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Scientific models represent ideas, processes, and phenomena by describing important 
components, characteristics, and interactions. Models are constructed across various 
scientific disciplines, such as the food web in biology, the water cycle in Earth science, or 
the structure of the solar system in astronomy. Models are central for scientists to under-
stand phenomena, construct explanations, and communicate theories. Constructing 
and using models to explain scientific phenomena is also an essential practice in con-
temporary science classrooms. Our research explores new techniques for understanding 
scientific modeling and engagement with modeling practices. We work with students in 
secondary biology classrooms as they use a web-based software tool—EcoSurvey—to 
characterize organisms and their interrelationships found in their local ecosystem. We use 
learning analytics and machine learning techniques to answer the following questions: 
(1) How can we automatically measure the extent to which students’ scientific models 
support complete explanations of phenomena? (2) How does the design of student 
modeling tools influence the complexity and completeness of students’ models? (3) How 
do clickstreams reflect and differentiate student engagement with modeling practices? 
We analyzed EcoSurvey usage data collected from two different deployments with over 
1,000 secondary students across a large urban school district. We observe large varia-
tions in the completeness and complexity of student models, and large variations in their 
iterative refinement processes. These differences reveal that certain key model features 
are highly predictive of other aspects of the model. We also observe large differences in 
student modeling practices across different classrooms and teachers. We can predict 
a student’s teacher based on the observed modeling practices with a high degree of 
accuracy without significant tuning of the predictive model. These results highlight the 
value of this approach for extending our understanding of student engagement with 
scientific modeling, an important contemporary science practice, as well as the potential 
value of analytics for identifying critical differences in classroom implementation.

Keywords: learning analytics, scientific modeling, sequential models, classification, instructional equity

1. inTrODUcTiOn

Scientific models represent ideas, processes, and phenomena by describing important components, 
their characteristics, and their interactions. Models are constructed across a broad spectrum of sci-
entific disciplines, such as the food web in biology, the water cycle in Earth science, or the structure 
of the solar system in astronomy. Models are central to the work of scientists for understanding 
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phenomena, and for constructing and communicating theories. 
Constructing and using models to explain scientific phenomena 
is also an essential practice in contemporary science classrooms. 
In A Framework for K–12 Science Education (National Research, 
2012), developing and using models is one of the eight core 
practices deemed essential for science learning and instruction. 
According to the Framework, “[s]cientists use models… to repre-
sent their current understanding of a system (or parts of a system) 
under study, to aid in the development of questions and explana-
tions, to generate data that can be used to make predictions, and 
to communicate ideas to others” (National Research, 2012).

Scientific models can take many forms, such as textual descrip-
tions, visual diagrams, computer simulations, and mathematical 
equations. For instance, in elementary physical science, Schwarz 
et  al. (2009) studied the development of students’ modeling 
practices by having students sketch models depicting how light 
interacts with objects to produce shadows. Bryce et  al. (2016) 
asked students to construct a clay model of a cell. Even these sim-
ple modeling activities push students to represent their current 
knowledge and to use this knowledge to explain new phenomena. 
Models are often more complex, involving visual representa-
tions or computer simulations. Such models may focus on the 
complex interactions between components (e.g., predator–prey 
interactions in a food web) or depict how a substance changes 
state over time (e.g., how water changes from liquid to gas as it 
moves through stages in the water cycle).

However, while it is widely recognized that developing stu-
dents’ modeling skills is important, learning sciences research 
has documented numerous challenges to implementation in the 
classroom. These challenges include variations in how teachers 
approach the topic of modeling (Krajcik et al., 1998; Jordan et al., 
2017) and variations in how students engage with the practices 
(Schwarz et al., 2009; Bryce et al., 2016). Variations in classroom 
implementation can lead to differences in students’ opportunities 
to learn these important modeling practices (McDonnell, 1995).

Learning analytics can play a valuable role in understand-
ing these differences in opportunities to learn. By focusing on 
how data streams can be used to characterize learner activity 
and understanding, researchers have been creating adaptive 
and responsive systems that leverage new insights to improve 
the learning experience for those students who need support. 
This approach has been leveraged in many learning scenarios  
(e.g., Chiu et al., 2017; Holstein et al., 2017) but has seen limited 
application in scientific modeling.

In this research, we study the development of student mod-
eling practices using digital modeling tools in secondary biology 
classrooms. In these classrooms, students used a web-based 
software tool—EcoSurvey—to characterize organisms and their 
interrelationships found in their local urban ecosystem. Students 
use EcoSurvey to: (1) photograph, map, and characterize local 
species, (2) document how species interact around shared 
resources such as food, and (3) identify resources and species that 
are important to the resilience of their environment. EcoSurvey 
follows in a rich tradition of computer-based modeling tools  
(e.g., Soloway et al., 1997; Fretz et al., 2002; Ketelhut et al., 2010). 
These digital modeling tools provide built-in affordances that fore-
ground important scientific modeling practices, and are explicitly 

designed to scaffold students’ modeling activities, through the 
careful design of the interface and prompts promoting reflection 
and appropriate action (Fretz et al., 2002; Quintana et al., 2004). 
As such, they support students to develop more complex models 
that would be difficult to create using traditional tools and these 
models can be quickly revised thanks to their digital nature.

Digital modeling tools also provide an opportunity for 
instrumentation to unobtrusively capture usage. Reflecting 
contemporary software architectures, EcoSurvey is a cloud-based 
software tool, where all changes and refinements to student 
models are centrally captured and stored, providing research-
ers with a fine-grained record of student modeling practices at 
scale, across potentially thousands of students in a wide range of 
classroom settings. These rich data offer opportunities for new 
learning analytic methods to better characterize student scientific 
modeling practices and to examine classroom level differences. 
In this article, we use learning analytics and machine learning 
techniques to answer the following questions:

(1) How can we automatically measure the extent to which 
students’ scientific models support complete explanations of 
phenomena?

(2) How does the design of student modeling tools influence the 
complexity and completeness of students’ models?

(3) How do clickstreams reflect and differentiate student engage-
ment with modeling practices?

We analyzed EcoSurvey usage data collected from over 
1,000 secondary students across two deployments. In the first 
deployment, we observed large variations in the completeness 
and complexity of student models, and large variations in their 
iterative refinement processes. We also observed large differences 
in student modeling practices across different classrooms and 
teachers, and we were able to predict a student’s teacher based 
on the observed modeling practices with a high degree of accu-
racy without significant tuning of the predictive model. In our 
second deployment, we saw improvements in the completeness 
and complexity of students’ models, suggesting benefits from 
improvements in modeling tool design.

These results highlight the value of this approach for extending 
our understanding of student engagement with scientific mod-
eling, as well as the potential value of analytics for identifying 
critical differences in classroom implementation. These results 
shed light on potential improvements in tools and curricula. 
Before discussing our approach and results further, we first pre-
sent the education and learning sciences theories underpinning 
this work and describe our research context and the EcoSurvey 
tool in more detail.

2. relaTeD WOrK

2.1. scientific Models That support 
complete explanations of Phenomena
Scientific models are tools for explanation and prediction. 
A complete scientific explanation should “explain observed 
relationships between variables and describe the mechanisms 
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that support cause and effect inferences about them” (National 
Research, 2012). Thus, to support student explanations, a 
scientific model of a phenomenon should include important 
components (“variables”), their interactions (“relationships”), 
and define the mechanisms involved. This approach is similar 
to the Structure–Behavior–Function model (SBF; Hmelo-Silver 
et al., 2007). However, the focus on interactions in our approach 
allows for more abstract relationships that do not rely on one 
particular behavior or function.

When modeling an ecosystem, these correspond to the organ-
isms in the ecosystem (animals, plants, insects, fungi, etc.), how 
these organisms interact with each other and the environment 
(predator, prey, producer, decomposer, etc.), and the involved 
processes (abiotic, biotic, etc.). Professional biologists use this 
information to measure the biodiversity of an ecosystem in terms 
of species richness, evenness, and divergence (Holling, 1973; 
Gunderson, 2000; Mason et al., 2005).

In this work, we characterize variation in students’ models 
by examining the number of organisms present, the various 
types of organisms present, the number of interactions between 
organisms that students have identified, and the diversity of these 
interaction types. We also look at how these features are distrib-
uted within a model. These measures are used to understand the 
complexity of a student model. This approach is similar to prior 
research understanding student models, particularly work from 
Jordan et al. (2017). Our approach to analyzing student models 
primarily differs from the focus on components and interactions 
rather than using the SBF framework. This change allows us to 
automatically characterize the different pieces of models, which 
can be used to support real-time analysis and feedback in the 
future.

Interestingly, understanding the complexity of an ecosystem 
has been shown to support students to develop empathy and 
other affective stances toward nature (Kellert and Wilson, 1995). 
Student understanding the flow of matter and energy through 
ecosystems has also been shown to vary strongly across cultural 
boundaries (Bang et al., 2007), providing further motivation for 
supporting equitable opportunities to learn scientific modeling.

2.2. strong student scientific Modeling 
Practices
Constructing scientific models is part of the “inquiry” tradition 
in science education, where students learn scientific concepts 
through hands-on “doing” (Kolodner et al., 2003). Understanding 
what students are doing at a fine-grained level can provide teach-
ers with useful insights into learning processes, as well as provide 
teachers with feedback as to where and when students need addi-
tional assistance. Toward this end, several scholars have developed 
frameworks characterizing effective student modeling practices 
(Schwarz et  al., 2009; Bryce et  al., 2016). Schwarz et  al. (2009) 
identify a series of the following seven practices: (1) identifying the 
anchoring phenomena to be modeled, (2) constructing a model, 
(3) testing the model, (4) evaluating a model, (5) comparing the 
model against other ideas, (6) revising the model, and (7) using 
the model to predict or explain phenomena. Bryce et al. (2016) 
identify a similar set of practices as important to support student 

learning during modeling, namely, (1) observation (paralleling 
the anchoring phenomena), (2) model construction, (3) model 
use, (4) model evaluation, and (5) model revision. Their research 
suggests that supporting students to engage in these practices can 
lead to positive learning outcomes (Schwarz et al., 2009).

Here, we focus on a subset of these practices—constructing, 
evaluating, revising, and using models—incorporating them 
into our analysis framework (Cukurova et  al., 2016). We focus 
on these four practices as they are directly supported through 
the EcoSurvey interface and can be readily observed and tracked 
in the usage log. In addition to these four practices, we examine 
the degree to which students engaged in iterative design of their 
models. Iteration occurs when students cycle between the other 
four modeling practices, where the four practices correspond 
directly to individual actions in the EcoSurvey interface, such 
as adding an organism or relationship (construction), editing 
an organism or relationship (revision), or generating a graph of 
the entire ecosystem to support explanations (using). Iteration 
is an important modeling practice that is used to both expand 
the scope of a model and to improve its accuracy (Homer, 1996; 
Bryce et  al., 2016). Learning analytic techniques are used to 
identify the degree to which students used these practices and 
to examine variations in student modeling practices. While these 
usage log analysis methods are an excellent passive way to collect 
data on student practices (Pelánek et al., 2016), it is important 
to note that these methods do not capture information about 
how students are reasoning with their models. Exploring student 
reasoning with models and how they generate explanation using 
models is beyond the scope of this study and would require deep 
exploration of students’ cognitive processes using think-alouds, 
cognitive interviews or other learning and cognitive sciences 
research methods (e.g., Schauble et al., 1995).

2.3. learning analytics of student activity
Understanding student activity is an active area of Learning 
Analytics research. There is a large body of work focused on 
detecting students’ skill acquisition using digital tools. One exam-
ple of this is a study focused on young students’ ability to make 
numeric and fractional estimates in a number line game. In this 
study, they found significant gains in student accuracy over time.

One important area of research around understanding stu-
dent activity focuses on detecting variance between students as 
a predictor of future activity. One example is Park et al. (2017), 
understanding student use of online classroom resources using 
features drawn from student clickstreams. These features focus on 
generalizing beyond the course content, focusing on simple fre-
quency measures (e.g., number of clicks per day) and abstractions 
of how the content accessed relates to the course schedule, deter-
mining whether the content being accessed is being “previewed” 
or “reviewed.” The team used these metrics to categorize whether 
students’ engagement with online resources increased, decreased, 
or stayed the same, creating three different categories of students. 
Overall, they found that students who specifically increased their 
engagement with the tool had a better success rate in the class.

While these aggregate features are useful in understanding 
activity, another approach to understanding this activity and 
variance is the use of sequence modeling (Xing et al., 2010). This 
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approach focuses on a fine-grained distinction of different activi-
ties and analyzes patterns in how activities lead into one another. 
This approach parallels that used by d’Aquin and Jay (2013), 
where they used sequential pattern mining to study student 
course enrollment patterns.

These innovations inspire my approach to analyzing student 
engagement with modeling practices. By adapting the approaches 
of aggregate activity and sequence analysis to scientific modeling 
in the classroom, I develop new insights into how students par-
ticipate in this crucial activity.

2.4. scaffolds
Scaffolding, or the use of external supports to help a person 
accomplish a task, is a common approach in the learning sciences. 
Vygotsky (1980) discussed such supports when describing the zone 
of proximal development for apprentices in trade fields. Scaffolds 
are natural extensions of this idea, tools that support a learner in 
this process, providing guidance or removing levels of complexity 
from the problem. These scaffolds can then be removed from the 
application, setting, or activity when the learner is ready to move on.

This scaffolding approach has been adopted in software-sup-
ported learning scenarios (e.g., Quintana et al., 2004; Gadiraju and 
Dietze, 2017). One particular line of work has focused on digital 
applications that support scientific inquiry. Quintana et al. (2004) 
describe the following three phases of scaffolding scientific inquiry:

(1) Characterizing the cognitive tasks, social interactions, tools, 
and artifacts that constitute the scientific practices in which 
learners are engaged.

(2) Characterizing the aspects of these practices in which learn-
ers encounter obstacles.

(3) Characterizing scaffolding guidelines that specify ways that 
tools can alter the task to address the obstacles by helping 
make tasks more tractable and productive for learners.

Our work naturally builds on these guidelines. By focusing the 
design of EcoSurvey around the practices outlined in learning 
science literature on modeling in the classroom, we naturally con-
nect to the real practices of the task. Our analytics are designed 
to automatically measure how successful students are at engaging 
with these practices and the points at which students run into 
difficulty. We have used this feedback in design, and our results 
show that students are using the revised modeling tool to create 
more complete models of their local ecosystem.

3. cOnTeXT

EcoSurvey was developed as part of a larger collaborative design-
based research project called the Inquiry Hub, which is focused on 
supporting teachers in developing student-centered approaches 
to curriculum and teaching (Penuel et al., 2016; Severance et al., 
2016). Inquiry Hub Biology is a digital high school biology cur-
riculum developed in partnership with a large urban school dis-
trict in the Midwestern United States. Within the ecosystems unit 
of this curriculum, students are asked to choose a tree to plant on 
their school grounds or other designated site that will improve 
their local ecosystem’s biodiversity and resilience. Classes use 

EcoSurvey to create a collective model of their local ecosystem. 
They use these models to provide evidence and construct argu-
ments to support their choice about the type of tree they choose 
to plant. The recommended type of tree is then planted on the site, 
in collaboration with the local Parks and Recreation Department, 
based on the students’ arguments and evidence. Thus, the models 
students create using EcoSurvey support them to construct 
arguments with real world consequences. To illustrate the use of 
EcoSurvey within this context, we follow the experience of Maria, 
a fictional student in Ms. Smith’s 3rd period class.

3.1. Data collection and creating the 
Model
Ms. Smith instructs students to map the ecosystem within a 
selected site on their school grounds or in the local area, taking 
pictures and making field notes on the organisms and interac-
tions between organisms that they observe. Maria’s group makes 
observations along the creek that runs next to the school. They 
find a lady beetle, a honey locust tree, some mushrooms, a gray 
squirrel, and a few other organisms. Using their smartphones, they 
take pictures of these organisms and upload them to EcoSurvey, 
creating a “card” for each organism while out in the field. Each 
card automatically captures information about the date, time, and 
location of the observation being recorded. Cards also include a 
“relations” field to capture interactions between organisms and 
information about the organism’s role in the ecosystem. Students 
begin entering this information as they observe it in the field, and 
then continue to augment this information back in the classroom 
through additional research. In Figure  1, we see Maria’s lady 
beetle card under construction. While in the field, she created 
the card, uploaded a picture, and added details about interactions 
they saw. At the same time, her team members are also creating 
cards for other organisms they are observing.

3.2. evaluating the Model
As students create cards, their organisms are added to a shared 
class “survey.” The survey view shows all of the organism cards 
and their detailed information, ordered by how recently they were 
edited. Maria can see that her classmates have created many cards, 
including a Blue Jay card (Figure 2).

Ms. Smith organizes the student groups into pairs and asks 
each group to review the other’s cards for correctness and com-
pleteness. Maria’s group is paired with Group 2, who completed 
several cards. Andre, a member of Group 2, asks Maria to first 
review the blue jay card he created. Maria uses the search feature 
of the survey view to quickly find the blue jay among the cards. 
She notices that this card is missing many details, including 
interactions with other organisms.

3.3. revising the Model
Maria recommends that Group 2 do further research into how 
the blue jay contributes to the local ecosystem. She also takes 
the chance to update her group’s honey locust card. She discov-
ered that blue jays nest in honey locust trees during her earlier 
research. She did not realize that their school ecosystem included 
blue jays until she reviewed the work of her classmates, as her 
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group did not see one. Once Maria has completed editing her 
group’s cards, she continues her review of Group 2’s cards. She 
uses the group select function to view only the cards created by 
members of Group 2.

Group 2 notices that two people in Maria’s group created 
duplicate lady beetle cards. Maria decides to add her lady beetle 
information to the other card, since it is more detailed, and uses 
the delete function to remove her lady beetle card from the model.

3.4. iterating the Model
In reviewing Group 2 cards, Maria sees a card for geese, but 
notices that the group did not add a predatory relationship to 
grass, even though she observed geese eat the grass on the soccer 
field. She uses the search functionality and discovers that no one 
in class created a card to document grass as an observed organism. 
Maria adds a new card for grass and includes a predatory-prey 
relationship with geese. By cycling back through earlier modeling 
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practices (creating new cards), Maria is iteratively improving the 
class model to be more complete and accurate.

3.5. Using the Model
Once the class has created a robust model of their local ecosystem, 
students use this model to construct arguments for choosing a 
particular tree to plant. Maria presses the “create relation graph” 
button, which generates the graph representation of the model 
and exports it to a digital graphing tool (Figure 3). Maria and 
her team study the resulting diagram that enables them to visual-
ize the relationships (links) between all the organisms (nodes) 
they have cataloged. It is clear from looking at her graph that the 
English Oak trees are an important keystone species in their site, 
involved in a large number of relationships with a wide variety 
of organisms. The geospatial locations in the observational data 
indicate that there are only two English Oak trees located in their 
site; Maria and her group recommend planting an additional tree 
of this type.

Maria’s scenario illustrates how EcoSurvey supports students 
to engage in the practices of creating, evaluating, revising, iter-
ating, and using models. To use a learning analytics approach 
to study modeling practices, we must map specific actions, or 
sequences of actions, taken in the EcoSurvey interface to specific 
modeling practices. Table  1 describes the mapping between 
modeling practices and specific EcoSurvey interface actions that 
we use in our analyses. As students interact with EcoSurvey, the 

system captures and logs each of the actions shown in Table 1. 
Each log entry includes the time, user, survey, and action type.

3.6. ecosurvey Design iteration
Consistent with a design-based research approach, we are 
iteratively improving the design of the EcoSurvey tool and the 
supporting curriculum after each field deployment. Classroom 
observations, feedback from users, and analysis of the usage 
patterns from the first version drove several important changes.

The foremost change is the redesign of the survey view, incor-
porating the graph representation of the model into the students’ 
main workflow as seen in Figure 4. This view presents the model 
as a collection of components (organisms) and interactions 
(relationships). This development grew from results from our first 
deployment that students failed to engage with relationships for 
many organisms in their models, and many classrooms showed 
limited engagement with exporting their models to the graph 
view. Therefore, we designed the graph layout to emphasize the 
relationships between organisms, naturally promoting the task of 
adding relationships to disconnected cards.

The second change we made was to the types of relationships 
that could be added as seen in Figure  5. In the first version, 
the relationship field was open and would accept any response. 
This led to a wide variety of responses, many of which did not 
accurately reflect possible relationships (e.g., “brown trout” is 
not a relationship type). While we normalized the relationships 
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Table 1 | EcoSurvey actions.

Modeling 
practice

Description ecosurvey 
actions

Create model Create a new entry in the model New Card

Evaluate 
model

Explore the organisms and interactions in the 
current model

Group Select, 
Search

Revise model Edit or delete organisms and interactions 
included in the current model

Edit, Delete

Use model Export a representation of the model for use 
(e.g., constructing an argument)

Generate Graph, 
Download

Iterate Cycle between creation, revision, and use 
practices

New Card, Edit, 
Delete, Generate 
Graph, Download

FigUre 4 | The graph view in version 2.
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gave written informed consent, and all student data were col-
lected anonymously in the course of normal classroom activities. 
The University of Colorado Boulder Institutional Review Board 
waived the need for written informed consent to be obtained 
from the students’ parents/legal guardians. All teachers’ names 
are pseudonyms.

4.1. study Data
The work presented here builds on two deployments, one of each 
version of EcoSurvey. Both deployments took place in the same 
district and with the same professional development routines. 
However, the data we have analyzed for each deployment used 
a separate cadre of teachers, which allows us to avoid effects due 
to previous experience with using EcoSurvey in the classroom.

For our first deployment, EcoSurvey usage log data were col-
lected across 10 high school classrooms during Fall 2015. A total 
of 9 models were created, which included 586 organism cards and 
545 interactions. Our second deployment in Fall 2016 featured 
final models from students in 35 classes across 11 teachers. These 
models included 4,136 organism cards and 4,701 interactions.

The deployment of the first version of EcoSurvey also incorpo-
rated activity logging. From the sample, we recorded actions for 
204 students generating 3,160 action logs, whereas 58 students 
did not record any activity. All classrooms in both samples fol-
lowed a 3:1 device deployment where three students used one 
laptop together; thus it is not surprising that there are students 
with no recorded activity.

4.2. Model complexity analysis
Our first research question examines variation within student 
models, focusing specifically on the richness of students’ models 

for analysis (as discussed below), this still left a large number of 
“unknown” relationships. By using a closed list of relationship 
options based on language from the science standards, version 2 
of EcoSurvey scaffolds student model development and scientific 
understanding by driving them to consider how their intuitive 
representation of the relationship maps to the terms used by 
scholars in the field.

4. MeThODs

Here, we describe data used in our analyses as well as the specific 
analytic techniques used to answer each of our three research 
questions.

This study was reviewed and approved by the University of 
Colorado Boulder Institutional Review Board, and all activities 
were conducted according to their rules and guidelines. Teachers 

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


FigUre 5 | The card edit view in version 2.

8

Quigley et al. Learning Analytics for Scientific Modeling

Frontiers in ICT | www.frontiersin.org November 2017 | Volume 4 | Article 24

in terms of the number of organisms and their relationships. We 
analyze the relative number of organisms and interactions within 
each class survey. We also look at the balance of interactions per 
organism by evaluating both the average number of interactions 
per organism and variance in the distribution of interactions. 
Examining variance allows us to distinguish different patterns in 
the assignment of interactions to organisms. Some classes may 
create models where most organisms have a similar number of 
interactions, whereas other classes may create models where only 
a few organisms have been assigned many interactions.

We also analyze the distribution of relationship types using 
evenness. This measure considers how each type of relationship 
is represented within the survey. We calculated evenness using 
the Shannon index, the same formula for species evenness in the 
study of ecosystems (Shannon and Weaver, 1998). The Shannon 
index gives an evenness score from zero to one. A survey with an 
equal number of relationships of each type would have a perfect 
evenness score of one. Conversely, a survey with many preda-
tor–prey relationships and few others would have a low program 
type evenness score. The Shannon index is calculated using the 
following formula:
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where Si = total number of relationships in the surveys.

4.3. influence of Tool Design on Models
Our second research question seeks to understand how design 
changes in digital modeling tools can have an impact on students’ 
models. These measures are important for the iterative process of 
our design-based research approach, providing evidence of what 
impact the design changes have on students’ models.

To evaluate the impacts of design, we aim to compare directly 
across deployments of different versions of EcoSurvey. We run 
the same statistical comparisons for each version and compare 
across conditions. In cases where direct comparison of means and 
variance is possible, we use a standard Student’s t-test (Student, 
1908) to determine significance.

4.4. Variation in Modeling Practices
Our last research question examines variation in student 
modeling practices, focusing on action variety, frequency, and 
iteration. Action variety refers to the range of actions a student 
performed. For example, some students may have only created 
and edited cards, whereas others may have used the full range 
of EcoSurvey actions. Frequency refers to the total number of 
actions completed by an individual student and the number of 
usage sessions they engaged in. Sessions are defined by a series of 
actions from a single user without a large break in activity (greater 
than 2 h). Defining a session using a 2 h gap allows for any student 
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Table 2 | Version 1 final models.

survey Organisms interactions interactions 
per organism

interaction 
variance

Anderson 4/7 155 264 1.7 4.35
Baker 1 47 7 0.149 0.297
Baker 2 25 5 0.2 0.24
Baker 4 19 0 0 0
Chavez 1 88 70 0.795 0.663
Chavez 2 45 27 0.6 1.31
Chavez 6 60 57 0.95 3.78
Chavez 7 81 82 1.012 5.72
Chavez 8 66 33 0.5 0.826
Averages 65.11111111 60.55555556 0.6562222222 1.909555556
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activity within a long class period to occur within one session; 
several of our classrooms employ 1.5 h block periods.

To characterize iteration practices, we look for evidence of 
design cycles within the log information. Design cycles can be 
recognized when students engage in multiple sequences of con-
struct–revise–use practices. This focus on a sequence of practices 
is consistent with Schwarz et  al. (2009), which characterized 
modeling practices as a series of steps. By extension, a design cycle 
consists of returning to a previous modeling step after moving on 
in the sequence (e.g., creating a new card after editing a different 
card). We counted the number of cycles as a measure of iteration.

Combined, these three metrics—action variety, frequency, 
and iteration—yield an eight feature vector for each student 
consisting of total number of EcoSurvey actions, total number 
of create actions, total number of evaluate actions, total number 
of revise actions, total number of use actions, total number of 
EcoSurvey action types taken, number of sessions, and number of 
iterations. We combined the feature vectors for students with the 
same teacher, and performed a Kruskal–Wallis H test (Kruskal 
and Wallis, 1952) for each feature to determine differences 
between teachers. A Kruskal–Wallis H test is a non-parametric 
adaptation of an ANOVA to compare samples of different sizes, 
as we have in our groups. We further explored these differences 
using Tukey’s HSD test (Tukey, 1949) to test the significance of 
pairwise differences between teachers.

4.5. Predictive Value of Modeling Practices
This understanding of modeling practice allows us to characterize 
the variation in student activity in EcoSurvey. To expand on this 
characterization, we examine the degree to which we can use 
sequences of student modeling actions to predict that student’s 
teacher. We plan to use this prediction in a support system for 
students and teachers embedded within the tool.

For this prediction task, we use the previously described 
features of variety, frequency, and iteration as well as automati-
cally extracted sequence patterns. In our work, a sequence pat-
tern consists of a series of EcoSurvey actions (e.g., “New Card,” 
“Edit,” “Generate Graph”) embedded within a student’s complete 
action log. To extract sequence patterns, we used the Colibri 
Core (van Gompel and van den Bosch, 2016) software package. 
This software package, originally designed for natural language 
processing tasks, treats every action as a token and determines 
the frequency of consecutive token sequences (n-grams) from 
student usage logs. These token sequences can include wildcard 
actions (skip-grams). For instance, the software will extract the 
sequence “New Card,” “Edit,” “Generate Graph” as either an 
n-gram or as the skip-gram “New Card,” {*}, “Generate Graph.” 
This skip-gram will capture similar sequence patterns, where one 
action occurs between New Card and Generate Graph actions. 
This yielded 2,893 unique sequence patterns, which occurred at 
least three times, across all student usage logs. Once we extracted 
these sequence patterns, we used them as a new series of features 
to augment each student’s existing feature vector.

To understand which features that characterize a student’s 
modeling actions are most predictive of his or her teacher, we 
input subsets of each student’s feature vector into four Naive Bayes 
classifiers using Weka (Hall et al., 2009). The first classifier used 

the eight features related to variety, frequency, and iteration of 
actions. The second classifier used the full set of sequence pattern 
extracted by Colibri Core for each student. The third classifier 
implemented a best-first search (Hall and Holmes, 2003), which 
automatically reduced the full set of sequence patterns to the 
eighteen most predictive features. The last classifier combines 
the eight varieties, frequency, and iteration features with the 
eighteen most predictive sequence patterns. Each test was run 
using 10-fold cross validation.

5. resUlTs

Our results are divided into sections based on the type of analysis 
performed. In the first two sections, results are further broken up 
by deployment version, allowing us to present each set of results 
independently and then discuss how they relate to our second 
question about the impact of design on student models.

5.1. Model complexity analysis
5.1.1. Version 1
As shown in Table  2, there are substantial variations in the 
models created by students in different classrooms. We see 
that Anderson’s students documented many more organisms 
(155) and interactions (264) than all other classes. Although 
Anderson had both of her classes work together to create one 
survey, the total number of students contributing to this model 
is comparable to the number of students contributing in other 
classrooms. We also see that students in Baker’s three classes each 
documented significantly fewer organisms and interactions. One 
class only documented 19 organisms (less than one per student) 
and did not document any interactions. Chavez’s classes exhibit 
wide variation, particularly in the numbers of interactions docu-
mented by each class.

The number of interactions per organism, a broad measure of 
model complexity, further illustrates apparent classroom differ-
ences, with Anderson’s class creating more complex models than 
Baker’s and Chavez’s classes. To better understand classroom dif-
ferences, we examine variance in the number of interactions per 
organism. In Anderson’s class, we see a high variance in compari-
son to the interactions per organism metric, which indicates that 
there are a small number of organisms with lots of interactions 
and many organisms with few interactions.
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FigUre 7 | The relationship type distribution for Version 2.

Table 3 | Version 2 final models.

survey Organisms interactions interactions 
per organism

interaction 
variance

MIN—
Jaques 1

6 1 0.166666667 0.138889

MAX—
Lin 1

70 189 4.5 78.67857

Averages 118.1714286 134.3142857 1.136605416 6.539478711

FigUre 6 | The relationship type distribution for Version 1.
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Chavez’s P1 and P7 classes provide a particularly interesting case 
to examine this variation. On reviewing Table 2, we see that the 
variance in the number of interactions assigned to each organism 
is significantly lower in P1 than in P7, whereas the actual number 
of organisms and interactions are comparable. Further analyses 
reveal that students in Chavez’s P1 did not assign any interactions 
for 39% of their organisms, whereas students in P7 did not assign 
interactions to 74% of their organisms. A similar analysis revealed 
that 42% of the organisms documented in Anderson’s model did 
not include interactions. In most classes, the majority of organ-
isms have no documented interactions. It appears that students 
engaged significantly more with describing organisms, and spent 
far less time consistently documenting interactions.

5.1.2. Version 2
The models generated during the second deployment with 
our second group of teachers (as summarized in Table S1 in 
Supplementary Material) of EcoSurvey demonstrated both par-
allels and contrasts. First and foremost, the average number of 
organisms and interactions are both higher in our second deploy-
ment group (as seen in Table 3), with the number of organisms 
showing a trend toward significance (p  =  0.09). Furthermore, 
the ratio of relationships per organism tends to be significantly 
higher, demonstrating significantly more complex models.

The variance in relationships per organism once again also 
leads to some interesting results. The high levels of variance 
across classes highlight continued imbalance in the distribution 
of assigned relationships; students are once again focusing on 
key cards when creating relationships. However, the wide range 
of percentages of cards without relationships (17–88%) demon-
strates that classes are engaging with relationships in different 
patterns. Nevertheless, the average percentage of orphaned cards 
(50%) is lower than the first deployment.

5.2. relationship analysis
5.2.1. Version 1
Students did successfully engage with adding relationships to their 
models in the first version of EcoSurvey. However, analysis (as 
seen in Figure 6) did suggest several trends of use that did moti-
vated changes to the relationship system in EcoSurvey’s design. 
First and foremost, there were a large number of “unknown” 
relationships that could not be normalized. This trend represents 
the ambiguity in students’ models, which leads to an inability to 
construct explanations and arguments using the model. Second, 
we see an imbalance of relationship types (evenness  =  0.749), 
with a particular emphasis toward predator–prey connections 
(55.8%). This indicates that students were not engaging deeply 

with exploring other types of relationships, particularly com-
petitive relationships (5.7%) that are important for maintain-
ing organism balance. Finally, this analysis emphasized that 
important bidirectional connections between organisms, such as 
symbiotic relationships of mutual beneficence, were not properly 
incorporated into EcoSurvey.

5.2.2. Version 2
Version 2 showed remarkable improvement in the evenness of 
relationship types (Figure  7, evenness  =  0.803), even with the 
added complexity of a new “mutually benefits” relationship 
type. In particular, we see a remarkable decrease in the relative 
abundance of predator–prey relationships (down 26.5%) and a 
substantial increase in the use of all other valid relationship types. 
In addition, although version 2 incorporated the ability to denote 
unknown relationships, this feature saw very little use (1.1%).
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Table 4 | Predictive accuracy of each action sequence feature set.

Feature set # attributes naive bayes acc. (%)

Baseline 0 51.96
All sequence patterns 2,893 63.73
Variety, frequency, and iteration features 4 67.65
Best sequence patterns 18 75.00
Combined features 22 80.39

FigUre 8 | Student modeling practices for each teacher’s students. (a) The average number of actions by modeling practice type. (b) The average number of 
actions, types of actions, and action sessions.
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5.3. Practices analysis
5.3.1. Analysis of Teacher Differences
There are significant differences between the student action 
sequences of our three teachers on all eight metrics related to 
variety, frequency, and iteration (p < 0.001). Our Tukey’s HSD 
test for each feature shows that the three groups are each distinct 
to a significant degree in Create, Revision, and Iteration frequency 
(Figure 8A, p < 0.05), as well as Overall Actions, Session Count, 
and Action Variety (Figure 8B, p < 0.05). We also see Anderson’s 
students performed significantly more Evaluate and Use actions 
than the other two teachers’ students (Figure  8A, p  <  0.05), 
although the differences between Baker’s and Chavez’s students 
are not significant. Anderson’s class also used EcoSurvey twice 
as much, as measured by session counts. Overall, Anderson’s stu-
dents engaged in more modeling practices than both of the other 
two groups, and Chavez’s students engaged in more modeling 
practices than Baker’s.

There were also differences in the modeling practices that 
students employed. Students in Baker’s classes rarely engaged in 
three of the five modeling practices we are studying: revisions, 
iteration, or use. Chavez’s class engaged with four of the five 
practices, but appeared to rarely use their models.

5.3.2. Predictive Value of Practices
As shown in Table 4, student action sequences can predict their 
teacher with varying degrees of reliability depending upon the 
features used. Our baseline assumes that each student is in one 
of Chavez’s classes; almost 52% of the students in this study 
were in one of his classes. All of the feature sets we studied 
improved performance over the baseline. Classifying based on 
all 2,893 sequence patterns improved our classification accuracy 
by almost 12%, whereas classifying solely based on our variety, 
frequency, and iteration features improved performance by over 
15%. We also trained a model on the best sequence patterns, that 
is, the 18 most predictive patterns identified by Weka’s Attribute 
Selection tool (Hall and Holmes, 2003); this yielded a nearly 25% 
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Table 5 | The most predictive action sequences.

New Card, New Card, {*}, 
New Card, {*}, {*}, New 
Card

New Card, {*}, Group 
Select, {*}, New Card

Group Select

Group Select, {*}, Group 
Select

Group Select, {*}, {*}, {*}, 
Group Select

Group Select, {*}, New 
Card, {*}, New Card

Group Select, Search Search, {*}, {*}, {*}, Edit Edit
Edit, Edit Edit, {*}, Edit Edit, {*}, {*}, Edit
Edit, Search Edit, Generate Graph, 

Download
Edit, Generate Graph, 
Download, Edit

Generate Graph Download Generate Graph, 
Download

Table 6 | Combined features confusion table.

classified as

anderson baker chavez

Correct class Anderson 29 0 1
Baker 1 64 3
Chavez 5 30 71
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improvement in performance. The best performing model was 
one that combined the most predictive sequence patterns with 
our variety, frequency, and iteration features. This combination 
resulted in a 30% improvement over baseline, correctly predicting 
a student’s teacher 80% of the time.

The most useful features for classification accuracy are the 18 
“best” sequence patterns (Table 5). A closer examination reveals 
that these sequence patterns correspond to our five modeling 
practices in interesting ways. These patterns prioritize model 
revision, evaluation, and iteration as distinguishing features, 
which correspond to the differences in classroom modeling 
practices discussed under research question 2.

To better understand the types of errors that our best perform-
ing model makes, we generated a confusion matrix (Table 6). We 
see that 75% of the errors are due to the misclassification of 30 
of Chavez’s students as Baker’s students. One possible reason for 
this misclassification is that some students in Chavez’s classes 
performed very few modeling actions overall, similarly to the 
majority of students in Baker’s classes.

6. DiscUssiOn

Overall, these results demonstrate the capabilities of our analytic 
techniques to help us understand scientific modeling in the class-
room. We have been able to discover the variance in students’ 
models, the impact of design features on those models, and the 
variance in student engagement with modeling practices. These 
results inform work in learning analytics, modeling tool design, 
and the design of curricula and professional development for the 
Next Generation Science Standards.

While the second deployment showed limited evidence of 
improved student contribution, there is still large variance in 
the number of organisms and interactions documented at the 
classroom and teacher level. These differences could be due to 
various factors, such as the time allocated to modeling during 

class, the teacher’s dispositions and knowledge about scientific 
modeling, or the teacher’s capability to support student use of 
EcoSurvey. These possibilities can be addressed through cur-
riculum and professional development design around supporting 
student modeling, as well as through the interface design and the 
inclusion of teacher supports within digital modeling tools like 
EcoSurvey.

Our analysis of student models also revealed a disturbing 
similarity across all classrooms and teachers: all the models 
contained significant percentages of organisms that did not have 
a single defined interaction with another organism. Thus, these 
student models are missing critical elements of a complete and 
sound ecosystem model. It is unlikely that these models can 
support students to develop comprehensive explanations and 
predictions as called out in the Framework (National Research, 
2012). There are multiple possible explanations for these behav-
iors, including weaknesses in the Inquiry Hub curriculum, the 
associated teacher professional development, or the design of the 
EcoSurvey tool.

In developing the second version of EcoSurvey, we made key 
design changes that we hypothesized would improve student 
models. As a first step, we made major changes in designing 
EcoSurvey version 2 to make it easier for students to establish 
relationships from multiple parts of the interface, to visualize 
established relationships through an integrated graph view, and 
to see which organisms are not connected to others in the model. 
In the second version, we did see gains in the level of complete-
ness and complexity of students’ models, as well as a more 
even distribution of relations mapped in the system. However, 
these changes have only slightly reduced the isolated organism 
phenomenon. This result suggests that further mechanisms will 
be necessary to address these issues. Our planned approach is 
to incorporate adaptive feedback mechanisms within EcoSurvey, 
providing scaffolds for struggling students.

The large variance we observed in student modeling practices 
provides evidence of significant teacher-level differences. Clearly, 
these teachers are implementing EcoSurvey and the correspond-
ing lessons differently in their classrooms, with wildly varying 
results. When teachers devoted more time to modeling, as meas-
ured by sessions, their students’ engaged in a richer variety of 
modeling practices. Prior research suggests that there is a linkage 
between student engagement in modeling practices and future 
learning outcomes (Schwarz et al., 2009; Bryce et al., 2016). Thus, 
it appears that students in several of our participating classrooms 
lacked critical opportunities to learn (McDonnell, 1995; Mo 
et al., 2013), which could ultimately impact their academic per-
formance. In future work, we plan to examine the relationships 
between student engagement in modeling practices and their 
learning outcomes as measured by end-of-course school district 
assessments.

Our predictive analysis provided further evidence of significant 
teacher-level differences. The feature selection algorithm honed 
in on the presence or absence of three modeling practices—evalu-
ation, revision, and iteration—as the features that best predicted a 
student’s teacher. This suggests that future professional develop-
ment and curriculum design should focus on these specific prac-
tices, ensuring that all students get an opportunity to participate 
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in these parts of the modeling process. The most accurate classi-
fier also benefited from additional features characterizing action 
variety, frequency (number of actions), and iteration. These 
features further highlight differences in student engagement, with 
some students missing the opportunity to explore, develop, and 
use their models over time.

In EcoSurvey version 2, we expanded features designed to sup-
port evaluation, revision, and iteration practices. By facilitating 
students to use (visualize) their models more frequently, we hope 
that this will prompt them to notice shortcomings and engage in 
modeling practices that were previously underutilized. A parallel 
clickstream analysis of our redesigned interface is a necessary 
next step in our future research.

While this study yielded many results that have informed our 
partnership design work, there are several limitations that are 
important to note. First, we cannot attribute our observed varia-
tion in models and modeling practices to student-level differences, 
due to the shared and collaborative nature of the deployment. All 
our participating classrooms asked students to work in groups 
and each group shared a single laptop computer; we are actually 
observing the collaborative modeling practices of small groups 
rather than individual students. Second, our practices analysis 
is only available for students in our first deployment cycle. This 
limited set shows potential for capturing differences in modeling 
engagement, but further data collection is required to explore the 
generalizability of these findings.

While our technique is designed to generalize across tools, 
our investigations thus far have only explored student use 
of EcoSurvey, limiting our ability to generalize our findings. 
Nevertheless, a core aspect of our analytic approach explicitly 
linked specific user interface actions in the EcoSurvey tool to 
individual modeling practices identified through prior research: 
creating, evaluating, revising, using, and iterating (Homer, 1996; 
Schwarz et al., 2009; Bryce et al., 2016). This approach enabled 
us to work with theoretically and empirically sound features 
identified through prior classroom research. And, this approach 
enabled us to interpret the action sequences identified as sali-
ent by our algorithms in a theoretically informed way, enabling 
us to link our findings back to instructional concerns, such as 
curriculum design and professional development. This method 
of linking interface actions to identified modeling practices can 
support generalizing this analytic approach to other tools that 
support scientific modeling, such as Model-It! (Jackson et  al., 
2000), Dragoon (VanLehn et al., 2017), or activities within the 
Wallcology unit (Lui and Moher, 2017).

7. cOnclUsiOn

In this study, we demonstrated the utility of learning analytic 
methods for characterizing variation in students’ scientific 
models and their modeling practices. We also showed that an 
individual student’s modeling action sequences can be used to 
predict this or her teacher. Our results support Windschitl et al.’s 
findings documenting large variations in how teachers implement 
modeling in their classrooms (Windschitl et al., 2008). While we 
did not conduct formalized classroom observations, our analysis 
revealed profound, quantifiable differences in the models that 

students constructed across different classrooms and significant 
differences in their classroom learning experiences as depicted 
in the range of modeling practices that they engaged in. This 
result confirms and expands upon the conclusions of Jordan et al. 
(2017) that modeling is handled differently across classrooms but 
provides evidence that the variance is not only attributable to the 
teacher. The variance in model complexity within each teacher 
shows that student and class level variance can sometimes have a 
higher impact than teacher-level variance.

One important aspect we plan to address in future work is the 
impact of modeling activities on student learning. Our team has 
been developing assessments to embed three dimensional assess-
ments (Council et al., 2014) within the ecosystems curriculum. 
Within this body of questions, we have designed prompts to elicit 
student understandings of modeling as a science and engineering 
practice as well as a cross-cutting concept, allowing us to measure 
student development of these skills while using EcoSurvey and 
the accompanying curriculum. In addition, we have developed 
protocols to evaluate students’ final reports related to the unit-
level challenge of choosing a tree to plant on their school grounds. 
By analyzing how students incorporate their models of the local 
ecosystem into their final choice, we can measure the impact of 
EcoSurvey on students’ explanations of ecosystem phenomena 
(National Research, 2012).

We are also incorporating these findings into the next itera-
tion of design and deployment of our modeling tool. Our biggest 
improvement is to provide these analytics in real-time feedback 
systems within EcoSurvey. We plan to work with preservice and 
active teachers to design interfaces that support the needs of 
students in successfully developing complete models of their eco-
system, as well as interfaces to support teachers in understanding 
the activity and contributions of students toward their models.
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