (Wang B. et al., 2020) 7.4 11.8

GL (Wan et al., 2021) 7.3 11.7

Cross-model (Zhang et al., 2021) 8.3 12.9

CCANet (Liu et al., 2023) 8.1 13.5

DPDNet (Lian et al., 2022) 7.9 12.4

AutoScale (Xu et al., 2022) 6.8 11.3

Ours 6.8 11.2

Scores marked in bold indicate the best results on the corresponding metric.

and sparse human heads occupy too much image space, making

counting networks spend toomuch energy on those “easy samples.”

After HRPT, the bottom areas are shrunken to shorten the heights

of human heads. Shrinking the bottom areas reduces redundant

information and compels counting networks to pay more attention

to the top areas with more “hard samples.”
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FIGURE 7

A group of images to show the e�ect of narrowing the width gap among human heads by changing a rectangle-shaped image into a fan-shaped

image: (A) before shape changing; (B) after shape changing. In this figure, the height gap among human heads has been narrowed by HRPT.

Next, we analyze the effect of HRPT on the top areas of

crowd RGB images. As shown in Figure 4, before HRPT, human

heads in the top areas are tiny and dense. Information about these

small human heads may be lost when extracting high-level image

features through crowd-counting networks. After HRPT, the top

areas are stretched to enlarge the heights of human heads. Even

though human heads in these top areas become thinner, they can

still be identified as human heads. The possibility of losing their

information while extracting high-level image features becomes

much smaller. Therefore, the proposed HRPT can improve crowd-

counting performance.

5.2. Other two image transformation
methods

5.2.1. Shape-changing method
Section 4 reports the experimental results demonstrating that

narrowing the height gap among human heads helps improve

crowd-counting performance. What about narrowing the width

gap among human heads? If we attempt to narrow the width

gap by changing each row’s width according to the rescaling

factor calculated from Equation (7), the shape of the RGB image

will be changed from rectangle to trapezoid. Moreover, human

heads in the top-right and top-left regions will be seriously

deformed and lose their essential characteristics. To avoid this

severe deformation, we narrow the width gap among human heads

by changing rectangle-shaped images into fan-shaped images. This

shape-changing method naturally enlarges the widths of human

heads in the top regions and shortens the widths in the bottom

regions. Figure 7 displays a group of crowd RGB images to show

the effect of narrowing the width gap among human heads through

shape changing.

As shown in Figure 7, this shape-changing method is operated

by changing the shape of each image row from straight to semi-

circle, and the width gap among human heads is successfully

narrowed after shape changing. However, this shape-changing

method has a shortcoming: it adds additional rotation.We combine

this shape-changing method with GL and GL + HRPT to evaluate

its effect on crowd-counting performance. The evaluation results

are shown in Table 5.

TABLE 5 Evaluation results of shaping changing method on

ShanghaiTechRGBD dataset.

Methods MAE MSE

GL 3.96 5.97

GL+ Shape-Changing 4.36 6.43

GL+HRPT 3.70 5.42

GL+HRPT+ Shape-Changing 4.27 6.30

Scores marked in bold indicate the best results on the corresponding metric.

As shown in Table 5, after we combine this shape-changing

method with GL, MAE and MSE rise to 4.36 and 6.43,

respectively; after we combine this shape-changing method

with GL + HRPT, MAE and MSE rise to 4.27 and 6.30,

respectively. These experimental results demonstrate that this

shape changing negatively affects crowd counting, implying that

the crowd-counting network is not robust enough to handle the

additional rotation.

5.2.2. Geometric method
The perspective effect mainly causes the scale variation problem

in crowd images. Accurately eliminating the perspective effect on

the 3D world is very hard in surveillance scenes. In contrast,

homographs can quickly eliminate the perspective effect on the 2D

ground (Hartley and Zisserman, 2003). Here, we test whether the

homograph can narrow the scale gap (both height and width gap)

among human heads by eliminating the perspective effect on the 2D

ground. Figure 8 displays a group of crowd RGB images to show the

effect of the homograph.

We zoom in on two areas of Figure 8B to display the effect of

the homograph. We can observe the shape of floor tiles in these

two areas. As shown in Figure 8, the shape of the floor tiles is

trapezoid before the homograph, and these tiles have different sizes.

After homograph, the shape of the floor tiles returns to square,

and these floor tiles have the same size. This result demonstrates

that the homograph can eliminate the perspective effect on the 2D

ground and narrow the scale gap (both height gap and width gap)

among floor tiles. However, as shown in Figure 8B, homograph

cannot narrow the scale gap among human heads. After the
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FIGURE 8

A group of crowd RGB images to show the e�ect of eliminating the perspective e�ect by homograph: (A) the original crowd RGB image; (B) the

crowd RGB image transformed by homograph.

homograph, the human heads far from the camera are stretched

too much, and those near the camera are shrunken too much.

Additionally, human heads at the top-right and top-left regions

are seriously deformed and lose their essential characteristics.

Severe deformation is harmful to crowd counting. The homograph

transformation result shown in Figure 8B is similar to a frame of

crowd video rectified by estimated scene geometry in Rodriguez

et al. (2011).

5.3. Drawbacks and future works

This study proposes HRPT to narrow the height gap among

human heads. HRPT narrows the head height gap by stretching

the far areas. If some rows in the image are close to or above the

horizontal lines, the depths of these rows are infinite. According to

Equation (3), the rescaling factors of these rows are also infinite.

Thus, we cannot transform them by our HRPT. Furthermore,

HRPT is built under the assumption that in each image, people

stand on the same ground plane and the camera has no horizontal

rotation. Therefore, it only suits images captured from flat areas

with surveillance views, and it requires the horizontal lines of

captured images to be parallel to the image rows. The above

requirements limit the wide usage of HRPT. In the future, we plan

to address the above first problem by a segmentation method to

remove image rows above the horizontal lines. Moreover, we plan

to address the above second problem by building a more advanced

image transformationmodel that suits more scenarios and does not

require the horizontal lines of captured images to be parallel to the

image rows.

In addition, as mentioned above, we do not achieve satisfactory

results when narrowing the width gap among human heads. In the

future, we will improve crowd-counting performance by proposing

a more efficient image transformation method to narrow the width

gap among human heads and an efficient crowd-counting network

to handle the additional rotation, as shown in Figure 7B.

As shown in Section 4.2.5, our method can be extended to the

RGB dataset by predicting the depth maps of the RGB images.

However, owing to the limitation of monocular vision, single

image-based depth prediction methods only provide relative depth

information (Lian et al., 2022), which limits their depth prediction

accuracy. Previous research has demonstrated that embedding focal

length can overcome the problem of single image-based depth

prediction and acquire accurate depths (He et al., 2018). In the

future, we will build a crowd-counting dataset with known focal

lengths, then use these focal lengths to predict accurate depths,

and finally associate these accurate depth prediction results with

our method to further improve the crowd-counting accuracy on

RGB images.

Besides, as shown in Table 1, HRPT spends 268ms for each

image, which is a considerable amount of time. Our current version

of HRPT is operated in CPU. In the future, we will put the for-loop

in step (5) of Algorithm 1 in GPU to increase the processing speed

of HRPT.

6. Conclusions

This study uses HRPT to alleviate the scale variation problem

in crowd-counting tasks. HRPT creatively narrows the height

gap among human heads by using the perspective information

contained in the depth map. Moreover, it enlarges small human

heads in far areas to make them more visible, and it shrinks large

human heads in closer areas to reduce redundant information.

Other excellent crowd-counting methods can easily employ HRPT

as a preprocessing step. Experimental results show that our method

achieves high crowd-counting performance.
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