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Introduction: An increasing number of studies investigate the influence of

training interventions on muscle thickness (MT) by using ultrasonography.

Ultrasonography is stated as a reliable and valid tool to examine muscle

morphology. Researches investigating the e�ects of a training intervention

lasting a fewweeks need a very precisemeasurement since increases inMT can

be assumed as small. Therefore, the aim of the present work was to investigate

the concordance betweenMT via sonography andmuscle cross-sectional area

(MCSA) determined via MRI imaging (gold standard) in the calf muscle.

Methods: Reliability of sonography measurement and the concordance

correlation coe�cient, the mean error (ME), mean absolute error (MAE) and

the mean absolute percentage error (MAPE) between sonography and MRI

were determined.

Results: Results show intraclass correlation coe�cients (ICC) of 0.88–0.95

andMAPE of 4.63–8.57%. Concordance betweenMT andMCSAwas examined

showing ρ = 0.69–0.75 for the medial head and 0.39–0.51 c for the lateral

head of the gastrocnemius. A MAPE of 15.88–19.94% between measurements

were determined. Based on this, assuming small increases in MT due to training

interventions, even with an ICC of 0.95, MAPE shows a high error between two

investigators and therefore limited objectivity.

Discussion: The high MAPE of 15.88–19.94% as well as CCC of ρc = 0.39–

0.75 exhibit that there are significant di�erences betweenMRI and sonography.

Therefore, data from short term interventions using sonography to detect

changes in the MT should be handled with caution.
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Key points

The aim of this study was to examine the measurement

error between the determination of muscle thickness using

sonography and of muscle cross-sectional area using MRI

measurement. Results show measurement errors of sonography

equal to the expected enhancements in muscle thickness

following commonly used training interventions over periods

of several weeks. Consequently, assuming increases of 5–10% of

muscle cross-sectional area and/or muscle thickness, the use of

sonography should be questioned.

Introduction

Increasing muscle mass is of high importance in (elite)

sports (Del Vecchio et al., 2019; Kordi et al., 2020; Zaras

et al., 2021), prevention – especially in age-related diseases

such as sarcopenia (English and Paddon-Jones, 2010; Lopes

et al., 2019; Vikberg et al., 2019) – and rehabilitation of

orthopedic indications (Wada et al., 2020). Consequently,

several training methods aim to improve muscle mass which

is usually measured via muscle thickness (MT) or muscle

cross-sectional area (MCSA) (Schoenfeld et al., 2016; Simpson

et al., 2017; Wackerhage et al., 2019; May et al., 2021), also

in rehabilitative settings (Guthrie et al., 2012; Larivière et al.,

2019; Padulo et al., 2020). Sarto et al. (2021) pointed out

promising applications of sonography in (elite) sports settings.

Imaging via sonography is often used to pinpoint injuries and

muscular imbalances (Connell et al., 2004, 2006; Balius et al.,

2012). But, especially if the aim is to determine changes from

pre- to post-test, e.g., in sarcopenia (Rustani et al., 2019), or

following a training intervention (Ticinesi et al., 2017), an exact

determination of possible changes in morphological parameters

is requested. This is underlined by documented increases of

moderate effect sizes in MCSA or MT (5.56% – 8.02%, d

= 0.36–0.58) (Schoenfeld et al., 2016; Amirthalingam et al.,

2017; Coratella et al., 2018; Prestes et al., 2019; Matos et al.,

2022) in different muscle groups. In addition, there were even

higher increases of up to 17.78% (from 18.0 ± 4.7mm to 21.1

± 16mm, d = 0.66) (Evangelista et al., 2019) in untrained

individuals following an 8-week whole body resistance training

intervention and of 13.06% (from 26.8 ± 5.9mm to 30.3 ±

5.9mm) with d = 0.59 (Ozaki et al., 2020) in the leg muscles

of untrained individuals after a 12-week training intervention

– both measured via sonography. Using MRI, there were also

increases in MSCA of 4 – 6.1% in the quadriceps, (Athiainen

et al., 2005; Souza et al., 2014; Watanabe et al., 2014; Tavares

et al., 2017) and 7.4% for muscle volume with d = 0.38 (Wirth

et al., 2007) in the biceps brachii muscle.

Accordingly, a high concordance between measurement

procedures with very low measurement error is mandatory to

rule out the possibility thatmeasured changes could be explained

due to measurement error. To investigate MT, sonography

is commonly used (Sarto et al., 2021) and is described as

a valid and reliable assessment with inter-day reliability of

an intraclass correlation coefficient (ICC) of 0.72–0.99 (Wong

et al., 2013; Rosenberg et al., 2014) and intra-day reliability

of ICC = 0.97–0.99 in the multifidus lumborum and the

gastrocnemius muscle, as well as very high inter-rater- and

intra-rater reliability of ICC = 0.78–0.94 (Wallwork et al., 2007;

Teyhen and Koppenhaver, 2011; Chiaramonte et al., 2019; Betz

et al., 2021) measured in the quadriceps and multifidus muscle.

However, reviews by English et al. (2012) and Hebert et al.

(2009) only showed moderate reliability for intra- and inter-

day reliability (ICC= 0.62–0.97) when investigating muscle size

via sonography. Both reviews pointed out partially low quality,

high bias of sonography measurements, and heterogeneity

of reliability in included studies. Accordingly, Barotsis et al.

(Barotsis et al., 2020) provided low to high ICCwhen performing

sonography measurements three times within 24 hours of 0.30–

0.99, dependent on the muscle examined, with the lowest ICC

of 0.3 in the massester muscle and the highest ICCs 0.99 in the

arm and the calf muscles (Panidi et al., 2021; Yahata et al., 2021;

Warneke et al., 2022). Kim et al. (2011) also showed Pearson

correlation coefficients and ICC for determining muscle size via

sonography of 0.43–0.53 in the supraspinatus. To evaluate and

compare correlations between different studies, a high degree

of standardization is required. However, the literature reveals

challenges in standardizing sonography as results are highly

dependent on the localization of the measurement (English

et al., 2012) and the pressure applied by the examiner (Sarto

et al., 2021). Magnetic resonance imaging (MRI) is stated as

gold standard when investigating MCSA (Bemben, 2002) and

predicting injuries and recovery (Connell et al., 2004). MRI is

often used to evaluate sonography’s validity by comparison or

correlation analyses (Bemben, 2002).

Some studies show high correlations of up to r = 0.97

(Bemben, 2002; Thomaes et al., 2012; Palmer et al., 2015)

between both methods, depending on measured muscles

(Giles et al., 2015), ranging from r = 0.37–0.97. There were

correlations of r = 0.72–0.97 for muscle of the shoulder

(Dupont et al., 2001; Khoury et al., 2008), r = 0.82–0.88 for

the hip muscles (Mendis et al., 2010), r = 0.71–0.94 for the

hamstrings (Palmer et al., 2015) and r = 0.88–0.94 for the

forearm muscles (Abe et al., 2018). However, using traditional

correlation calculations (Pearson, Spearman, ICC) to examine

the concordance of two measurements must be questioned

(Lin, 1989; Grouven et al., 2007). Lin (1989) suggested using

the concordance correlation coefficient (CCC) to explore the

reproducibility of two methods when evaluating measurement

devices. Furthermore, when examining parameters gathered by

two measurement techniques, there should be a very low level of

variance between those techniques. Bland-Altman (BA) analysis

(Giavarina, 2015; Dogan, 2018) is recommended to evaluate the

level of variance between two testing methods (Grouven et al.,
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2007). Generally, ICC and/or Pearson correlations classified

as high (>0.8) are commonly used to justify sonography as

an alternative method to MRI (Mendis et al., 2010; Yi et al.,

2012; Betz et al., 2021). Abe et al. (2015) and Franchi et al.

(2018) assumed that MT reflects the cross-sectional area in

the lower legs in the lower extremity, including the quadriceps

and triceps surae. Because of comparatively low morphological

increases due to training interventions of up to 8 weeks, a

highly sensitive and accurate determination of MCSA and

MT is required. No statement about the mean error of the

measurement is given using correlative calculations, which

should be involved to the evaluation of a measurement device to

estimate the precision of a measurement. However, since there

are conflicting results regarding the reliability of sonography in

determiningmuscle morphology, an evaluation of bothmethods

is required. Consequently, this study critically evaluates the

requested aspects (Abe et al., 2015; Ticinesi et al., 2018): First,

the reliability and the agreement of sonography measurements

between two raters. Second, the detection of the reproducibility

and concordance between MT measured via sonography and

MCSA measured viaMRI in the calf muscle.

Methods

To examine the concordance between bothmethods, 96MRI

and sonography values were evaluated. The literature shows

differing reliabilities dependent on muscle groups (Giles et al.,

2015; Barotsis et al., 2020) with the leg muscles exhibiting

high reliability values with ICCs of up to 0.99 in the plantar

flexors (Panidi et al., 2021; Yahata et al., 2021; Warneke et al.,

2022). Thus, the gastrocnemius muscle was used for this

investigation. Furthermore, sonography images were collected

from two different investigators to determine the inter-rater

reliability of the sonography investigations. Correlations were

determined for both investigators for sonography. Furthermore,

correlations were calculated between determined MT via

sonography and MCSA measured via the gold standard

method MRI.

Subjects

Forty eight young healthy subjects (male: 36, female: 12, age:

28.22 ± 5.26 years, height: 181.04 ± 9.58 cm, weight: 81.78 ±

15.51 kg) were recruited from the university campus. Subjects

with implants or protheses, claustrophobia or anxiety were

excluded from the study. All participants were informed about

the experimental risks and provided written informed consent to

participate in the present study. Furthermore, approval for this

study was obtained from the institutional review board (Carl von

Ossietzky University of Oldenburg, No.121-2021). The study

was performed with human participants in accordance with the

Helsinki Declaration.

Sonography

MT is defined as the linear, perpendicular distance between

the two linear borders of the skeletal muscle and was

obtained by averaging three measurements across the proximal,

central and distal portions of the obtained ultrasound images

(Franchi et al., 2018; Sarto et al., 2021). Two investigators

independently evaluated MT using the image processing

software MicroDicom (Sofia, Bulgaria). The objectivity of the

evaluators was determined as high (r = 0.87). In the literature,

high-reliability values of up to r = 0.9 for determining MT via

ultrasound for intra-day reliability (Nabavi et al., 2014; Cuellar

et al., 2017) and ICC values of up to 0.97 for inter-day reliability

are considered as high (König et al., 2014; Rahmani et al.,

2019). In the plantar flexors, using sonography to determine

MT showed high reliability with ICC of up to 0.99 (Rosenberg

et al., 2014; Panidi et al., 2021; Yahata et al., 2021; Warneke et al.,

2022). Three images were evaluated for eachmuscle examined to

reduce the standard error. A reduction of the standard error by

50% can be assumed using this procedure (Koppenhaver et al.,

2009; Teyhen and Koppenhaver, 2011).

MT was examined in the medial and lateral head of

the gastrocnemius. Measurements were performed using a

two-dimensional B-mode ultrasound (Mindray Diagnostic

Ultrasound System). A linear transducer with a standardized

frequency of 12–13 MHz was used to record images of both

heads of the gastrocnemius. Each participant was placed in a

prone position on a table with the feet hanging down at the

end to ensure no contraction in the calf muscles. Subsequently,

the sonographer identified the proximal and distal landmark of

the lateral gastrocnemius for each participant and measurement

(Perkisas et al., 2021). 30% of the distance between the articular

cleft of the knee joint to the most lateral top of the lateral

malleolus was used to place the transducer (Perkisas et al., 2021).

The muscle belly was determined as the center of the muscle

between its medial and lateral borders where the maximal

MCSA can be assumed (Fukunaga et al., 1992; May et al.,

2021). In addition, the image plane is best aligned with the

muscle’s fascicles including minimal fascicle curvature (Bénard

et al., 2009; Raj et al., 2012; May et al., 2021). To improve

acoustic coupling and to reduce the transducer’s pressure on the

skin before starting the measurement, a transmission gel was

applied. Next, the investigators ensured that the superficial and

deep aponeuroses were as parallel as possible by holding and

rotating the transducer around the sagittal-transverse axis to the

determined point on the skin without compressing the muscle.

Hence, the visibility of the fascicles as continuous striations from

one aponeurosis to the other was optimized (see Figure 1).
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FIGURE 1

Determination of muscle thickness.

MRI measurement

MRI was performed at the Neuroimaging Unit of the Carl

von Ossietzky University of Oldenburg using a 3T Siemens

Magnetom Prisma MRI with a T1-weighted turbo-spin-echo

sequence (40 slices, slice thickness = 7mm, TR = 1600ms,

TE = 14ms, voxel size = 0.4 x 0.4 mm², FOV = 150

x 150, distance factor = 20%, flip angle = 150◦, TA =

8:16min) with a combination of the body and spine coil.

Each participant was placed on the back and the measurement

was performed first on the left leg, immediately followed by

the right leg. The evaluation of MRI images and therefore

examination of MCSA was performed by bordering the fascia

layers of the lateral and the medial head of the gastrocnemius

(see Figure 2) with MicroDicom (Sofia, Bulgaria) by two

investigators independently from each other and anonymized

for participant and group. Examination of images started from

the first image distal of the knee joint where a clear bordering

of the muscle could be seen to the transition from the muscle

to the tendon. For evaluation of MCSA the mean of the three

highest MCSA values in the lateral and the medial head of the

gastrocnemius were used to minimize potential error of location

(Koppenhaver et al., 2009; Teyhen and Koppenhaver, 2011).

Reliability of MRI measurements can be assumed as very high

with r= 0.99 (Wirth et al., 2007; Wang et al., 2021).

Data analysis

The data was analyzed using SPSS 28.0 (IBM, Ehningen,

DE, Germany) and graphics were produced with “R.” The

significance level for all statistical tests was set at p < 0.05.

The descriptive statistics for all measures are presented as the

mean (M) ± standard deviation (SD). Values were obtained

FIGURE 2

Evaluation of muscle cross-sectional area in the medial and

lateral head of the gastrocnemius.

from an intervention study consisting of pre-test and post-test

values. To determine significant differences in the correlation

coefficients between subgroups (different measurement times),

the data were z-transformed according to the Fisher method

(Ferreira and Zwinderman, 2006). Reliability was determined

for intra-day and inter-day reliability. Calculation of ICC

as well as coefficients of variability (CV) between the best

and the second-best value of MT within 1 day (intra-day

reliability), the best values between two consecutive days (inter-

day reliability) and the best value of investigator one and

investigator two (investigator objectivity) were calculated. Two

investigators performed this statistical procedure to determine

objectivity in the calculation. Furthermore, a two-tailed Pearson

correlation was determined between the best value of measured

MT and the maximal MCSA determined by MRI. Then,

reproducibility and concordance were determined between

sonography measurements conducted by both investigators by

calculating Lin’s CCC. Lin (1989) suggested using CCC for

the evaluation of medical devices if the aim is to examine

reproducibility which is, in fact, not given by using Pearson

correlations (Lin, 1989; Koch and Spörl, 2007; Kwiecien et al.,

2011). Furthermore, the mean error (ME) between both testing

methods was calculated by

ME =
1

n
∗

n
∑

i=1

(xi − yi),

the mean absolute error (MAE) by

MAE =
1

n
∗

n
∑

i=1

∣

∣xi − yi
∣

∣ ,
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TABLE 1 Intra-day reliability with intra class correlations and

coe�cients of variability.

Parameter ICC (95% CI) CV (in %)

Gastrocnemius lateralis (investigator 1) 0.88 (0.8–0.93) 4.19± 5.3

Gastrocnemius medialis (investigator 1) 0.95 (0.90–0.97) 2.86± 2.37

Gastrocnemius lateralis (investigator 2) 0.90 (0.84–0.95) 4.42± 5.01

Gastrocnemius medialis (investigator 2) 0.937 (0.89–0.97) 3.15± 2.45

ICC, intraclass correlation coefficient; CV, coefficient of variability.

TABLE 2 Descriptive statistics of MT measured with sonography and

MCSA measured with MRI.

Parameter M ± SD Minimum Maximum

MT G.Medialis (1) 18.75± 3.02 12.68 26.14

MT G.Lateralis (1) 14.60± 2.66 9.41 23.21

MT G.Medialis (2) 18.89± 3.17 12.74 27.61

MT G.Lateralis (2) 14.93± 2.78 10.20 22.63

MCSA G. Medialis 1,713.20± 468.24 741.33 3,203.00

MCSA G. Lateralis 1,020.99± 245.75 503.65 1,564.00

MT, muscle thickness; MCSA, muscle cross-sectional area; G. Medialis, medial head of

the gastrocnemius; G. Lateralis, lateral head of the gastrocnemius; (1), first investigator;

(2), second investigator.

and the mean absolute percentage error (MAPE) by

MAPE =
100%

n
∗

n
∑

i=1

∣

∣

∣

∣

xi − yi
xi

∣

∣

∣

∣

.

To determine the reproducibility of MRI, CCC was

calculated to evaluate whether or to what extent MT and MCSA

measure the same parameter. Additionally, MAE and MAPE

are provided. For this reason and because different units in

sonography (MT in mm) and MRI (MCSA in mm²) were used,

further calculation was done using z-transformed data:

xi →
xi − xn

σ
.

Results

Intra-day reliability for both investigators

Intra-day reliability of sonography measurement of both

investigators is provided in Table 1.

Concordance and inter-rater reliability in
sonography imaging between both
investigators

For the medial head of the gastrocnemius inter-rater

reliability between investigator 1 and investigator 2 can be

assumed as high with [r = 0.93 (0.90–0.96, 95% CI), ICC =

0.93 (0.90–0.95, 95% CI), CV = 3.26 ± 2.68%, and ρc = 0.93

(0.9–0.95, 95% CI)].

For the lateral head of the gastrocnemius inter-rater

reliability between investigator 1 and investigator 2 can be

assumed as high with r = 0.834 [0.758–0.887, 95% CI], ICC =

0.833 [0.76–0.89, 95% CI] CV of 5.92 ± 5.43% and ρc = 0.8

[0.67–0.88, 95% CI].

Investigating the ME, MAE and MAPE for the medial head

of the gastrocnemius results showed a ME=−0.14mm, a MAE

= 0.88mm and aMAPE= 4.63%, while in the lateral head of the

gastrocnemius, there was a ME = −0.33mm, MAE = 1.20mm,

and MAPE= 8.57%.

Figure 3 shows the CCC for sonography measurement

between investigator 1 und investigator 2 in the lateral head of

the gastrocnemius (a) and medial head of the gastrocnemius (b).

Concordance between sonography and
MRI

Descriptive statistics of MT and MCSA is provided in

Table 2. Using z-transformed values, there is a MAE of 0.70 and

ME of−0.15 betweenMRI and sonography in the gastrocnemius

medialis using values of the first investigator and MAE of 0.79

and ME of−0.15 when using values of the second investigator.

Using z-transformed values between MRI and sonography,

there is a MAE in the gastrocnemius lateralis of 0.98 and ME of

−0.18 using values from first investigator and MAE of 0.99 and

ME of−0.18 when using values of the second investigator.

To determine the relationship between the real values of

the sonography and MRI measurement, the linear trend line

was taken for MRT measure (y) as a function of sonography

measure (x):

Gastrocnemius medialis:

1. investigator: y = f (x) = 116.738∗x− 476.07

2. Investigator: y = f (x) = 102.245∗x− 218.196

Gastrocnemius lateralis:

1. investigator: y = f (x) = 46.844∗x+ 336.942

2. Investigator: y = f (x) = 34.735∗x+ 502.438

The differences for all x between f (x) and the associated

MRT-values were determined and absolute and mean values

were used for further calculation. Based on this, when using

values from investigator 1 for MT in the medial head of the

gastrocnemius there was aME= 0.0001,MAE= 251.483 with a

maximum= 754.988 and aMAPE= 15.88%with amaximum=

72% between MCSA and MT. Using values from investigator 2,

there was aME= 0.0036, aMAE= 268.665 with amaximum=

1017.608 and aMAPE= 17.066% with amaximum= 77.52%.

Determining the ME, MAE, and MAPE between MCSA and

MT in the lateral head of the gastrocnemius showed a ME =

Frontiers in Imaging 05 frontiersin.org

https://doi.org/10.3389/fimag.2022.1039721
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Warneke et al. 10.3389/fimag.2022.1039721

FIGURE 3

Concordance correlation coe�cient between investigator 1 and investigator 2 for determining muscle thickness in the medial head (A) and the

lateral head (B) of the gastrocnemius.

0.0003, a MAE = 177.201 with a maximum = 434.459 and a

MAPE = 19.14% with a maximum = 77.57% using MT values

from investigator 1. Using MT values from investigator 2 there

was a ME = 0.0005, a MAE = 184.207 with a maximum =

491.070 and aMAPE= 19.94% with amaximum= 94.76%.

All MRT-values are reported in mm² except for MAPE.

Concordance between both measurements was calculated

with CCC by Lin (1989) and is plotted for the lateral head

of the gastrocnemius in Figure 4 for the first investigator (a)

and the second investigator (b) and for the medial head of the

gastrocnemius in Figure 5.

Pearson correlations coefficients (r) and CCC (ρc) were

calculated and are provided in Table 3.

Discussion

The aim of present work was to investigate the concordance

between MT via sonography and MCSA determined via MRI

(gold standard) in the calf muscle. In general, ICC and/or

Pearson correlations are used to argue for sonography as an

alternative method to MRI (Mendis et al., 2010; Yi et al.,

2012; Betz et al., 2021). MT is assumed to reflect the cross-

sectional area in the lower legs (Abe et al., 2015; Franchi et al.,

2018). However, since there are conflicting results regarding the

reliability of sonography in determining muscle morphology,

an evaluation of both methods is required. Consequently,

this study aimed to critically evaluate the following two

aspects: First, the reliability and concordance of sonography

measurements between two investigators. Second, the detection

of the reproducibility and concordance between MT measured

via sonography andMCSAmeasured viaMRI in the calf muscle.

Critical evaluation of sonography
measurement to examine muscle
thickness

In literature, there are studies showing correlation
coefficients of r = 0.37–0.97 between sonography and
MRI (Bemben, 2002; Thomaes et al., 2012; Palmer et al.,

2015), arguing that sonography is a reliable and valid

alternative to determine morphological changes following
training interventions or muscular disuse. Based on Pearson

correlation coefficients, some authors suggest using sonography
to determine hypertrophy or atrophy following training

interventions or sarcopenia (Rustani et al., 2019). The present

study found high correlations of r = 0.83–0.93 and ICC

values between two investigators with high ICC for intra-day

reliability ICC = 0.83–0.93 of sonography as well. However,

English et al. (2012) stressed some methodological issues

of the included studies in their review, pointing out an

overestimation of reliability in sonography. First, problems

of the listed studies arise from inadequate statistical analyses.

Most studies state that ICC and correlation coefficients calculate

the reliability of sonography measurements. However, the

classification into “high,” “moderate,” and “low” as well as

the following interpretation seem inaccurate and should

therefore be questioned. Studies point out reliability as “good

overall” with inter- and intra-day reliability of ICC = 0.67–

0.99 (Bentman et al., 2010; Wong et al., 2013; Rosenberg

et al., 2014) and very high inter- and intra-rater reliability

with ICC = 0.77–0.94 (Wallwork et al., 2007; Teyhen and

Koppenhaver, 2011; König et al., 2014; Temes et al., 2014;

Chiaramonte et al., 2019; Betz et al., 2021). Another systematic

review from 2017 found intra- and inter-rater reliabilities
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FIGURE 4

Determination of the concordance between muscle thickness measured via sonography and muscle cross-sectional area measured via MRI in

the lateral head of the gastrocnemius for both investigators.

FIGURE 5

Determination of the concordance between muscle thickness measured via sonography and muscle cross-sectional area measured via MRI in

the medial head of the gastrocnemius for both investigators.

TABLE 3 Comparison between Pearson correlation coe�cient and the concordance analysis for lateral and medial head of the gastrocnemius for

both investigators.

MTG.Lateralis MT G.Medialis

MCSA G.Lateralis MCSA G.Medialis

Investigator 1 r= 0.57 (0.34–0.65)

ρc = 0.51 (0.34–0.64)

r= 0.75 (0.65–0.83)

ρc = 0.75 (0.65–0.83)

Investigator 2 r= 0.39 (0.20–0.55)

ρc = 0.39 (0.21–0.55)

r= 0.69 (0.57–0.79)

ρc = 0.69 (0.57–0.79)

MT, muscle thickness; MCSA, muscle cross-sectional area; G. Medialis, medial head of the gastrocnemius; G. Lateralis, lateral head of the gastrocnemius; (1), first investigator; (2),

second investigator.
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of ICC = 0.45–0.99 examining the morphology of tendons

(McAuliffe et al., 2017). Considering a MAPE of 4.6–8.6% with

a corresponding inter-rater reliability of ICC = 0.892–0.931,

which are higher than many of the ICCs considered high in

the literature, the perception of “high reliability” is strongly

biased. Second, problems in standardization within the included

studies further limit the confidence of data interpretation

(English et al., 2012). It was pointed out that most studies

did not provide information on the location and usage of

the transducer. Especially by determining the effects of an

intervention these information would be mandatory (English

et al., 2012). Standardized protocols should be adopted to

ensure the quality and comparability of studies (Connolly

et al., 2015). Accordingly, using sonography to determine MT

and muscle architecture, especially in pre-post comparisons,

should be critically questioned (Bentman et al., 2010) because of

mentioned limitations in standardization and great subjective

influences in the procedure listed by many authors, which can

be attributed to e.g., the influence of the pressure applied to

the transducer as well as the angle of the transducer (Hebert

et al., 2009; Bentman et al., 2010; Connolly et al., 2015).

Consequently, the accuracy of reliability calculations can also be

questioned since the measurement methodology seems to lack

objectivity or missing details on the measurement’s repeatability.

These problems lead to limited comparability of MT which

can be seen in MAPE and MAE between two investigators

performing sonography measurement in one participant in

a cross-sectional study design. This is of crucial importance

when sonography is used to determine changes in MT in

pre-post comparisons (Schoenfeld et al., 2017, 2019; Ehsani

et al., 2019) considering this study found a MAPE 4.6–8.6%

between investigators for the use of sonography compared to

MT percentage increases of 4.5–8% in listed studies (Athiainen

et al., 2005; Watanabe et al., 2014; Schoenfeld et al., 2016;

Coratella et al., 2018; Matos et al., 2022). Based on this, these

values do not seem to be sufficient to describe sonography

as a very precise and adequate measurement device which is

requested to determine muscle morphology (Ticinesi et al.,

2017). Furthermore, the classification of reliability values and

correlation coefficients should be classified according to the

purpose of use (Cohen, 1988) and should consider the expected

effects of the performed intervention.

Critical evaluation of interpretations from
current literature

If sonography imaging is considered “in the light of

methodological limitations [. . . ] which may have led to

overestimation of reliability indices” (English et al., 2012, p.

942), a calculation of concordance between sonography and

MRI (which is assumed as the gold standard method because

of high objectivity in imaging) seems to be questionable in

general, especially using correlation coefficients and ICC.

However, if a study aims to determine the concordance between

sonography and MRI, correlation coefficients and ICC values

are usually calculated (Bemben, 2002; Betz et al., 2021), but

considering that correlations only point out the association

between variables (Schober and Schwarte, 2018), which only

validates to investigate “the change in the magnitude of 1 variable

[. . . ] associated with a change in the magnitude of another

variable, either in the same or in the opposite direction” (Schober

and Schwarte, 2018, p. 1,763). In the supraspinatus muscle there

are correlations coefficients between MT and MCSA of r =

0.72–0.76 (Yi et al., 2012). Betz et al. (2021) point out that “[a]

strong predictive positive correlation for ultrasound and magnetic

resonance imaging-based measurements of the cross-sectional

area was found (R² = 0.793, p < 0.001)” while Mendis et al.

(2010) report ICC values of 0.81–0.89 in different leg muscles

to determine the concordance between sonography imaging

and MRI. Also, “excellent agreement” between both measures

to examine MCSA with r = 0.96 and ICC of 0.9–0.96 in the

hip muscles (Mayes et al., 2015) and r = 0.87 between MT

with sonography and MCSA with MRI (Worsley et al., 2014).

Giles et al. (2015) point out high correlations in MCSA of r =

0.73–0.88 in some parts of the quadriceps for the vastus medialis

and but also low correlations with r= 0.2 and r= 0.31 for other

parts as the vastus intermedius. There are also correlations of

0.96 and 0.97 between MRI and sonography in the shoulder

(Dupont et al., 2001). The listed studies showed additional

limitations. The sample size to determine correlations was

small – eleven (Mayes et al., 2015) and six participants (Dupont

et al., 2001), respectively. In the present study, correlations

between MT and MCSA in the plantar flexors were determined

showing Pearson correlation coefficients between r= 0.41–0.72.

However, considering that sonography is an inexpensive and

time-economic procedure and could be used as an alternative

to MRI, determining Pearson correlation must be stated as

invalid because it ignores many parameters especially the

level of variance and the expected error between the two

methods. Since Pearson correlation coefficients point out a

dependency/relationship between two measurements, Lin

(1989) suggests using the CCC as it was used in the present

study to assess concordance between the measurements. With

ρc = 0.39–0.51 in the lateral head of the gastrocnemius and

ρc = 0.69–0.75 in the medial head of the gastrocnemius the

CCC values are lower or equal to the Pearson correlation

coefficients with r = 0.39–0.57 and r = 0.69–0.75. Moreover,

ME, MAE, and MAPE should be calculated in this context.

When z-transformed data is used, calculation of MAPE seems

not to be useful since values on the x-axis close to zero with

a corresponding value that is many times higher would lead

to a percentage error of over 100% which does not reflect

reality. Using ME, negative and positive values counterbalance

each other to a large extent, so ME is also not of high value in

our setting.
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Consequently, MAE values should be recognized as most

important. It exhibits values of 177.2–184.21 mm² in the lateral

head and 251.48–268.67 mm² in the medial head, corresponding

to a MAPE of 19.1–19.9% and 15.9–17.1%, respectively. Based

on mean values of 1,713 mm² in the medial head in MCSA

measurement, MAE and MAPE values of 251.48 mm² must be

recognized as high when a replacement of MRI with sonography

is considered. However, on the one hand, high values of

MAE in MT measurements do not surprise as this method

measures the distance between two points which represents a

one-dimensional measurement without any statement about the

anatomical shape of a muscle. On the other hand, in MRI the

shape of a muscle is used to calculate the area which therefore is

a multidimensional evaluation of muscle morphology.

Novelty of the study and comparison to
commonly used statistics

In current literature, reliability of sonography was typically

determined via Pearson correlations and ICC with values of

> 0.8 being used to justify the use of sonography as a valid

and reliable method to investigate effects of training programs

aiming to increase MT and MCSA (Schoenfeld et al., 2016;

Simpson et al., 2017; Panidi et al., 2021; Sarto et al., 2021; Yahata

et al., 2021; Matos et al., 2022; Warneke et al., 2022). When

replacing onemeasurement procedure with another, it should be

assumed that both measure the same parameter, however, there

are some significant limitations replacingMRI with sonography,

which are of statistical-methodological and content nature.

First, correlation coefficients describe a monotonic relationship

between two variables “in which either (1) as the value of 1

variable increases, so does the value of the other variable; or

(2) as the value of 1 variable increases, the other variable value

decreases”( Schober and Schwarte, 2018, p. 1,763) while the

CCC “plot the first measurement against the second measurement

[. . . ], we would like to see, within a tolerable error, that the

measurements fall on a 45◦ line through the origin [. . . ]. The

Pearson correlation coefficient measures a linear relationship but

fails to detect any departure from the 45’ line” (Lin, 1989, p.

255). The Pearson correlation, therefore, does not provide any

information about the concordance between two procedures but

about their relationship, which is, in fact, not the aim when

investigating the possible replaceability of one method with

another. Based on this, using correlation coefficients to justify

the replaceability of MRI with sonography should be stated as a

misinterpretation of statistics and should therefore be avoided.

Another well-known method to show the variance between

two measurement procedures in the context of medicine is

the Bland-Altman Analysis. As the classification of the results

also depends on the context, there was, however, no additional

benefit of adding the Bland-Altman analysis to the present study.

Additionally, since English et al. (2012) and Hebert et al.

(2009) pointed out limitations of studies investigating reliability

and stated limited objectivity of sonography, thus, a reevaluation

of the usage of sonography seems requested. In accordance with

Cohen (Cohen, 1988), the classification in high, moderate and

low should be reviewed considering the context.

To the best knowledge, there are few studies investigating the

concordance between MRI and sonography using BA analysis

and/or the CCC, however, these investigate the quadriceps

femoris (Ahtiainen et al., 2010; Ruple et al., 2022). Only Scott

et al. (2017) provided first data investigating the concordance

of MRI and sonography using BA and CCC for the calf

muscle, showing – according to the results of the presented

study – “poor” concordance with ρc = 0.37, while a higher

CCC was determined for imaging in the quadriceps. However,

listed studies do not provide CCC for the investigation of MT

between two investigators and do not assign a ME, MAE and

MAPE to the concordance analysis. Scott et al. (2017) stated

“Concordance between ultrasound and MRI was excellent in

the quadriceps (CCC: 0.78; P < 0.0001)”, however, considering

results presented in this study a CCC of 0.8–0.93 showed

corresponding MAPE values of up to 8.5%.

Consequently, results found in this study show firstly

that even ICC and Pearson correlations > 0.9 cannot be

deemed “high” in the context of highly sensitive measurement

procedures such as sonography because the MAPE and MAE

in combination with calculation of the CCC show intolerably

high measurement errors. Based on this, sonography to assess

muscle hypertrophy in the calf muscle should be handled with

care. Secondly, with stated MAPE of up to 20% and a ρc

= 0.39–0.75 between MCSA investigated via MRI and MT

investigated via sonography, the hypothesized predictability of

MCSA using MT (Abe et al., 2015; Franchi et al., 2018) seems

questionable. Thirdly, classification of concordance, based on

calculated ICC, CCC or BA-analyses should also include the

MAE and MAPE, especially when examining the possibility of

a replacement of one measurement procedure with another. It

can be suggested to combine the above stated parameters when

the changes following an intervention are expected to be small.

When expecting increases in MT of 5.56–17.78%, a MAPE of

up to 8.5% between two investigators should be considered too

high, even though there were high ICC values.

Limitations

Barotsis et al. (2020) and Giles et al. (2015) showed that

reliability of sonography may differ depending on the muscle

groups. Since in literature the ICCs and Pearson correlation

coefficients were found to be as high as 0.99 in the plantar

flexors and no higher coefficients could be detected, this study

used imaging procedures in the plantar flexors. However, based

on this, there might be limited transferability to other muscle

groups, which should be investigated in further research, as the
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ICC and Pearson correlation does not provide any information

about the MAE and MAPE. Furthermore, sonography and MRI

were performed in young and healthy participants. Especially

when using sonography, on the one hand, a detrimental

influence on the imaging quality can be assumed in participants

with high body fat, while, on the other hand, competitive athletes

from most sport backgrounds may have lower body fat than

“normal” participants which might influence the evaluation

(Teyhen and Koppenhaver, 2011; Betz et al., 2021). Based on

this, assuming imaging quality might influence the calculated

parameters, the recruited participants as well as the resolution

of sonography imaging might be of importance for further

results. The influence of using higher and lower resolution

sonography assessment as well as the inclusion of participants

from different performance level as well as different muscles

should be investigated in further research, as it can be assumed

that differences in body fat and fatty tissue might influence the

quality of images and therefore the calculation of error.

Conclusion

Although correlation coefficients as well as ICCs are

comparable with previous investigations about reliability and

validity of sonography, the presented results show a MAPE

between 4.4 and 8.9% which corresponds to the estimated

increases inMCSA andMT. Thus, whenmeasuring hypertrophy

following training interventions, a very careful interpretation

of data must be requested and potential sources of error in

sonography must be kept in mind. Furthermore, the results

clearly indicate that even correlation coefficients with r > 0.9

cannot be seen as valid indicator of concordance between two

testing procedures since correlation coefficients do not examine

this issue appropriately. Kwiecien et al. (2011) point out that

disrespecting the concordance analysis leads to wrong results.

Based on this, using correlation coefficients to examine the

concordance between two measurements can be seen as a

misinterpretation of results. If the aim of an investigation is the

determination of concordance between measurements, a BA-

Plot as well as a CCC calculation should at least be added to the

analysis (Koch and Spörl, 2007) and interpreted in the light of

the respective context, as the classification in high concordance,

moderate concordance and low concordance might depend on

the system evaluated and the expected adaptations induced by

the intervention. Especially when low to moderate effect sizes

are assumed (e.g., in elite sports), determining morphological

effects should be performed withMRI, as this is deemed the gold

standard with minimal limitations regarding objectivity and

reliability. Furthermore, literature points out crucial limitations

and primarily poor quality of studies examining the reliability

of determining MT via sonography because information about

standardization to reproduce the study design is rarely included

(Hebert et al., 2009; English et al., 2012). Additionally, the

predictability of MCSA by determining MT via sonography

seems to not be sufficiently given, consequently replacing

MRI with sonography might be cost- and time-efficient but

not feasible. Because of comparatively high differences and

errors between measurements in sonography, MRI must be

still recognized as the gold standard in determining muscle

morphology. Results of sonography imaging to determine

morphological changes in longitudinal studies with intervention

periods of a few weeks only should be considered very carefully.
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