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Social media and collection of large volumes of multimedia data such as images, videos

and the accompanying text is of prime importance in today’s society. This is stimulated

by the power of the humans to communicate with one another. A useful paradigm of

exploitation of such a huge amount of multimedia volumes is the 3D reconstruction and

modeling of sites, historical cultural cities/regions or objects of interest from the short

videos captured by simple users mainly for personal or touristic purposes. The main

challenge in this research is the unstructured nature of the videos and the fact that they

contain much information which is not related with the object the 3D model we ask

for but for personal usage such as humans in front of the objects, weather conditions,

etc. In this article, we propose an automatic scheme for 3D modeling/reconstruction of

objects of interest by collecting pools of short duration videos that have been captured

mainly for touristic purposes. Initially a video summarization algorithm is introduced using

a discriminant Principal Component Analysis (d-PCA). The goal of this innovative scheme

is to extract the frames so that bunches within each video cluster that contains videos

of content referring to the same object present the maximum coherency of image data

while content across bunches the minimum one. Experimental results on cultural objects

indicate the efficiency of the proposed method to 3D reconstruct assets of interest using

an unstructured image content information.

Keywords: 3D modeling, social media, video summarisation, 3D reconstruction, PCA

INTRODUCTION

Walking in the second decade of 21st century more and more people realize the impact of
multimedia and social media in their lives. This is engaged by the rapid increase of internet
users which, according to ITU (International Telecommunication Union) statistics, reaches about
3.2 billion users in 2015 (Sanou, 2015). On the other hand, the purchase cost of multimedia
capturing devices is going more and more down while most of these are now embedded in laptops,
tablets and mobile phones making media production an easy task by everyone, everywhere and in
anytime (Wang and Dey, 2013). Finally, the power of the social media and the humans’ need to
communicate with friends and family, not only by words, texts and chatting but also through the
richness of the audio-visual content (Rutkowski and Mandic, 2007), have stimulated new means
of interaction with our social surroundings through the usage of social networks like Facebook,
Instagram, or Twitter (Soursos and Doulamis, 2012), (Doulamis et al., 2016).

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://doi.org/10.3389/fict.2018.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2018.00029&domain=pdf&date_stamp=2018-11-06
https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles
https://creativecommons.org/licenses/by/4.0/
mailto:adoulam@cs.ntua.gr
https://doi.org/10.3389/fict.2018.00029
https://www.frontiersin.org/articles/10.3389/fict.2018.00029/full
http://loop.frontiersin.org/people/484655/overview


Doulamis 3D Reconstruction From Unstructured Videos

This, in sequel, has boosted the amount, the complexity and
the diversity of the digital media being captured, generated,
processed, analyzed, and stored across heterogeneous and
distributed media repositories and cloud infrastructures such as
Picasa, and Flickr (Sevillano et al., 2012). This huge amount of
multimedia content, which forms the so-called User Generated
Content (UGC) (Li et al., 2018), can be exploited toward a
better human-to-human interaction but also for a variety of
new application domains in the broad fields of tourism, culture,
leisure and entertainment (Kosmopoulos et al., 2009; Kim et al.,
2014; Vishnevskaya et al., 2015). For instance, as stated by
Ntalianis and Doulamis in (Ntalianis and Doulamis, 2016), the
rich media content of the social media can be exploited to
create personalized summaries of a human life making him/her
“digitally perpetual” and leaving his/her mark in the world
forever! Thismeans in other words that we can create an album of
our activities and lives in space and time which can be used as an
historic mark of our family and friends’ tree for our descendants
to come. Privacy issues should be taken into account in these
cases. Only authorized users can access the media content. A
detailed categorization of the privacy issues onUGC can be found
in (Smith et al., 2012). These issues are out of the scope of this
paper but in our case, only freely available data are taken into
account.

Another useful usage of this rich multimedia UGC is to
be exploited to generate precise three-dimensional (3D) data
of our world (Ioannidis et al., 2009). Nowadays, extracting
3D information of the objects and particularly the depth is a
process that can be derived either by applying photogrammetric
methods from a selected set of images which have been properly
captured/generated (Remondino and El-Hakim, 2006) or by
using laser scanners (Fritsch and Klein, 2018) or depth sensors
such as Time of Flight Cameras (Kim et al., 2009) or Kinect
(Nguyen et al., 2012) for static (Guo et al., 2014) and moving
objects (Laggis et al., 2017). The main, however, drawback of
the photogrammetric approaches that exploit two-dimensional
(2D) for the reconstruction is that they need a specific type of
cameras to be used for image data capturing or positioning of
these cameras on certain orientations with respect to the object of
interest so as to get 3D models of high fidelity (Georgousis et al.,
2016). This in the sequel implies a high reconstruction cost which
is far away from today easy image/video production phases.

An interesting concept is to use the today big multimedia
data repositories for the 3D reconstruction phase. This would
result in the so-called “wild” 3D modeling in the sense that the
image data are from distributed, social or web-based multimedia
repositories which have been captured for personal use or other
purposes but for sure not for a precise 3D reconstruction
(Makantasis et al., 2016). The goal is to exploit unstructured
image content to perform a 3D reconstruction scheme by the
application of novel content-based filtering methods and visual-
based clustering on the use of a spectral scheme. In this paper,
we extend the aforementioned concept by focusing on video
sequences located on distributed and heterogeneous multimedia
platforms. The goal is to exploit the rich visual information
of video content to generate 3D models of the scene they
depict. We should state that the exploited videos are taken from

remote multimedia repositories and these have been generated
for personal or business use but not for 3D modeling. Thus,
these videos contain a lot of noise and objects of non-interest
such as humans in fronts of monuments, moving vehicles,
clutter background, etc. In addition, these videos encounter
severe camera moving problems since they have been taken
without the use of constant tripods and thus the image frames
are trembling. To generate the 3D models, initially a video
summarization algorithm is applied on the video frames. The
objective of a video summarization scheme is to extract a small
but meaningful number of key frames from the video sequence
able to resemble as much as possible the whole video content
(Money and Agius, 2008). The new concept proposed is the
use of a discriminant Principal Component Analysis (d-PCA)
for summarizing the videos. The d-PCA concept (Wang et al.,
2018) was introduced very recently for clustering objects so as to
maximize the coherency of foreground against the background.
Then, a Structure from Motion (SfM) algorithm is introduced to
generate the 3D models.

The proposed concept can be very useful for cultural heritage
(CH) applications toward a massive automatic (or at least
semi-automatic) documentation of CH objects, a process very
useful for their protection and for the implementation of robust
resilience actions on them (Yastikli, 2007). More specifically,
CH objects, which are not so “attractive and famous” but
they are still great in culture and the ancient technology they
reveal, often receive inadequate amount of financial support to
obtain 3D geocentric models of high fidelity. Furthermore, CH
monuments located in poor developing countries or in regions
suffering by war, conflicts, or other political uncertainties (e.g.,
inadequate protection against looting), though the great cultural
value they present, cannot attract sufficient financial resources
for their accurate documentation (Remondino and Stylianidis,
2016). In all these cases, one can exploit video shots available
on the web or in touristic media repositories to provide to the
archaeologists/CH experts 3D models of the objects of interest
which can be used for their documentation at a very low cost
(Doulamis N. et al., 2013; Yiakoumettis et al., 2014).

On the other hand, massive 3D reconstruction can boost
augmented reality and virtual reality technology since it will
provide a pool of 3D models through which these scientific
fields can be evolved (Bruno et al., 2010). Gaming applications,
including serious games for education purposes, new fascinating
applications to museums’ visitors, archaeological tools for
documentation and categorization of the objects, or even land
monitoring paradigms will be some among other applications
scenarios that can be gained by the proposed scheme (Ioannidis
et al., 2016).

This paper is organized as follows: A state-of-the art
description is given in section Description of the State-of-
the-Art and Proposed Contribution. The works described
refer to (i) 3D reconstruction modeling approaches, (ii)
video summarization, while (iii) the proposed contribution
is examined. section Video Parsing and Text-based Filtering
introduces the video parsing and text-based filtering method.
The new discriminant Principal Component Analysis (d-PCA)
algorithm is discussed in section Discriminant Principal
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Component Analysis (d-PCA Video Summarization). section
On the Fly 3D Reconstruction/Modeling using Structure from
Motion shows the on-the-fly 3D reconstruction and modeling
method exploiting concepts of Structure from Motion scheme.
Experimental results are given in section Experimental Results
along with a detailed description of the dataset used and
the objective metric applied to judge the efficiency of the
video summarization scheme. Finally, conclusions. section
Conclusions draws the conclusions.

DESCRIPTION OF THE
STATE-OF-THE-ART AND PROPOSED
CONTRIBUTION

In this section, we describe the current state-of-the-art in the
fields of 3D modeling/reconstruction and video summarization,
that is, the two research fields addressed in this paper. Since
these fields have been extensively studied in the recent years
as is proven by the high number of articles published, we
restrict our description in those works that are more relevant
to our approach; that is, the ones that present 3D modeling
and reconstruction from unstructured video data and video
summarization for short term video sequences of cultural or
landscape content as the ones encountered in our cases.

3D Modeling/Reconstruction
To derive precise 3D models from a set of cameras,
photogrammetric methods should be applied. The first step
toward this is to calibrate a set of cameras so as to get precise
information on the geometry (Remondino and Clive, 2005).
However, camera calibration is not applicable in our case where
unstructured visual content is considered, i.e., content available
from videos generated for personal (or even for business) use.
Then, a set of visual descriptors should be extracted (Rothganger
et al., 2006) which should be invariant within any affine
transformation. These descriptors can be controlled either from
known points (Alsadik et al., 2014) or can be set as a result of an
image analysis method (markless description) (Barazzetti et al.,
2010; Verykokou et al., 2017). In the following, probabilistic
learning or geometry-based analysis or even other classification
schemes are applied to reconstruct the depth of the scenery
(Gargallo and Sturm, 2005). Nevertheless, this process requires
a lot of time. Thus, fast methods have been also introduced to
reduce the time while keeping reconstruction accuracy as high as
possible (Xia et al., 2013).

A pioneer work that simultaneously solve the camera pose
and scene geometry under an automated way is the Structure
from Motion (SfM). The method exploits the bundle adjustment
technique based on matching features into multiple overlapping
images (Bolles et al., 1987; Westoby et al., 2012). This method has
been extended to modeling non-rigid structures, i.e., modeling of
the shape of objects which are deformable. The so-called Non-
rigid structure from motion (NRSfM) recovers the shape and
the pose of an object which is deforming in time from a set of
monocular cameras (Torresani et al., 2008).

A few works have been proposed for handling the problem
of unstructured image data as we address in this paper. More
specifically, Dorninger and Nothegger (2007) applies a 3D
segmentation for unstructured point clouds. The results have
been applied for modeling of buildings, an important task in
photogrammetry and remote sensing. The work of (Makantasis
et al., 2016) finds a set of relevant images located on distributed
and heterogeneous media repositories to derive a precise 3D
reconstruction. The results target tangible cultural heritage
objects such as monuments, historic regions and buildings.
3D reconstruction from multi-view unstructured images is also
proposed in (Zhang and Chen, 2014). The approach analyses 3D
planar primitives refined by the RANSAC algorithm (Schnabel
et al., 2007) and then the adjacent regions of the planar primitives
are estimated to find 3D intersection lines on the respective faces.

Recently, the unstructured 3D modeling has been extended to
include the time dimension. In this case, the analysis focuses on
the creation of precise 4D models (3D geometry plus the time).
The works proposed in this area either use a Bayesian approach
for the analysis (Huang et al., 2016) or localize similarities on the
image data to accelerate the reconstruction process through time
(Doulamis A. et al., 2013; Ioannides et al., 2013).

Video Summarization
Some techniques for video summarization exploits temporal
variations of feature vector trajectory to find out characteristic
points on the content through which the key frames are
extracted. The key idea of these approaches is to localize on the
fluctuation of the feature trajectory salient points such as peaks
or curvatures and then to extract the key frames at the time
instances of the salient points (Doulamis et al., 2000b; Kuanar
et al., 2015; Kim et al., 2016). The main advantage of these
approaches in video summarization domain is the fact that they
can discriminate periodic content patterns and thus to differently
handle two similar scenes when these are posted at different
time intervals in the video sequence. Although such a property
is seen as an advantage for abstracting video sequences, it is
a drawback in our case in which video summarization triggers
the extraction of a set of characteristic frames through which
3D reconstruction/modeling will be accomplished. In the same
framework, the works of (Panagiotakis et al., 2007, 2009) applies
an Iso-Content analysis to localize the key frames as the ones
placed on the “same” (iso) content distance in the sequence.
Other techniques extract a short video summary instead of key
frames to present an abstract form of video sequences (Cernekova
et al., 2006; Mademlis et al., 2016).

Some other video summarization algorithms select the most
discriminant frames in terms of visual content as the key ones.
More specifically, a graph-based clustering method for video
summarization is presented in (Ngo et al., 2005) while the use
of Delaunay clustering is proposed in (Mundur et al., 2006).
Min-max optimization framework is introduced in (Li et al.,
2005) while a hyper-graph clustering is recently presented in
(Ji et al., 2018). A stochastic algorithm that extracts the most
representative key frames by minimizing the cross-correlation
criterion is introduced in (Avrithis et al., 1999). The same work
was improved under a fuzzy framework in (Doulamis et al.,
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2000a) and extended to stereoscopic video sequences in which
two stereo pairs of each video frame are available in (Doulamis
et al., 2000). Finally, in (Meng et al., 2018) a multiview-
based video summarization is presented through representative
selection.

The Proposed Contribution
This paper proposes a new 3D reconstruction and modeling
algorithm that exploits short video sequences generated by simple
users mainly for personal use (User Generated Content). We
assume that the short videos depict the same scene of a scenery,
a building or a monument the 3D model of which we need to
construct. The short UGC videos are parsed from multimedia
repositories. Initially, a text-based filtering is proposed as in
(Makantasis et al., 2016) to refine the short videos with respect
to their captions generating a pool of videos each showing the
same scene, building or monument. This is applied to refine
video sequences so as to improve the reconstruction analysis
at the later stages. Only relevant video shots will be taken into
account. Then, the collected pool of short videos is summarized
by the application of a discriminant algorithm. In our case,
we propose a novel video summarization scheme that is based
on a discriminant Principal Component Analysis (d-PCA) as
presented in the very recent work in (Wang et al., 2018).
Discriminant Principal Analysis has its goal to extract the most
significant information from one dataset, that is, the prominent
information.

The method proposed in (Wang et al., 2018) was applied
to recognize handwritten digits and frog images. In this paper,
we properly modified and extend this approach to extract a
small but meaningful number of key frames from a pool of
short videos depicting the same scenery. More specifically, we
initially construct a visual feature vector by extracting ORB
descriptors from each video frame. ORB can identify salient parts
in image content being invariant under affine transformations.
Then, we modified the d-PCA to be applicable to time series as
video sequences are instead of data collections as the original
d-PCA algorithm is applied to. We also introduce the concept
of bunches within each cluster so as to differentiate image
frames with respect to their angles and orientations. Finally, we
propose a modification of the scheme as regards the optimal key
frame selection in time. Having extracted the key frames from
the videos, we then assume that these can represent as much
as possible the whole video content and provide an adequate
information for 3D modeling and reconstruction.

The reason we select the d-PCA method for video
summarization instead of other techniques proposed in the
literature is due to (i) the nature of our video sequences and (ii)
the final objective we have, i.e., to derive 3D models of objects
from video shots being captured for different purposes than 3D
reconstruction (e.g., for touristic ones). The first fact implies that
our video shots are of short duration, usually captured the same
object (e.g., a monument) of interest under different angles and
scale. The second fact means that we need to identify a sufficient
number of views of the object to get a detailed 3D reconstruction
while simultaneously to “get rid off” of views that contribute a
little to the reconstruction process. The d-PCA is designed to

find clusters on visual data so that (i) content across clusters is
as different as possible while (ii) the content within a cluster is
as coherent as possible. The first criterion leads to a selection
of the minimally required number of clusters (i.e., views) that
we need to take into account for a 3D reconstruction. The
second criterion leads to a selection of the most representative
object views among a plethora of similar ones being captured
on video shots. This constitutes the reason we adopt d-PCA
for video summarization rather than other techniques which
have been mainly designed to summarize long duration videos
consisting of different scenes, totally different content and with
the purpose to give a quick overview of the content of the video
sequence instead of detecting different object views to derive 3D
models.

The selected key frames are then fed as inputs to a SfM
algorithm for performing the reconstruction. Since only a small
number of representative frames is used as inputs to the SfM, the
time required for modeling is optimized, while simultaneously
we keep 3D reconstruction accuracy as high as possible. Figure 1
shows a block diagram of the proposed architecture and the
main steps proposed to derived an on-the-fly 3D modeling and
reconstruction from unstructured UGC short videos distributed
over heterogeneous multimedia repositories.

As we can see from Figure 1, the proposed scheme consists of:

(a) A video parser: which is responsible to localize the videos
from the distributed multimedia repositories or on social
media platform. A set of N repositories/social platforms are
considered.

(b) Text-based filtering: The goal is to refine the parsed videos
so as to group together the ones that present similar textual
description, e.g., similar captions. The idea is to perform a
kind of semantic filtering on the data by clustering together
videos that depict the same scenery, building, monument,
region, etc. It is clear that many outliers will be encountered
due to inconsistency of the text in describing semantic
meanings.

(c) A d-PCA-based Video Summarization: This component
implements the new video summarization algorithm
proposed in this paper which is based on a discriminant
Principal Component Analysis (d_-PCA). The main objective
is to extract a set of representative frames from the pool of
short videos depicted similar visual content.

(d) SfM algorithm: We then proceed with the application of the
Structure fromMotion (SfM) algorithm through which the 3D
reconstruction/modeling is accomplished.

Overall, the proposed technique aims at providing 3D
reconstruction models for objects of interest (especially
cultural ones) from non-structured User Generated Content
(UGC) which has been captured for different purposes (e.g.,
touristic) than 3D modeling. The main goal is to achieve
a massive 3D reconstruction of objects and monuments
of interest rather than using high cost photogrammetric
methods. Thus, we exploit on the fly 3D reconstruction by
analyzing video content from short duration video sequences.
Instead, the approaches presented in the literature in the
field are focused on accomplishing fidelity 3D models or
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FIGURE 1 | A block diagram of the proposed research methodology for an on-the-fly 3D modeling and reconstruction of objects and scenes.

on summarizing video sequences in the sense of automatic
extracting small short duration trailers. Thus, this paper
targets a challenging issue in 3D computer vision society; how
to accelerate 3D reconstruction and achieve a massive 3D
modeling of objects of interest by exploiting existing video
content which has been captured for purposes different than 3D
analysis.

VIDEO PARSING AND TEXT-BASED
FILTERING

The two components described in this section are (i) the video
parsing and (ii) the text-based filtering of the video content.

The algorithm deployed detects videos from distributed and
heterogeneous repositories and/or platforms of social media. The
idea is to distinguish the videos from other multimedia sources
such as images, audios, sounds, graphics and texts. This way,
the algorithm localizes only video sources. The suffices of the
data are used as a parser filter to get the videos. File suffices
that correspond to compressed or uncompressed video files are
used to filter out than the remaining ones. A secure framework is
adopted for the multimedia parsing as the one proposed in one
of our previous works (Halkos et al., 2009). The objective is to
allow for the parser to complete the search without the need to
download the multimedia content beforehand and without the
content providers (i.e., the multimedia repositories or the owners
of the social media) to need to buy the parsing technology. This
way, we retrieve Vi short videos from distributed repositories
and/or social media platforms. Each video sequence can be

considered as a set of Vi = {· · · fi,j · · · } where fi,j denotes the j-th
frame of the i-th video sequence.

Regarding the text-based filtering, the captions or text
descriptions of the videos are parsed. Then, a simple linguistic
analysis is accomplished to take into account word similarities.
Videos that fall into the same textual groups are clustered
together to form pools of videos that share similar content. In
other words, we form video clusters that share similar textual
semantics in terms of the content they represent. Let us denote
as Ck = {Vi : i ∈ τk} where τk refers to the k-th similar
descriptions derived from the text-based filtering. Due to textual
inconsistency and erroneous descriptions the number of outliers
in these videos may be large. That is, several Vi ∈ Ck may
depict visual content quite different than the respective text-
based semantic description τk. For instance, let us assume that
one cluster Ck gathers videos the textual description of which
is aligned to “The Parthenon.” In this cluster, videos captured
from taverns named “The Parthenon” can be also collected. The
content, however, of these video is not in compliance with the
monument “The Parthenon.” To improve clustering accuracy,
we proceed with a geo-tag restriction. That is, the members of
a cluster are further decomposed into geospatial clusters where
this information is available. Videos of erroneous or misleading
descriptions that correspond to different geo-tags are removed
from the respective cluster improving its coherency.

For the removal of the outliers, the visual content of each
cluster is spanned into multi-dimensional manifolds taking as
inputs invariant visual descriptors such as the Oriented Rotated
Brief (Rublee et al., 2011) as adopted in (Makantasis et al., 2016).
In the following, a dense–based clustering algorithm is applied
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such as OPTICS (Ankerst et al., 1999) to remove the outliers and
retain only the most concrete videos within each cluster in terms
of visual content description.

DISCRIMINANT PRINCIPAL COMPONENT
ANALYSIS (D-PCA VIDEO
SUMMARIZATION)

A novel video summarization method is adopted in this paper
for key frame selection. The method is derived from the recent
article in (Wang et al., 2018) applying, however, for recognition
of handwritten digits. The goal is to look inside each video cluster,
say the Ck, and form representative bunches (sub-clusters)
within each cluster so that (i) the elements within each bunch
(intra-bunch) to share maximum coherency in terms of visual
similarity, while (ii) the elements across bunches (inter-bunch)
to be as far as possible in terms of visual similarity.

Let us denote as f
(k,l)
i,j the j-th frame of the i-th video Vi ∈ Ck

and let us assume that this frame belongs to the l-th bunch
creating within the cluster Ck. We denote in the following this
bunch as B(k,l). For each video frame, visual descriptors are
extracted to better represent its video content. Let us denote these

descriptors as d
(k,l)
i,j . The ORB visual descriptor is extracted in our

case to form the vector d
(k,l)
i,j . To clarify our notation, let us denote

as b
(k,l)
i one vector element of the bunch B(k,l). Then, we can create

the covariance matrix for all elements of the bunch b
(k,l)
i as

Cintra :=
1

∣

∣B(k,l)
∣

∣

∑

for all i
b
(k,l)
i ·

(

b
(k,l)
i

)T
(1)

and the covariance matrix across the elements of two bunches

Cinter :=
1

∣

∣B(k,l)
∣

∣

∑

for all i and l 6= m
b
(k,l)
i ·

(

b
(k,m)
i

)T
(2)

Then, the goal is to find a vector, say u, such that

max[u]2=1
uT · Cintra · u

uT · Cinter · u
(3)

Equation (3)means that we should extract video frames the visual
content of which as is being represented by the PRB descriptor,
should be “present” (similar) in the relevant bunch and not
being present (dissimilar) in the “background data” that is, in the
other bunches. This mathematical formulation is relevant to the
discriminant PCA as proposed in (Wang et al., 2018). However,
in this paper we have properly modified the d-PCA notation to
be relevant for a video summarization case.

Problem Solution
Generally, matrixCinter is full rank since the collected videos have
not been captured under exactly the same conditions. Thus, it can
be eigen-decomposed as

Cinter = UT
inter .3inter · Uinter (4)

where matrices Uinter and 3inter refers to the eigen-vectors and
values of the covariance matrix Cinter . If we define the

C
1/2
inter =

√

Cinter =3
1/2
inter · Uinter (5)

and set as a new variable , then the solution of Equation. (3) can
be obtained as

u∗ = C
1/2
inter · v

∗ (6)

In Equation (6), u∗ and v∗ are the optimal vectors of u and v

respectively.
Leveraging Lagrangian duality as in (Wang et al., 2018),

the optimal solution of Equation (3) can be given as the right
eigenvector of the matrix . This can be proven since Equation (3)
can be re-written as

maxu uT · Cintra · u (7a)

subject to uT · Cinter · u = b (7b)

which is fact a Lagrange multiplier problem. The solution of
Equation (7) is valid for some constant b>0 which is set such that
u2 = 1. One possible solution (7b) is to set b=1 and normalize
the solution of (7). Equation (7) can be re-written as a Langrage
multiplier problem as

L(u; λ) = uT · Cintra · u+ λ · (1− uT · Cinter · u) (8)

To solve the optimization imposed by Equation (8), we exploit
notions from the generalized eigen-value problem. That is, it
holds that

Cintra · u
∗ = λ · Cinter · u

∗ (9a)

or equivalently it holds that

C−1
inter · Cintra · u

∗ = λ · u∗ (9b)

Equation (9) implies that the optimal solution u∗ is the
eigenvector of matrix x. By integrating the constraint of (7b) into
(7a) we can derive that

(

u∗
)T

· Cintra · u
∗ = λ∗ ·

(

u∗
)T

· Cinter · u
∗ = λ∗ (10)

From Equation (10), it is clear that the optimal solution of (7) is
given as the largest eigenvalue of the matrix C−1

inter · Cintra.

Extracting Key Frames
Having estimated the optimal vector u∗, we can then proceed
with the identification of the key frames within each video cluster
Ck and bunch B(k,l). In particular, the optimal vector u∗ contains

the indices of frames f
(k,l)
i,j that should be assigned to the l-th

bunch of the k-th cluster. This way, the bunches contain almost
similar frames in terms of visual content they represent. In
addition, content coherency across bunches of the same video
cluster is minimal. The most representative frame is chosen as
the one that is closest to the centroid of the bunch. That is,

m(k,l) =
∑

for all iǫB(k,l)
b
(k,l)
i (11a)

Frontiers in ICT | www.frontiersin.org 6 November 2018 | Volume 5 | Article 29

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Doulamis 3D Reconstruction From Unstructured Videos

f
(k,l)

i* ,j
= argmin

for all i,j

d(d
(k,l)
i,j ,m(k,l)) (11b)

where f
(k,l)
i∗ ,j is the key frame (index i∗) of the j-th video belonging

to the l-th bunch of the k-th semantic cluster. In Equation (11b),
function refers to the distance between two feature vectors, the

one containing the descriptors of the frames d
(k,l)
i,j and the mean

feature vector of the respective bunchm(k,l).
In case that more key frames should be extracted per bunch,

the more uncorrelated among them are selected as in (Doulamis
et al., 2000a). The goal is to find out the furthest frames in terms
of visual content representation and depict them as the more
representative ones.

ON THE FLY 3D
RECONSTRUCTION/MODELING USING
STRUCTURE FROM MOTION

The extracted video frames are fed as inputs to a Structure from
Motion (SfM) component through which the 3D reconstruction
and modeling is accomplished. The main difference of SfM than
conventional photogrammetric methods is that the geometry
of the scene, the position of the cameras and the orientation
is solved automatically without the need of the knowledge
of the targets. The latter in conventional photogrammetric
methods should be a prior known. To derive the automatic
solution of the aforementioned features, SfM exploits an iterative
method which is known as bundle adjustment procedure
(Triggs et al., 1999). This procedure exploits the visual
descriptors as derived from the aforementioned stage, and
the selected key frames of section Discriminant Principal
Component Analysis (d-PCA Video Summarization) that form
a set of overlapping images on the scenery user generated
content we want to reconstruct. The extracted visual features
should be invariant in scaling rotation and in general under
any affine transformation, while they should be robust to
illumination changes. Thus, scaled-based features should be
identified.

In particular, in SfM the 3D position and location of the
camera and the 3D location of the control points are not a priori
known. The position of the camera and the scene geometry are
automatically reconstructed through the automatic identification
of matching features across a set of multiple cameras. Since
the scale and orientation are given under relative coordinates a
small number of known ground control points (GCPs) should
be provided to transform the relative coordinates to absolute
coordinates (Westoby et al., 2012).

The first stage of the SfM is to extract a set of reliable
points on the images. In this paper, the ORB visual features are
extracted (Rublee et al., 2011) since they provide higher accuracy,
robustness under affine transformations and illumination
fluctuations and they are simultaneously higher executed than
other conventional visual descriptors like SIFT or BRIEF. On
the extracted visual keypoints, the sparse bundle adjustment
method (Triggs et al., 1999) is applied to estimate the position
of the camera and the point-cloud. The latter is of low

density, that is, a sparse point cloud is generated. For the
matching, density-based clustering schemes are employed served
on image multi-dimensional manifolds. This way, moving
objects such as humans in a scene are automatically removed
and the tangible background content is captured for 3D
modeling and reconstruction. In the following, a similarity
transformation is exploited to reconstruct the camera position
from the key point correspondences followed by triangulation
through which the 3D point positions are estimated and
the whole geometry is reconstructed. To increase the density
of the sparse derived point cloud, dense-based algorithms
are applied such as the semi-global algorithm (Hirschmüller,
2008).

EXPERIMENTAL RESULTS

In this section, the experiments conducted are analyzed and some
results are depicted to demonstrate the efficiency of the proposed
scheme. Section Dataset Description describes the dataset used
while section Objective Criteria discusses on objective criteria
and metrics that are used while section Experiments shows the
experimental results.

Dataset Description
The dataset used is a collection of 5,732 videos that have been
gathered from multimedia repositories distributed located over
the Web and the Twitter. The latter is a social medium that
allows users to chat through short messages while links on
images and videos can be also posted. The collection of the
videos from the distributed multimedia platforms have been
performed by the search tool of (Ioannides et al., 2013) under
the framework of 4D-CH-World project (Doulamis et al., 2018).
From the Twitter, the respective API has been used to gather
the videos as described in (Doulamis et al., 2016). All videos are
user generated, they are of very short duration (from few seconds
up to several minutes) and they usually depict some cultural
sites, monuments or buildings of interest since they have been
captured for touristic use of simple users. Thus, the captured
visual content suffers from high resolution analysis, specific
orientation of the cameras, lack of image content overlapping
for some regions especially the ones which are not so accessible
by the simple users. In addition, in some of them, the camera
content is “flickering” due to the hand movements of the
users.

The main challenge of these video dataset is that the
content is often “contaminated” with information which is not
relevant to the sites we want the 3D reconstruct. For example,
humans are often present in front of a monument to verify
their present in the place. This noise of the data is removed
in our case by two ways. The first is through a projection
of the video content received upon the respective textual
descriptions they accompany them. Videos whose captions or
textual descriptions are not in aligned with the average content
information are removed. In addition, we further refine the
video content by removing outliers. This is done as described in
section Video Parsing and Text-based Filtering by (a) applying
the ORB visual features (Ankerst et al., 1999; Rublee et al.,
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2011) on each video frame, (b) placing the keypoints onto a
multidimensional manifold and (c) then deploying the OPTICS
dense-based clustering algorithm (Ji et al., 2018) to remove the
outliers.

The content of the datasets has been annotated by domain
experts. The annotation is performed at two categories; the one
that includes all frames that belong to a site class and the other
the frames that belong to the outliers’ images. On this content,
we create the ground truth dataset used to evaluate the results. In
addition, the domain experts annotate the content with respect
to the potential geometric views we need to get a complete 3D
reconstruction. This way, we can evaluate the required number
of frames within each bunch of a cluster so as to proceed with an
assessment of the coherency of the bunches created.

Python platform is used for extracting the ORB descriptors
and the d-PCA-based video summarization algorithm. In
addition, the Natural Language toolkit of Python is exploited
to count the words’ frequencies for all the retrieved tweets. For
the 3D reconstruction, we exploit SfM scheme as being provided
by the PhotoScan Agio 3D reconstruction platform. Other 3D
reconstruction tools such as the open mic mac cab ne also
exploited (Verykokou et al., 2017).

Objective Criteria
Objective criteria are used to assess the video summarization
approach with and creation of the video clusters and cluster
bunches. For the evaluation, the aforementioned dataset is
exploited. The two criteria adopted are the Precision which is
measured as

P =
|Sre|

|Ssu|
=

∣

∣Sgt ∩ Ssu
∣

∣

|Ssu|
(12)

where Sre is a set that contains the relevant image data, i.e., the
intersection of the data belonging to the ground truth over the
ones getting by the proposed summarization algorithm and the
Recall defined as

R =
|Sre|
∣

∣Sgt
∣

∣

=

∣

∣Sgt ∩ Ssu
∣

∣

∣

∣Sgt
∣

∣

(13)

Precision actually measures the percentage of the data that have
been correctly clustered over the total ones while recall the
percentage of the data correctly clustered over the ground truth
ones. That is, the two criteria play the role of true positives and
true negatives. By combining the two criteria, we can have that

F1 = 2 ·
P ∗ R

P + R
(14)

F1-score actually compensates the two aforementioned criteria of
Precision and Recall.

Experiments
Video Summarization Performance
The ground truth dataset described above which has been
annotated by domain experts is exploited in this paper to verify

the efficiency of video summarization results. The performance is
measures using the objectives criteria of Precision, Recall and F1-
Score as discussed in sectionObjective Criteria.Table 1 shows the
average results obtained when the d-PCA video summarization
algorithm is applied. In the same table, we also depict some
comparisons of the proposed methods with two other video
summarization techniques. The first of the compared ones adopts
a minimization of a cross-correlation criterion to perform the
summarization. This way, the most un-correlated video frames
are selected as the most suitable ones. The second compared
method belongs to the category of techniques that exploit the
temporal variation of the feature vector trajectory to perform the
analysis. In this case, the results are even lower than the first
approach.

The compared results indicate that our d-PCA scheme for
video summarization is more suitable in our case where we
need to derive 3D reconstruction models from short duration
videos than other traditional video summarization algorithms.
This means that d-PCA can better select a great number of
object views of different angles and orientations (precision
value) while simultaneously selects all potential views needed for
reconstruction process (recall values). On the other hand, other
traditional state-of-the-art video summarization algorithms are
better for detecting frames that are mostly uncorrelated [e.g.,
the algorithm in Panagiotakis et al. (2009)] or presents peak
variations in the feature space [e.g., the algorithm in Torresani
et al. (2008)].

We have chosen these two methods for video summarization
to be used for comparisons with the proposed d-PCA approach
due to the fact that they cover the whole range of video
summarizationmethods by detecting (i) content which is visually
irrelevant [uncorrelated-see the (Avrithis et al., 1999) approach]
or by detecting (ii) periodic motion patterns [the (Doulamis
et al., 2000a) approach]. These two approaches represent the
whole framework of a video summarization scheme. Regarding
the time efficiency of these methods, the work of (Doulamis et al.,
2000a) can be implemented in real-time and is suitable even
for consumer electronics devices. Our d-PCA approach is more
adequate for finding different views and orientations of an objects
and thus for 3D reconstruction. In this case, the time needed for
the reconstruction can be greater than real-time since the goal is
not to extract a trailer of a video sequence in short time but to
minimize the time required for the reconstruction by discarding
similar object views.

TABLE 1 | Precision, Recall, and F1-score results for the proposed d-PCA video

summarization algorithm and comparisons with other methods.

Video summarization Precision Recall F1-score

d-PCA 0.78 0.72 0.748

Cross correlation

(Avrithis et al., 1999)

0.72 0.68 0.70

Feature vector

fluctuation (Doulamis

et al., 2000a)

0.67 0.65 0.66
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3D Reconstruction Efficiency
We depict experimental results to show the efficiency of
3D reconstruction when the proposed video summarization
algorithm has been adopted. The data content mostly refers
to cultural heritage monuments in which a great amount of
distributed multimedia content is available. In particular, in
Figure 2A, we depict the reconstruction accuracy using the SfM
scheme when 100 images have been selected from a pool of
videos, the content of which illustrates visual information from
the Monument to the Discoveries (Padrão dos Descobrimentos)
in Lisbon, Portugal. This monument was selected since it
contains many geometric details, like the structure of the
humans (seamen) on the boat. The voids detected in the
reconstruction are due to the fact that the available image
content does not contain adequate information to properly
reconstruct the monument. Figures 2B–D presents the 3D
reconstruction when a smaller number of image frames is
selected while simultaneously we consider the remaining image
data are outliers. The partition is made randomly so that
some salient images of the monument may be lost. This
is the main reason in which the reconstruction accuracy of
the monument significantly deteriorates as the number of
image frames used as inliers drops. In particular, when the
number of inliers is the 60% of the initial ones the 3D
reconstruction performance is so bad that the monument is
not even recognizable. The main results of such dramatic
deterioration of the 3D reconstruction accuracy is due to the
position of the Monuments to the Discoveries. Its position

FIGURE 2 | The effect of the number of the outliers in reconstruction

performance using the SfM algorithm. (A) 100 inliers, 0 outliers. (B) 90 inliers,

10 outliers. (C) 70 inliers, 30 outliers. (D) 60 inliers, 40 outliers.

on the edge of the sea does not allow a complete, spherical
monitoring of the content for all angles and orientations and
the performance of the SfM cannot guarantee a sufficient
reconstruction accuracy.

We need to stress here that the best reconstruction achieved
in Figure 2A uses only a small limited number of image
frames than the number usually used for a SfM. This means
in other words that, although a small number of images
frames is actually exploited the reconstruction results is
of relatively sufficient quality. Another interesting point is
that the selected images fed as inputs to the SfM are not
suitable selected to reconstruct the whole geometry. Instead,
they have been extracted using the proposed d-PCA video
summarization algorithm. This notion proves the significance
of our scheme. Using only a very small dataset of images
being captured for totally different reasons than ours a
sufficient on-the-fly 3D reconstruction of sites of interest is
achieved.

Similar results are noticed for another prominent monument,
the Eiffel Tower in Paris, France. The results in Figure 3

start with the extraction of 100 image frames from a pool of
short videos that depict the Eiffel Tower monument. Again,
we note that a sufficient reconstruction is achieved when
a small and unstructured number of frames is selected.
If the number of frames is reduced and the outliers is
simultaneously increased the accuracy is deteriorated
as well but, in this case, it keeps in sufficient levels of
details. This is due to the position of the number which
allow the video shooting from all its potential angles and
orientations. This is not case for the 3D reconstruction of
Figure 2.

FIGURE 3 | The effect of the number of the outliers in reconstruction

performance using the SfM algorithm. (A) 100 inliers, 0 outliers. (B) 90 inliers,

10 outliers. (C) 70 inliers, 30 outliers. (D) 60 inliers, 40 outliers.
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TABLE 2 | Execution time for 3D reconstruction with respect to the number of fed

images.

100 images 1013.2 s

90 images 883 s

80 images 715 s

70 images 635 s

60 images 571 s

As a result, in our approach about 100 images are
considered adequate to provide a satisfied reconstruction of
the monument. However, these images have been selected by
removing the plethora our outliers and keeping only the most
representative data as being automatically extracted by our
algorithms.

Table 2 shows the time execution for the 3D reconstruction
methods with respect to the number of images fed as inputs
to the SfM. It is clear that as the number of images
increases the respective required time also increases but also
the reconstruction accuracy is improved as well. Thus, there
is a trade-off between the requested time and 3D accuracy.
This reveals the significance of our scheme. The target is to
select a small number of frames from the short duration video
shots that will represent the different orientation views of the
monument as much as possible. Increasing the number of
frames will lead to a greater cost while what we can achieve
in precision of the reconstruction is more and more saturated
though the increase in the number of frames used. Thus,
if we need to reach a high detailed 3D reconstruction, we
should take into account more frames representing different
object views. On the contrary, if there is a time limitation, due
for example to our device capabilities (e.g., mobile devices),
a smaller but representative number of frames should be
exploited to accelerate the process while keeping reconstruction
precision as high as possible. We should stress that SfM
is a polynomial complex algorithm and thus increasing the
number of frames used as inputs the time is exponentially
increased.

The Impact of the Proposed Scheme in Cultural

Heritage
The overwhelming majority of tangible cultural heritage assets
are located in regions where complete protection is not
possible due to financial, environmental, political, religious
or other local factors. Most of globe country are poor,
pursuing the increase of the income and quality of life of
their citizens and thus leaving protection of cultural heritage
as a second option. In addition, regional poverty often goes
with environmental decay of the soil, water and air. These
pollutants will have a tremendous impact of object materials
decaying their structures and thus putting cultural heritage in
danger. On the other hand, local conflicts, wars, lootings, and
other disputes frequently lead to partial or fully destruction of
cultural objects with a great impact of culture and the local
civilization.

Archaeologists, cultural heritage scientists and engineers
need 3D geometric models of cultural heritage objects so

as to derive documentation of them. However, funding 3D
capturing procedures for all the plethora of cultural heritage
monuments is not possible especially for poor or unstable
countries. This gap is covered by the proposed scheme which
exploits simple video shots mainly captured from touristic
purposes or simple visits to derive 3D geometric models of
the objects. The recent advances in hardware and software
technology make video capturing devices be of low-cost and
thus simple video shots be available for everyone, anytime and
everywhere. Thus, a massive 3D documentation and protection
can be achieved.

On the other hand, the derived 3D models can be useful
for augmented reality (AR) applications triggering a new series
of applications, such as games for promoting cultural heritage
sites, overlay of natural with virtual objects for more precise
documentation and relation of some cultural assets with others.

CONCLUSIONS

The today’s dramatic decrease in the cost of capturing
multimedia data has stimulated a great expansion of multimedia
data which are stored, and processed over distributed and
heterogeneous repositories. This results in a tremendous
number of multimedia data which can be exploited to trigger
several applications and launch new multimedia networked
services.

One of the key advantages of this tremendous volume of
multimedia information is to be exploited to 3D reconstruct
objects of interest, monuments, site or other regions without
the extra cost of processing or capturing the rich media
content within high degrees of accuracy. Across most of the
aforementioned multimedia repositories, the existence of short
videos, mainly being captured for personal use, is a significant
part of multimedia information which can be exploited for
3D processing. To identify the key frames, initially videos are
clustered together with respect to their textual descriptions
as derived from the caption annotation. Then, an outlier
removal algorithm is proposed to make the pool of videos
more homogeneous. The core part of the proposed scheme is
the implementation of a novel video summarization scheme
based on a discriminant Principal Component Analysis (d-
PCA).

The experiments conducted on a large dataset of cultural
objects indicate that the proposed algorithm (a) can 3D
reconstruct sites or objects of interest even though the data
have been obtained from unstructured visual content, (b) the
proposed summarization scheme can accurately localize the data
of interest than other approaches. The results indicate that even a
small number of frames is adequate to reconstruct the objects of
interest.

In future, we intend to expand this work in embedding
time component in the reconstruction phase; that is, how a
monument is evolved in time and in season. This will lead to
a 4D reconstruction f (3D geometry plus time) implemented
under a massive way (Kyriakaki et al., 2014). This will trigger
a series of new applications both for the cultural experts
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or for the simple users. For instance, the latter can share
unique 3D experiences on how a monument is changing
through different seasons under snow, rain, or hot conditions.
The first can share some small geometric changes in the
monuments that can assist them in documentation and analysis.
Furthermore, the massive 3D reconstruction can boost a series of
applications in Augmented Reality (AR) and Virtual Reality (VR)
domain by superposing story telling algorithm with unique 3D
objects.

4D modeling can be very useful for covering the intangible
cultural heritage era and especially the digitalization of dances. A
dance can be seen as a dynamic time evolved model and thus 4D
reconstruction can be much more challenging and demanding
(Aristidou et al., 2014, 2016). Specialized software toolkits needed
to be applied for such digitization such as VICON (Rallis et al.,

2017, 2018) while its unstructured modeling from UGC is really
a very arduous task.
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