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Juan-Manuel Pérez-Rúa*, Antoine Basset and Patrick Bouthemy

Inria, Serpico Team, Rennes, France

We propose an original method for detecting and localizing anomalous motion patterns in
videos from a camera view-based motion representation perspective. Anomalous motion
should be taken in a broad sense, i.e., unexpected, abnormal, singular, irregular, or
unusual motion. Identifying distinctive dynamic information at any time point and at any
image location in a sequence of images is a key requirement in many situations and
applications. The proposed method relies on so-called labeled affine flows (LAF) involving
both affine velocity vectors and affine motion classes. At every pixel, a motion class is
inferred from the affine motion model selected in a set of candidate models estimated
over a collection of windows. Then, the image is subdivided in blocks where motion class
histograms weighted by the affine motion vector magnitudes are computed. They are
compared blockwise to histograms of normal behaviors with a dedicated distance. More
specifically, we introduce the local outlier factor (LOF) to detect anomalous blocks. LOF
is a local flexible measure of the relative density of data points in a feature space, here the
space of LAF histograms. By thresholding the LOF value, we can detect an anomalous
motion pattern in any block at any time instant of the video sequence. The threshold
value is automatically set in each block by means of statistical arguments. We report
comparative experiments on several real video datasets, demonstrating that our method
is highly competitive for the intricate task of detecting different types of anomalous motion
in videos. Specifically, we obtain very competitive results on all the tested datasets: 99.2%
AUC for UMN, 82.8% AUC for UCSD, and 95.73% accuracy for PETS 2009, at the frame
level.

Keywords: video processing, affine flow, motion patterns, anomalous motion detection, local outlier factor

1. INTRODUCTION

Motion analysis, with all its possible branches, i.e., motion detection (Goyette et al., 2014), motion
estimation (Fortun et al., 2015),motion segmentation (Zhang and Lu, 2001), andmotion recognition
(Cedras and Shah, 1995), is a key processing step for difficult tasks related to video analysis, such as
activity recognition (Aggarwal and Ryoo, 2011; Vishwakarma and Agrawal, 2013; Li et al., 2015b).
However, there is a gap between low-level description of videos and high-level video understanding
tasks. In this paper, we focus on the problem of detecting and localizing anomalous motion in
videos. The detected anomalous motion can be further interpreted in accordance with the targeted
application.
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In a general setting, analysis of activities from videos requires
automatic tools to tackle the tremendous amount of routinely
acquired data from cameras installed in a wide range of contexts
(Zhan et al., 2008; Li et al., 2015b). Motivations can be manifold
depending on the applications: traffic monitoring, crowd safety
in big social or sport events, surveillance in public transporta-
tion areas, understanding of animal groups, etc. A common and
frequent goal is to rapidly and reliably detect anomalous motion
in the broad sense of irregular, abnormal, singular, unexpected,
or unusual motion. Anomalous motion pertains to events of that
type. This kind of activity analysis usually requires intense human
supervision, all the more when the objective of the analysis is
identifying anomalies in the scene. A particularly common setup
for scenes where anomalies are sought consists of fixed-pose
cameras pointing to scenes of interest. In these cases, the goal is
to detect anomalies from the point of view of the camera. This
task becomes even more difficult in crowded scenes, where the
behavioral complexity in different parts of the video can cause
confusion and distraction. Thus, the need for automatic systems
that are able to assist the video monitoring of scenes has been
growing steadily.

There is generally no unique or even intrinsic definition of
an anomalous motion. It may depend on the context and the
application. As in Chandola et al. (2009) and Hu et al. (2013),
we consider in this work that anomalous motion means that the
motion significantly differs from the mainstream one, observed
either in the same video segment or in the whole video. Indeed,
anomalous motion is taken here in the broad acceptance of a dif-
ferent behavior w.r.t. context. It does not mean that the so-called
abnormal motion is necessarily malicious, dangerous, or forbid-
den. This formulation is general enough to be of large practical
interest. The presence of anomalous motion can be detected by
deciding that the given motion cannot be fit in a model, which is
learned from a set of training data of normal behaviors for a given
scenario, computed online. Local motion can also be assessed as
anomalous by simply comparing its characteristics with others in
its (possibly wide) spatial or spatiotemporal vicinity without any
pre-computed model available.

The desired solution, however, has to comply with a number
of requirements. First, the devised modeling has to be simple
and generic enough so that it can be used in a wide range of
applications. Second, the algorithm has to be fast. Computational
performance is an important criterion looking toward real-time
implementation (Lu et al., 2013), to supply on time information
on where to focus when analyzing videos. Finally, an anoma-
lous event detection at the frame level does not provide with
enough information As a consequence, the method has to be able
to localize motion anomalies in the video both temporally and
spatially.

In this paper, we present an original method for detecting and
localizing anomalous motion in videos. It relies on novel motion
descriptors consisting of histograms of local affine motion classes,
weighted by affine flow magnitude and computed over image
blocks. This type of histograms outreaches usual histograms of
motion vectors. A dedicated histogram distance is accordingly
specified. At each pixel, the motion class is derived from the
affine motion model selected among a set of candidate models

estimated over a collection of overlapping windows of different
sizes. Thus, the motion models selected over the image domain
yield both an affine flow and a map of pixelwise motion classes,
whose concatenation forms what we call the labeled affine flow.
The latter conveys the real flow value and the affine motion class
at every pixel. Since the concept of anomalous motion cannot be
intrinsically defined, we need a decision criterion able to specify
in a data-driven way the local singularity of themotion descriptor.
Consequently, we propose the local outlier factor (LOF) to detect
anomalous motion. LOF is a local flexible measure of the relative
density of data points in a feature space (Breunig et al., 2000). It
was initially designed, and used so far, in very different application
domains than computer vision. Here, the feature space is formed
by the local block-based motion class histograms.

The overall method is a fully automated and generic method
embedded in a block-based framework and able to jointly detect
and localize anomalous motion. With the very same method, we
can handle local anomalous motion, that is, local unusual behav-
iors compared to the other ones in the image, and global anoma-
lous motion, that is, unusual behavior compared to previous ones,
suddenly shared by all the actors of the scene. Our method does
not involve any parametric model of normal behavior, nor of
anomalousmotion. It only requires that reference LAF histograms
accounting for normal behavior are available, either pre-computed
or computed online. We have tested our method on several video
datasets depicting different types of applications.

The rest of the paper is organized as follows. In Section 2, we
review the related literature and previous work on anomalous
motion detection, specifically in the context of crowd anomaly
detection.We explain howwe compute the so-called labeled affine
flow in Section 3. Then, in Section 4, we fully describe our anoma-
lous motion detection-and-localization method and give insights
about its main properties. In Section 5, we report a comparative
objective evaluation on several video datasets with an application
to crowd anomaly detection and dedicated experimental investi-
gations on the two main stages of our method, that is, the LAF
histograms and the LOF criterion. Finally, we offer concluding
comments in Section 6.

2. RELATED WORK

While motion irregularities were studied per se in Boiman and
Irani (2007), motion anomaly has been mainly investigated in
the context of crowd anomaly detection. As a consequence, our
description of the related work will be driven by this applica-
tion, even though appearance features are often simultaneously
exploited for that goal as in Mahadevan et al. (2010), Antic and
Ommer (2011), Bertini et al. (2012), and Zhang et al. (2016).

Specialized descriptors have been designed to capture the
dynamics of crowds motion from videos and have been used for a
number of inference tasks in crowd analysis, such as categorizing
crowd behaviors, finding principal paths, or detecting objects in
video surveillance (Basharat et al., 2008; Solmaz et al., 2012; Thida
et al., 2013; Basset et al., 2014; Li et al., 2015b).

As for anomaly detection in crowd videos, several approaches
have been explored. Some methods target specific scenarios, or
are specialized for certain types of video data. For instance, escape
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behaviors can be considered as a specific case of anomaly in
surveillance videos (Wu et al., 2014). Determined urban groups
dynamics can also be viewed as a special case of anomaly detection
in crowded videos. With this goal, the authors in Andersson
et al. (2013) proposed an algorithm to detect disturbances caused
by individuals merging groups. Other works are able to detect
anomalies locally in videos and without an explicit definition
of what the abnormality is. Among these, two main classes are
found: trajectory-based (Stauffer and Grimson, 2000; Piciarelli
et al., 2008; Wu et al., 2010; Jiang et al., 2011; Zen et al., 2012;
Li et al., 2013) and feature-based ones (Adam et al., 2008; Kim
and Grauman, 2009; Kratz and Nishino, 2009; Antic and Ommer,
2011; Bertini et al., 2012; Cong et al., 2013; Hu et al., 2013; Li et al.,
2014; Cheng et al., 2015; Zhang et al., 2016).

Trajectory-basedmethodsmake use of the relevant information
embedded in object tracks (Stauffer and Grimson, 2000; Porikli
and Haga, 2004; Jiang et al., 2011; Leach et al., 2014). Neverthe-
less, these methods are usually constrained to scenes where it
is possible to perform foreground tracking; otherwise, they are
subject to a large amount of false positives, as pointed out by
Adam et al. (2008). In Wu et al. (2010), representative trajectories
are first extracted after particle advection and chaotic features are
exploited. The normality ismodeled by aGaussianmixturemodel.
A maximum likelihood (ML) estimation with comparison to a
predefined threshold enables to determine normal and abnormal
frames. Then, anomalies are located in frames identified as abnor-
mal, with certain success on the dataset ofUniversity ofMinnesota
(Papanikolopoulos, 2005).

A different approach was investigated in Mehran et al. (2009),
still based on particle trajectories. Interaction forces between par-
ticles are introduced, which yield a force flow in every frame.
Recognizing normal frames and abnormal ones in the video
sequence is achieved using a bag-of-words approach involving a
latent Dirichlet allocation (LDA)model. Anomalies are delineated
in abnormal frames as regions with high force flow. A similar idea
to the interaction forces is presented by Leach et al. (2014), where
hand-crafted features andmetrics from individuals’ human tracks
are used to detect anomalies.

The method described in Cui et al. (2011) relied on tracked key
points to calculate interaction energy potentials and to separate
normal and abnormal crowd behaviors with a support vector
machine (SVM) classifier. The work in Piciarelli et al. (2008) fol-
lows a similar classification approach, but it starts from trajectory-
based clustering to model normal behaviors.

A non-parametric Bayesian framework is designed in Wang
et al. (2011), which can be used to detect anomalous trajecto-
ries. Trajectories are described as bags of words, composed of
quantized positions and directions. A dual hierarchical Dirichlet
process (Dual-HDP (Wang et al., 2009)) is defined to cluster both
words and trajectories. Unlikely trajectories are considered as
anomalous ones.

On the other hand, feature-based approaches are less prone to
depend on specific scenarios and have been tested on a wide range
of datasets. In Kratz and Nishino (2009), spatiotemporal intensity
gradients are used, whose distribution over patches in normal
situations is supposed to be Gaussian. The Gaussian parameters
are learned on the training set. In Kim and Grauman (2009), a

mixture of probabilistic principal component analysis (MPPCA)
aims at modeling normal flow patterns, estimated over patches of
the training video set.

The method (Chockalingam et al., 2013) builds upon prob-
abilistic latent sequential models (PLSM) previously defined by
the authors in Varadarajan et al. (2007), to detect and localize
anomalous motion. These enhanced topic models, which auto-
matically find temporal and spatial co-occurrences of words, are
learned in long image sequences, where anomalous events happen.
The spatiotemporal compositions (STC) method (Roshtkhari and
Levine, 2013) requires about a hundred initialization frames to
start learningweights of so-called codewords representing normal
behaviors. Afterward, weights are updated online so that no other
training sequences are required.

In Benezeth et al. (2011), co-occurrence matrices for key pixels
are embedded in a Markov random field formulation to describe
the probability of abnormalities. Zhong et al. (2004) also uses
co-occurrence matrices, but in an unsupervised setting.

Mixtures of dynamic textures (MDT) are introduced in Li
et al. (2014) with conditional random fields (CRF) to represent
crowd behaviors. By exploiting both appearance andmotion, they
reported successful results on several datasets, but at the cost
of sophisticated models that require intensive learning and high
computation time.

Other authors focused on giving explicit inclusion of spatial
awareness, by subdividing the image in local regions or blocks, in
order to obtain a good detection performance with less learning
requirements (Boiman and Irani, 2007; Adam et al., 2008).

Another approach was explored in Antic and Ommer (2011).
Vectors of spatiotemporal derivatives were utilized as input of a
SVM classifier with linear kernel to support the foreground sep-
aration process. The latter feeds a graphical probabilistic model.
Very good results were obtained on the UCSD dataset (Li et al.,
2014). However, this method depends heavily on how well the
foreground elements of a video dataset are separated, undermin-
ing a possible application for very crowded scenes.

Social force models based on optical flow of particles, as intro-
duced in Mehran et al. (2009) is another example of descriptor
used to detect anomalies. Constructing on the social force con-
cept, Zhang et al. (2015) introduced the so-called social attribute
awareness to model crowds’ interaction and to detect anoma-
lies. In a similar fashion, Lee et al. (2015) used a feature con-
structed overmotion influencemapswithin a per-block codebook
approach to detect anomalies in crowd videos.

Sparse representations have been increasingly adopted for
anomaly detection, as the problem can be elegantly modeled with
sparse linear combinations of representations in a training dataset
(Zhao et al., 2011; Cong et al., 2013; Li et al., 2013; Zhu et al.,
2014). Explicit image space subdivision can also benefit anomaly
localization performance in sparse representation-based methods
(Biswas and Babu, 2014). It is shown in Mo et al. (2014) that,
by introducing non-linearity into the sparse model, better data
separation can be achieved. Also, somemodifications can bemade
to the usual construction of the sparsity models by introducing
small-scale least-square optimization steps (Lu et al., 2013), sacri-
ficing accuracy for the benefit of a fast implementation. However,
although elegant and sound, sparse representation methods have
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not shown high performance in more demanding datasets for
anomaly localization.

The method presented in Hu et al. (2013) exploits optic flow
measurements only and is fully unsupervised. It introduces a semi-
parametric likelihood test computed on a given window and out-
side the window to decide if the content of the tested window con-
tains abnormal motion or not. Competitive results are reported,
especially on the crowd anomaly UCSD dataset. However, the
exhaustive searchwithin a large number of space-timewindows of
different shapes and sizes is highly time consuming. Thus, a fast
scanning variant is proposed which exploits histograms of flow
words and fixed space–time elementary blocks.

On the other hand, anomalous motion is somehow related to
the concept of motion saliency. Spatiotemporal saliency in videos
has attracted growing interest in recent years (Mahadevan and
Vasconcelos, 2010; Georgiadis et al., 2012; Fang et al., 2014; Huang
et al., 2014; Jiang et al., 2014; Kim and Kim, 2014; Li et al.,
2015a; Wang et al., 2015). Here again, motion saliency features
are often combined with spatial saliency features. However, the
respective goals can diverge. Indeed, saliency detection is more
concerned with moving objects of interest in a scene, even by
the primary moving object in the scene, not necessarily with
anomalous motion. The notion of surprising event described in
Itti and Baldi (2005) is maybe more in the line of our general
definition of anomalous motion. Salient event detection in videos
was addressed in Hospedales et al. (2012) based on a Markov
clustering topic model.

Undoubtedly, the literature related to anomalousmotion detec-
tion is extensive and comprises a growing number of algorithms
and tools. However, the task of accurately detecting and locating
motion anomalies by being generic in the definition of what
corresponds to anomaly remains an interesting challenge. Inside
the current set of algorithms, we present a novel method that can
be classified as feature based and data driven. More exactly, we
introduce a simple, yet powerful local motion descriptor, which
is well suited to handle anomalous motion. Then, we exploit a
non-parametric feature-density criterion to detect and localize
anomalous motion. We explain our method in depth hereafter.

3. LABELED AFFINE FLOW

3.1. Affine Motion Models
We need to extract motion measurements from the video
sequence in order to determine the type of local motions in the
image and decide on their nature (normal or anomalous). Several
alternating options could be adopted: local space–time features,
optic flow fields, or tracklets as outlined in Section 2. We adopt
the computation of affine flow. Parametric motion models are
easier to estimate; they can account for local and global motions
as well and provide readily exploitable information for classifi-
cation. To overcome the motion segmentation issue entangled
with parametric motion estimation (i.e., computing the motion
model on the correct support), we use a collection of windows,
as we proposed in Basset et al. (2014). However, the purpose in
Basset et al. (2014) was to extract the main crowdmotion patterns
in the image in order to globally characterize the movements of
the crowd. Here, our goal is different since we are interested in

detecting local anomalous motions if any. Then, we made sub-
stantial modifications on the algorithm described in Basset et al.
(2014). For instance, in contrast to Basset et al. (2014), we exploit
affine motion magnitude to weight motion class histograms. All
the improvements will be pointed out throughout the subsequent
description.

The collection of affine motion models estimated in the collec-
tion of windows, provides us with a set of motion candidates at
every point p= (x, y) in the image domain Ω, that is, the velocity
vectors supplied by the affine motion models at p. There are as
many candidates at p as windows containing point p. We will have
to select the right candidate as explained below. The advantage
of these motion measurements is that they are robustly estimated
from two consecutive frames only, while well anticipating the
needs of the subsequent classification.

As aforementioned, taking a collection of predefined windows
allows us to circumvent the complex issue of motion-based image
segmentation into regions. The collection W consists of over-
lapping windows of four different sizes, 12.5, 25, 50, and 100%
of the image dimensions to handle motion of different scale. An
additional smaller size is considered, compared to Basset et al.
(2014), to better capture local independent motions. For a given
size, the window overlap rate is 50% both in the horizontal and
vertical directions, so that a given point p∈Ω belongs to four
windows of that size (apart from image border effects). In order to
mitigate the rectangular block artifacts induced by the subdivision
mechanism, we add a small random modification on the width
and height of each window. An illustration is given in Figure 1 for
three window sizes only for the sake of readability.

A static camera configuration is assumed, as it is the usual situa-
tion in the targeted applications, but extension to a mobile camera
could be considered, for instance by compensating beforehand for
the dominant imagemotion due to the cameramotion. In order to
minimize the computational load, we extract first the binarymask
of moving objects in every frame by means of a motion detection
algorithm. To this end, we use our motion detection method by

FIGURE 1 | Illustration of three window sizes (respectively plotted in
red, green, and blue) with an overlap rate of 50%. Any point p in the
image domain belongs to a subset of windows of different size.
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background subtraction described in Crivelli et al. (2011) which
also built upon (Veit et al., 2011). We denote by Υ(t) the set of
moving pixels extracted at time instant t, with Υ(t)⊂Ω.

We assume that affinemotionmodels are sufficient to represent
image motion with the view of anomalous motion detection. The
velocity vector of point p∈Υ(t) at time instant t given by the affine
motionmodel of parameters θ(t)= (b1(t), a1(t), a2(t), b2(t), a3(t),
a4(t)), reads

wθ(t)(p) =
(
uθ(t)(p)
vθ(t)(p)

)
=

(
b1(t) + a1(t)x + a2(t)y
b2(t) + a3(t)x + a4(t)y)

)
. (1)

We will even further assume that, at the proper scale, it can be
represented by one of the three following specific affine motion
models: translation (T), scaling (S), and rotation (R). As explained
above, the three types of 2D motion models are computed in a
collection of predefined windows. We use the robust estimation
method (Odobez and Bouthemy, 1995) implemented in the pub-
licly available Motion2D software1 to compute these parametric
motion models.

Let us denote by W(p), M(p, t), and Θ(p, t), respectively,
the set of windows from the collection W containing point p,
the set of motion models computed at time instant t within the
windows of W(p) and supplying candidate velocity vectors at
p, and the associated set of parameter values of these motion
models. We have |M(p, t)| = 3 |W(p)|, where |.| denotes the
set cardinality, since three 2D motion models (T, R and S, as
defined above) are computed in each window of W(p). We have
Θ(p, t) = {θk(t), k = 1 . . . |M(p, t)|}. With the aforementioned
choices on the number of window sizes and the overlap rate, we
have |W(p)| = 4 × 4 = 16 and |M(p, t)| = 48.

In the sequel, for the sake of notation simplicity, we will drop
the reference to time instant t. We aim to find the most relevant
motion model at p∈Υ among the candidates specified by Θ(p).
We take the displaced frame difference as fitting variable to test
each motion model k of M(p) at p:

ϵ(p, θk) = It+1(p + wθk(p)) − It(p), (2)

where It(p) denotes the intensity at p at time instant t, and
wθk(p) = (uθk(p), vθk(p))

T is the velocity vector given by the
motion model k at p. Let us specify expression (1) for the three
motion types. For the T-motion type,

wθk(p) = (b1,k, b2,k)T with θk = (b1,k, b2,k);

for the S-motion type,

wθk(p) = (b1,k + a1,kx, b2,k + a1,ky)T, θk = (b1,k, b2,k, a1,k);

and for the R-motion type,

wθk(p) = (b1,k + a2,ky, b2,k − a2,kx)T, θk = (b1,k, b2,k, a2,k).

1http://www.irisa.fr/vista/Motion2D/.

3.2. Selection among the Motion Model
Candidates
The optimal motionmodel at p should best fit the real (unknown)
local motion at p while being of the lowest possible complexity.
We consider a local neighborhood ν(p) centered in p, and we
exploit the fitting variable (2), which is likely to be close to 0
for the correct velocity vector exploiting the intensity constancy
constraint as done for optical flow computation (Fortun et al.,
2015). Let us assume that the ϵ(q, θk)’s are independent identically
distributed (i.i.d.) variables over points q∈ ν(p)∩Υ and follow
a zero-mean Gaussian law of variance σ2

k . Then, we can write
the joint likelihood in the neighborhood ν(p) for each motion
model k:

ϕ(p, θk) =
1√

2πσ2
k

|ν(p)∩Υ|

∏
q∈ν(p)∩Υ

exp − ϵ(q, θk)2

2σ2
k

. (3)

The variance σ2
k is estimated from the inliers of the motion

model k within the window used for robustly estimating the
motion model k. To penalize the complexity of the motion model,
i.e., the dimension of the model given by the number of its
parameters, we resort to the Akaike information criterion (AIC)
with a correction for finite sample sizes (Cavanaugh, 1997). The
correction is especially useful when the sample size is small, which
is precisely the case here for the neighborhood ν(p). The penalized
criterion writes as follows:

AICc(p, θk) = −2 ln(ϕ(p, θk)) + 2ηk +
2ηk(ηk + 1)

|ν(p) ∩ Υ| − ηk − 1
,

(4)
where ηk is the dimension of themotionmodel k, that is, ηk = 2 for
T-motion model, and ηk = 3 for S- and R-motion models. Finally,
the optimal motion model k̂ at p is

k̂(p) = arg min
θk∈Θ(p)

AICc(p, θk), (5)

which minimizes criterion (4).
From the motion models selected at pixels p∈Υ, we obtain the

affine flow {wθk̂(p)
(p), p ∈ Υ}.

3.3. Determination of Motion Classes
We have now to assign to each p∈Υ its motion class. The motion
classes will be used to compute the motion descriptors which
are the input of our anomalous motion detection method. As
explained in subsection 3.2, we have selected the right motion
model at each point p∈Υ among the estimated motion model
candidates with the penalized likelihood given by the corrected
Akaike information criterion for small sample sets defined in
equation (5).

As already stated, the different imagemotions are assumed to be
well captured by three affinemotion types: translation (T), scaling
(S), and rotation (R), in a view-based representation. Motion
classes are straightforwardly inferred from the motion types as
summarized in Tables 1 and 2. More specifically, the translation
type is subdivided into motion classes indicating the direction of
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TABLE 1 | Definition of motion types, motion classes, and color codes.

Motion types Motion classes

Translation

Scaling • Convergence
◦ Divergence

Rotation • Clockwise
• Counterclockwise

TABLE 2 | Rules for determining motion classes from motion types.

Motion types Motion classes

Orientations Rules

Translation • North b2,k > 0, 3π
8 < acos

( b1,k
||θk||

)
≤ 5π

8

• North West b2,k > 0, 5π
8 < acos

( b1,k
||θk||

)
≤ 7π

8

• West b1,k < 0, 3π
8 < acos

( b2,k
||θk||

)
≤ 5π

8

• South West b1,k < 0, 5π
8 < acos

( b2,k
||θk||

)
≤ 7π

8

• South b2,k < 0, 3π
8 < acos

( −b1,k
||θk||

)
≤ 5π

8

• South East b2,k < 0, 5π
8 < acos

( −b1,k
||θk||

)
≤ 7π

8

• East b1,k > 0, 3π
8 < acos

( −b2,k
||θk||

)
≤ 5π

8

• North East b1,k > 0, 5π
8 < acos

( −b2,k
||θk||

)
≤ 7π

8

Scaling • Convergence a1,k < 0
◦ Divergence a1,k > 0

Rotation • Clockwise a2,k < 0
• Counterclockwise a2,k > 0

the translation in the image, since we have adopted a motion rep-
resentation corresponding to the camera view point. The scaling
type is split in two classes, called Convergence and Divergence,
according to the sign of the divergence coefficient. Finally, the
rotation type is subdivided into Clockwise and Counterclock-
wise motion classes. Aiming for other crowd analysis tasks than
anomaly detection, the crowd motion classification introduced
in Basset et al. (2014) comprised only four translation classes
(i.e., North, East, South, and East). Here, we introduce a finer
orientation quantization with eight translation directions. Indeed,
we need a finer characterization of the movement for anomalous
motion detection.We come up with a set of twelve motion classes,
denoted byΓ= {γ l, l= 1, . . . 12}. Fromnowon, themotion classes
will be represented in the figures by the color codes given in
Table 1.

The motion classification map L(t) is determined by applying
the rules summarized inTable 2. They are based on the signs of the
parameters of the selectedmotionmodels and on simple functions
of these parameters. EachL(p, t) value is one of the twelvemotion

classes γ l of the setΓ. This is illustrated on Figure 2. In contrast to
Basset et al. (2014), we do not regularizeL(t) by a vote procedure,
since we precisely aim to detect local anomalousmotion. The local
motion information must not be smoothed out. If we process an
image sequence of T successive images, we come up with T − 1
successive motion classification maps L(t), t = 1 . . . T − 1.

We coin the term Labeled Affine Flow (LAF) to emphasize
that, from the selected motion model at p∈Υ, we have not only
computed an affine flow vector at p but have jointly determined its
motion class. The labeled affine flow is defined at each time instant
t of the video sequence by {(wθ(t)̂k(p)(p),L(p, t)), p ∈ Υ(t)}.

A possible extension to the classification process would be to
include more motion classes (e.g., by first adding the motion
type TRS—Translation plus Rotation plus Scale—and then, cor-
responding motion classes). For our target application, however,
addressing too many motion classes would have detrimental
effects. In particular, it might affect the statistical relevance of
motion class histograms and make the discrimination of local
anomalies difficult. It would require more available data with all
the possible motion combinations.

4. DETECTION AND LOCALIZATION OF
ANOMALOUS MOTION

Our anomalous motion detection-and-localization method relies
on localmotion classes derived from the pixelwise selectedmotion
types. We compute block-based motion-weighted histograms of
these motion classes as motion descriptors to characterize local
motions.We use non-overlapping blocks as illustrated in Figure 3.
If required, overlapping blocks could be used as well to increase
the spatial accuracy of the anomalous motion detection at the
expense of computation load, down to a pixelwise detection
with one-pixel stride in the block generation. Then, we adopt a
density-based measure in the histogram space to detect anoma-
lous motion. The pipeline is explained in detail hereafter.

4.1. Local LAF Histograms
As noted in Section 2, feature-based methods for anomaly detec-
tion that benefit of direct use of spatial information achieve better
performance. For this purpose, we split the image, and conse-
quently the scene since the camera is static, in spatial blocks Bi,
with i= 1 . . .B. This subdivides the anomalous motion detection
task in multiple sub-problems (see Figure 3). We introduce an
originalmotion histogramwhichwe call LAF histogram. The LAF
histogram is computed for every blockBi at time t, and is denoted
by hti . The LAF histogram corresponds to a weighted motion class
histogram. More specifically, the LAF histogram hti is constructed
by summing a function ψ(p, t, l) over block Bi within a short time
interval around time instant t. We define ψ(.) as follows:

ψ(p, t, l) =

{
||wθkl

(p, t)||2 if L(p, t) = γl,

0 otherwise,
(6)

where kl denotes themotionmodel selected at pwith equation (5),
and associated with the motion class γ l. As defined by equation
(6), the weight to be added in bin l of the histogram is the
magnitude of the affine flow vector at p. Thus, we simultaneously
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A B C D

FIGURE 2 | Overview of the computation of the labeled affine flow in several real video sequences. (A) Input images. (B) Motion detection maps Υ(t). (C)
Affine flow deduced from the selected motion models, colored according to standard code for optical flow maps, which is the continuous version of the quantized
color code used for Translation classes provided in Table 1. (D) Map L(t) of motion classes for each pixel, colored according to Table 1.

FIGURE 3 | Spatial blocks are introduced to allow localization of anomalous motion. The images are respectively taken from the UMN and UCSD datasets.

take into account both themotionmagnitude and themotion class
to detect anomalous motion. As aforementioned, affine motion
magnitude was not exploited in Basset et al. (2014). For each bin l
of the histogram, we set:

hti(l) =
∑
p∈ Bi

t+1∑
τ=t−1

ψ(p, τ, l), (7)

involving the previous (t− 1) and following (t+ 1) frames to build
the histogram at time t. This procedure enables us to specify short-
term temporal behaviors in a given block. The motion magnitude
is used to weight the importance of a given motion class (or bin of
the histogram). In this way, wemanage to capture several essential
aspects of motion in a single descriptor, allowing us to distinguish
anomalies by their speed and their movement direction as well.
It is true that a small fast moving object and a large slow one may
lead to similar histograms if they undergo exactly the same type of

motion and if the ratios in speed and size are strictly equal, which
has however a very low probability to occur.

4.2. Dedicated LAF Histogram Distance
We now specify the appropriate distance to compare two LAF
histograms. Let us take two LAF histograms computed in the same
block Bi for two different images and referenced as α and β. They
could be the test histogram and the training one for instance.
As a matter of fact, this distance will combine two distances,
since we first separate the histograms in two sub-histograms. The
first one involves the eight classes of translation motion, and
the second one involves the four classes related to scaling and
rotation motions. This will be motivated right below. The two
sub-histograms are denoted by κi and ζ i, respectively.

For the translation-related sub-histogram, we adopt the mod-
ulo distance Dmod(·, ·) introduced in Cha and Srihari (2002) for
circular histograms. This is precisely the case for the translation
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sub-histogram, since the eight translation classes are defined by
compass orientations (see Table 1). There is no closed-form way
to compute the modulo distance, but an algorithm is available, the
pseudocode of which can be found in Cha and Srihari (2002). The
modulo distance plays a key role as it is higher between opposite
directions that between adjacent ones. It can truly emphasize
discrepancy and closeness between motion translation classes,
and it is less sensitive to orientation quantization. On the other
hand, the sub-histograms related to scaling and rotation motion
classes are compared with a L1 distance.We found that L1 distance
was the best choice after experimentally comparing several usual
histogram distances. The overall histogram dissimilarity measure
between two LAF histograms hα

i and hβ
i is then defined as follows:

D(hα
i , hβ

i ) = Dmod

(
κα
i , κ

β
i

)
+ DL1

(
ζα
i , ζ

β
i

)
, (8)

with equally weighted summands, since the ranges of the modulo
andL1 distances are similar as explained inCha and Srihari (2002).

4.3. Local Outlier Factor
We face a specific situation for formulating the anomalousmotion
detection criterion. We have no prior models on what should
be both normal and abnormal behaviors. Training a classifier
could be a possibility; it is easy to collect training examples
for normal behaviors. However, we have usually few available
anomalous motion examples, they can be of different kind, and
in particular they may be unexpected. Furthermore, we want that
our method can be applied online as well, without any previous
learning stage. This advocates for a purely data-driven decision
process to detect anomalous motion. A LAF histogram corre-
sponding to anomalous motion should be an outlier in the feature
space of LAF histograms, where all computed LAF histograms are
collected, since the large majority of LAF histograms are likely
to correspond to normal behaviors. An outlier can be charac-
terized by its distance to clusters of normal behavior. However,
this would require to perform clustering in a high-dimensional
space without knowing the number of clusters and their respective
shape (inner distribution). Then, a more attractive approach is
to compare the local density of features (i.e., histograms) around
the test histogram with the local feature densities of its nearest
neighbors.

To do this, we resort to the local outlier factor (LOF) which is
precisely a measure to discriminate anomalous data in a dataset.
LOF was proposed to detect anomalies in the e-commerce field
(Breunig et al., 2000). It has subsequently been used to detect
anomalies for other kinds of problems, such as network intrusions
(Lazarevic et al., 2003). However, LOF has not been exploited so
far for solving computer vision problems. We will demonstrate its
utility for anomalous motion detection in videos.

The rationale behind the LOFmeasure is that detecting outliers
can be achieved by identifying points of a certain feature space
that have low data density around them with respect to their
neighbors. This approach allows one to specify abnormality in a
local and relative way. It is thus quite flexible. This is illustrated
in Figure 4, which includes two clusters, C1 and C2, and a few
other data points, such as hα1

1 and hα2
j , supposed to be outliers

(i.e., anomalous motion for our problem). If we merely perform

A

B

FIGURE 4 | (A) Illustrative case where a dataset is shaped mainly in the form
of two clusters (data points in green and blue), with a few of clear outliers in
red, including hα1

i and hα2
j . In our case, data points in the feature space for a

single block are LAF histograms of weighted motion classes. (B) Detail for the
outlier data point hα1

i , where the local reachability density of the data points is
encoded with circles. Regarding the neighborhood of k-nearest histograms,
k= 3 in this illustration. The outlier point is surrounded by a circle (in blue) that
is clearly bigger that the ones of their neighbors (circles in orange).

thresholding on the distance of the data point to the cluster
centroids, it may be tricky to set the threshold value and lead to
errors. Indeed, several points of cluster C1 could be for instance
incorrectly labeled as anomalous, or conversely it could be the case
that hα2

j may be interpreted as an inlier.
By contrast, using the LOF measure, an “outlierity” measure is

assigned to every point in the dataset, and it does not require to
determine any cluster. This measure is calculated as the average
local density attached to data points within its neighborhood
divided by its own local density. This notion is illustrated in
Figure 4B, by encoding the density measure as a circle that con-
tains the k-nearest neighbors of a given point. The larger the circle,
the smaller the density measure. It can be observed that inliers
are surrounded by smaller circles than the outlier points. The
formal definition of this density is supplied later on in this section.
Thus, if a data point of the feature space is assigned a low density
compared to data points in its neighborhood, its outlieritymeasure
is higher.

The neighborhood of a data point in the feature space is given
by its k-nearest neighbors for the distance of equation (8). In this
sense, the neighborhood geometry is locally adaptive. Although
the distance of a tested data point to a “normal” point may be
smaller that the distance between two other “normal” points, the
test data point can still be classified as outlier/anomalous, if its
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most proximal neighbors depict a higher density. As an example,
in Figure 4, it can be seen that although the distance between
data point hα2

j and points of cluster C2 is similar to the distance
between pairs of data points in cluster C1, hα2

j can still be detected
as outlier/anomalous, since its density is being compared to data
points that belong to C2 mainly. The same reasoning can be
applied to data points of cluster C1, allowing them to be labeled
as inlier/normal.

More formally, we need first to introduce the reachability
distance (Breunig et al., 2000) of a histogram hα

i from another
histogram hβ

i :

φk(hα
i , hβ

i ) = max
(
D(hβ

i , h
k(β)
i ),D

(
hα
i , hβ

i

))
, (9)

where k(β) denotes the k-th nearest neighbor of β, and D(·, ·) the
distance introduced in equation (8). Let us stress thatφk(·, ·) is not
a real distance since it is not symmetric. Hence, φk(hα

i , hβ
i ) is not

expected to be equal to φk(hβ
i , h

α
i ).

We denote the set of k-nearest neighbors of a given histogram
hα
i by Nk(hα

i ). The local reachability density ρk(hα
i ) is defined as

the inverse of the average reachability distance of the histogram
hα
i from its neighbors (Breunig et al., 2000):

ρk(hα
i ) =

1
k

∑
hη
i ∈ Nk(hα

i )

φk(hα
i , hη

i )

−1

, (10)

since the cardinality of Nk(hα
i ) equals k. Let us remind that

φk(hα
i , hη

i ) is the reachability distance of hα
i from hη

i , not to be
confused with φk(hη

i , h
α
i ).

The local outlier factor LOFk (upper script k expresses the
use of k-nearest neighbors) is then defined to compare the local
reachability densities of a given histogram with respect to its own
neighbors as follows (Breunig et al., 2000):

LOFk(hα
i ) =

∑
hη
i ∈ Nk(hα

i ) ρk(h
η
i )

|Nk(hα
i )| ρk(hα

i )
. (11)

In other words, the local outlier factor captures the local reach-
ability density ratio between the neighbors of a given histogram
and itself. It produces values that are close to one if the average
density of its neighbors is similar to its own. Conversely, higher
values indicate possible outliers.

4.4. Test for Detecting Anomalous Motion
Our goal is to make a classification for every block in every frame
of the video sequence in two classes, namely, “normalmotion” and
“anomalous motion.” As explained in Section 1, the large majority
of these are likely to correspond to “normal motion.” In order to
perform this classification, we measure the LOF of the current
LAF histogram in a given block and compare it to a threshold.

As explained in the previous section, the LOF measure outputs
a value by comparing the local density around the test LAF his-
togram in the LAF histogram collection, with respect to the den-
sity of its nearest k-neighbors. The LOF measure is constructed
independently for each block Bi.

Specifically, we decide that a LAF histogram hti computed in
block Bi at time instant t, corresponds to an anomalous motion
if

LOFki (hti) > λi, (12)

where LOFki is the local outlier factor computed in the subspace
of LAF histograms computed over time in block Bi and by taking
into account the nearest k-neighbors.

Each λi is automatically inferred from a p-value, denoted by
ξ, on specific statistics of every block Bi. In fact, we want λi
to control the number of wrongly classified blocks. In order to
do this, we exploit the computed LOF values corresponding to
normal motion (for instance, using a training dataset comprising
only normalmotion cases). Thus, for every blockBi, a distribution
of LOF values is stored. As shown in Pécot et al. (2015), we can set:

λi = µi + σi/
√
ξ, (13)

where, for each Bi, µi and σi are the trimmed mean and the
winsorized variance (Huber, 1981) computed from the empirical
distribution of the stored LOFs, while discarding the 20% more
extreme values in order to reduce the effect of spurious LAF
histograms. Equation (13) does not imply that the distribution
of LOF values is close to a Gaussian distribution, and in practice,
it might by far from it. This relationship is merely inferred from
equation (12) using the Chebyshev inequality (Pécot et al., 2015).

Nevertheless, it is convenient to add further filtering as the
initial classification output can be noisy. This is done by adding
a post-processing step to our method. Indeed, anomalous motion
is likely to be persistent for a (short) period of time. For the
anomalous motion localization in our pipeline (decision at the
block level), a percentile filter is applied on the classification
output to accept or reject anomalous motion candidates. We take
a temporal neighborhood of the block including the previous
and next frames, as drawn in Figure 5. The neighborhood shape
allows us to take into account that anomalous motion blocks
may shift between two frames following the outlier moving object
displacement. The classification label of block Bi is updated to
the value of the 16th element of the binary vector formed by the
initial classification labels (1 for anomalous motion, 0 for normal
motion) of its space–timeneighborhood. This vector comprises 19
components, that is the 18 labels of the space–time neighborhood
and the initial label of the block, organized in ascending order.

As for frame-level decision, one frame is said to contain anoma-
lous motion, if at least one of its blocks is detected as such. On
the other hand, for the frame-level anomalous motion detec-
tion, a temporal median filter of size 7 is applied on the frame-
classification output. This classification, although simple, offers

FIGURE 5 | Illustration of the temporal block neighborhood for
anomalous motion detection-and-localization filtering. Each block has
18 neighbors.
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satisfactory results, as the underlying block-based LAFhistograms
capture very well different aspects of the visual data.

5. EXPERIMENTAL RESULTS

We present several experiments to assess the performance of our
anomalous motion detection method. At the end of this section,
in subsections 5.7 and 5.8, we will demonstrate how the two main
ingredients of our method, that is, the LAF histograms and the
LOF criterion, contribute to its overall performance.

We report comparative results on three datasets: UMN dataset
(Papanikolopoulos, 2005), PETS2009 dataset (Ferryman and
Shahrokni, 2009), and UCSD dataset (Li et al., 2014). We did
not run codes of other methods, but we only collected results
when available in previously published papers. The two first
datasets depict global motion anomalies, that is, people in the
scene all together adopt a new dynamic behavior at the same
time instant, like suddenly running. The UCSD dataset is of a
different kind. It involves local anomalies, but above all, anomalies
are due to the type of both object and motion. Indeed, anoma-
lies are formed by cyclists and skateboarders riding, or vehicles
driving among pedestrians walking on a campus path. Thus, this
dataset is not truly intended to assess anomalous motion detection
on its own, and accordingly, the most performing methods are
those exploiting both appearance andmotion (Antic and Ommer,
2011; Li et al., 2014). Yet, this dataset is a popular one in crowd
anomaly detection, so we believed that it was worth evaluating
our method on the UCSD dataset as well, in order to show the
usefulness of our anomalous motion detection method for this
task, and by doing so its versatility. Nevertheless, for a fair assess-
ment, we will compare our method with motion-based anomaly
detection methods only. Indeed, our end goal is not to define
a method dedicated to crowd anomaly detection, but a generic
method for anomalous motion detection. The fourth experiment
will deal with two video sequences of crowded scenes which
exhibit local anomalous motion, and results will be only visually
assessed.

There are different ways to compute normal LAF histograms to
populate the LAF histogram space and correctly compute the LOF
criterion. If we are dealing with densely enough crowded scenes
where the large majority of people undergo normal behavior and
only a few local anomalous motion may appear, we can apply
the online version of our method. It means that the reference
LAF histograms hβ

i can be computed in the very same image at
every time t, since most of blocks Bi include normal behavior.
If the anomalous motion corresponds to a global sudden change
in dynamic behavior, normal LAF histograms can be computed
in the first part of the video sequence. We will specify for each
experiment the way LAF histograms corresponding to normal
motion are computed.

For all the experiments, we set k= 7 for the k-nearest neigh-
bors in the LOF computation. This value was selected by cross-
validation on the UCSD dataset, which provides with complete
per-pixel annotation. The block size is defined by the grid parti-
tion.We found that this parameter does not varymuch the results,
as long as the blocks cover an area that is similar in size to the
expected actors of the normal events. For the UNM and UCSD

dataset, we fix the grid size to 12× 8 blocks. For the rest of the
presented experiments we use 8× 8.

Objective comparison will be based on two performance crite-
ria specified by previous work, namely, frame-level and pixel-level
ones. The set of compared methods may vary depending on the
dataset, according to availability of reported experimental results
(performance numbers and ROC curves). The pixel-level crite-
rion establishes that the frame detected anomalous is considered
correctly classified if at least 40% of the truly anomalous pixels
are detected. This procedure should not be confused with a truly
pixelwise evaluation, but it ensures a minimal precision–recall
balance. This pixel-level criterion was introduced in Mahadevan
et al. (2010), and it has been widely adopted in the crowd anomaly
detection literature. The frame-level criterion simply acknowl-
edges a correct classification if at least one true anomaly is detected
in the frame.

5.1. Experiments on the UMN Dataset
The UMN dataset includes eleven sequences of sudden escape
events corresponding to three scenes (indoor and outdoor, see
Figure 6 for samples). The videos depict groups of people freely
walking around open spaces and performing ordinary actions
inside a building lobby, which represents normal behaviors. The
anomalies occur when the people start running until they get
out of view. This corresponds to a global anomalous motion
case. Nevertheless, we are still able to localize where anomalous
motion occur in every image. From the total of 7740 frames of
the dataset, 1431 depict escaping behaviors, that is, correspond to
anomalousmotion. Reference LAF histograms are then computed
in each blockBi containingmoving pixels, of the first 6000 frames
displaying normal behavior.

We report comparative results with the followingmotion-based
anomaly detection methods: the method based on sparse recon-
struction error (SRC) (Cong et al., 2013) which exploits multi-
scale histograms of optical flow, the method relying on chaotics
invariants (CI) (Wu et al., 2010), the method involving the social
force model (SF) (Mehran et al., 2009), the method built upon
scan statistic (SS) (Hu et al., 2013), and the method introducing
motion influence maps (MIM) (Lee et al., 2015). Sample visual
results are gathered in Figure 6. Available ROC curves are plotted
in Figure 7. The frame-level criterion is used for theUMNdataset.
We report the area under the ROC curve and the equal error rate
(EER) inTable 3. The EER corresponds to equal false positives and
false negatives. Numbers are taken from Mahadevan et al. (2010)
and Zhang et al. (2016) for the other methods. To compute the
frame-level evaluation in our method, we consider that a frame
is anomalous if at least one block in it is labeled as such. From
Table 3 and Figure 7, we can conclude that our method is very
competitive. It provides the second best result regarding EER, and
it is close to the two best ones regarding AUC. Furthermore, it
outperforms other motion-basedmethodsMIM (Lee et al., 2015),
SS (Hu et al., 2013), and SF (Mehran et al., 2009), when examining
results scene by scene.

5.2. Experiments on the PETS2009 Dataset
Each one of the scenarios of the PETS2009 dataset contains four
sequences from different points of view of the scenes. We used
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FIGURE 6 | Left column: original samples of the UMN dataset. Right column: blocks where anomalous motion detection is localized by our method are framed
in red. From top to bottom: examples respectively from scene 1, scene 2, and scene 3 of the UMN dataset.

the same number of training frames as reported in Wu et al.
(2014), that is 30 for the first scenario and 100 for the second one,
to compute the LAF histograms of normal behavior. Anomalous
motion in the two scenarios consists of people who suddenly start
running at some time instant of the videos.

We present results for the frame-level accuracy criterion, more
specifically the number of correctly classified frames over the total
of frames, on two selected scenarios of the PETS2009 dataset
(Figure 8), as proposed in Wu et al. (2014). We compare our
method with four different methods: chaotic invariants (CI) (Wu
et al., 2010), the social force model (SF) (Mehran et al., 2009), the
force fieldmethod (FF) (Chen andHuang, 2011), and the Bayesian
model (BM) described in Wu et al. (2014). Our method supplies
state-of-the-art results on this dataset as shown inTable 4. Indeed,

our method has the best average scores for the two scenarios.
This experiment also demonstrates that our method is stable and
remains reliable when only few training samples are available.

5.3. Experiments on the UCSD Dataset
The UCSD dataset was introduced in Mahadevan et al. (2010)
and consists of videos of sparse crowds divided in two scenarios.
We used the ped1 subset (Figure 9) where the normal behav-
iors are people walking through the campus scene at a normal
speed, toward and away from the camera. As aforementioned,
anomalies in this dataset are composed mainly by moving cars,
skateboarders, and cyclists, among others. Clearly, the anomalies
of this dataset are not only specified by their motion but also by
the involved object (car, bike, skate board, etc.). This explains that
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FIGURE 7 | ROC curves for SRC (Cong et al., 2013), SF (Mehran et al.,
2009), and our method on the UMN dataset (TPR stands for True
Positive Rate and FPR for False Positive Rate).

TABLE 3 | Anomalous motion detection performance on the UMN dataset.

CI (Wu
et al., 2010)

SF (Mehran
et al., 2009)

SRC (Cong
et al., 2013)

Ours

AUC 99.4 94.9 99.6 99.2
EER 5.3 12.6 2.8 3.1

SS (Hu
et al., 2013)

MIM (Lee
et al., 2015)

Ours

AUC (S1/S2/S3) 99.1/95.1/99.0 99.4/90.9/98.1 99.5/99.2/99.0

Best results are indicated with bold font and second best are underlined. AUC and EER
are defined in the text. Individual scores for the three scenes (S1, S2, and S3) are also
given.

methods exploiting appearance features may have superior per-
formance as the Video Parsing (VP) method (Antic and Ommer,
2011), and the method based on a mixture of dynamic textures
(MDT) (Li et al., 2014).

The ped1 scenario contains 36 testing and 34 training videos, as
well as labeled ground truth at the frame level and pixel level. We
use the training sequences, which are composed only by normal
events, to initialize the reference LAF histogram space. Results on
this dataset are summarized by the area under the ROC curve
(AUC). At the frame level, error measures rely on a frame-by-
frame binary classification, while at the pixel level, the measures
are based on ground truth masks which are partially provided by
the authors of the dataset (Mahadevan et al., 2010), and extended
to the full dataset by a more recent work (Antic and Ommer,
2011).We will respectively refer to them as partial and full ground
truth from now on.

We first present visual results of our method in Figure 9, where
we can observe that blocks containing anomalies are accurately
localized. AUC values are given in Table 5 for three motion-based
methods AD (Adam et al., 2008), SF (Mehran et al., 2009), and
SS (Hu et al., 2013), and for our method (including also a multi-
grid extension which is explained later on). Since the pixel-level
evaluation is not available for all the motion-based methods on
the full ground truth, we supply a complementary comparison on
the partial ground truth in Table 6.

Our anomaly localization output is given as a binary variable for
each block Bi at every time t. However, in order to compute the
ROC curves, wemake use of moving object masksΥ(t) computed
before the determination of the per-pixel motion classes. We
intersect them with blocks labeled as anomalous. Thus, for the
pixel-level evaluation of our method, the anomaly detection mask
at each time instant t, is given by∪i(Υ(t)∩Bi), for theBi’s labeled
as anomalous.

Since our per-block anomaly detection output depends on how
anomalous events are positioned within the fixed block grid, our
method may fail to detect an anomaly (or at least part of its
support), when the anomaly lies astride two or more blocks. In
order to overcome this problem, we can extend our method by
combining additional output of our algorithm computed over
two more grids. These grids are horizontally and vertically dis-
placed versions of the original one by half the length of a single
block. The combination is simply achieved by intersecting all the
blocks detected as anomalous in the three grids, with the motion
detection support at each frame.

In this demanding dataset, our method shows strengths that
enable it to detect most anomalies. For instance, Figure 9 (4th
column) shows correct anomaly detection of a cyclist, which is a
difficult case because it is moving at a similar speed as the walking
people. Let us also stress that from the perspective of the camera,
the cyclist looks not that different from a normal pedestrian.
However, the difference in the leg motion of the cyclist (or the
skateboarders in other sequences) with respect to pedestrians is
captured by the LAF histograms. In fact, the normal walking
usually involves Scaling motion classes, which is not the case of
the cyclist.

Our method supplies competitive results in this dataset as
reported in Table 5. Our method is the second top performing
one among motion-based methods for the frame-level criterion
on the full ground truth dataset. For the pixel-level evaluation,
only results on the partial ground truth dataset are available for
other motion-based methods. They are given in Table 6. This
score partly allows for localization assessment. We can notice that
our method exhibits a very significant performance improvement
of almost 40 points with respect to the motion-based methods
(Adam et al., 2008; Mehran et al., 2009), while being (for the
3-grid version) on par with MIM (Lee et al., 2015), which is
a recently published method developed in parallel to ours, and
slightly inferior to SS (Hu et al., 2013). However, in contrast to
ours, the latter cannot actually deliver results on the fly, since it is
based on a two-round scanning which needs the global distribu-
tion of the likelihood test values computed in the first scan of the
video.

5.4. Additional Experiments on Videos with
Local Anomalous Motion
5.4.1. Wrong Way Video
The Wrong way video contains 445 frames acquired by a camera
pointing toward a crowd passing by. A person is walking in the
opposite direction of the crowd. Thus, this interval comprises the
anomalous event.We processed the video from frame 160 to frame
223. We split the training set into two parts to capture normal
behaviors. For the lower half of the scene, we use the interval of
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FIGURE 8 | Top row: sample images from the PETS2009 dataset. Bottom row: blocks where anomalous motion is localized by our method are framed in red.

TABLE 4 | Frame-level accuracy (%) for several methods on sequences of PETS2009 dataset.

Scenario 1 Scenario 2

BM (Wu
et al., 2014)

FF (Chen
and Huang,
2011)

CI (Wu
et al., 2010)

SF (Mehran
et al., 2009)

Our
method

BM (Wu
et al., 2014)

FF (Chen
and Huang,
2011)

CI (Wu
et al., 2010)

SF (Mehran
et al., 2009)

Our
method

View 1 92.45 37.74 56.60 63.21 91.20 96.01 94.50 94.95 91.22 94.50
View 2 83.02 37.74 83.02 70.76 92.11 94.15 63.83 92.02 89.36 91.03
View 3 89.62 37.74 81.13 52.83 95.87 95.21 95.48 94.15 94.68 99.15
View 4 90.57 37.74 52.83 48.11 92.17 91.49 96.81 89.36 64.63 98.26

Overall 88.92 37.74 68.40 58.73 92.83 94.22 87.66 92.62 84.97 95.73

Best results are indicated with bold font, and second best are underlined.

FIGURE 9 | Top row: sample images of the UCSD dataset. Bottom row: blocks containing anomalies detected by our method are framed in red. From left to
right: cyclist, vehicle, vehicle, cyclist.

TABLE 5 | Anomaly detection performance (AUC) on the UCSD dataset (ped1) at the frame level evaluated on the full ground truth (Antic and Ommer, 2011).

Criterion AD (Adam et al., 2008) SF (Mehran et al., 2009) SS (Hu et al., 2013) Ours single-grid Ours 3-grids

Frame 65.0 77.0 87.0 79.9 82.8

Best results are indicated with bold font, and second best are underlined.

frames starting from frame 30 to frame 75. For the upper part of
the scene, we take the interval of frames that goes from frame 235
to frame 280. Sample images with overlaid results are shown in
Figure 10. The interactionwith the other people, of theman push-
ing his way through the crowd, makes the other people modify

their own motion. They rotate to avoid him, and consequently,
participate to the anomalous event. Visual results provided in
Figure 10 show that our block-based detection method performs
well and is able to accurately detect both the anomalous motion of
the man and of the people he is in contact with.
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TABLE 6 | Comparison with motion-based methods.

Criterion AD (Adam et al., 2008) SF (Mehran et al., 2009) MIM (Lee et al., 2015) SS (Hu et al., 2013) Ours single-grid Ours 3-grids

Pixel 18.0 21.0 64.9 66.0 59.48 63.77

Best results are indicated with bold font and second best are underlined.
Anomaly detection performance (AUC) on the UCSD dataset (ped1) at the pixel level evaluated with the partial ground truth (Mahadevan et al., 2010).

FIGURE 10 | Results obtained by our method (single grid version) on the Wrong Way video at four time points. Blocks including anomalous motion
detected by our method are framed in red.

5.4.2. Music Festival Video
In this video sequence, people are starting a “circle pit” during a
music festival. The processed video clip contains 18 frames. We
took the top half of the first 5 frames to populate the reference
LAF histogram space. Sample results are reported in Figure 11.
Our algorithm is able to capture the beginning of the anomalous
event (Figure 11 left) and correctly delineate it when the circle pit
is fully formed (Figure 11 right).

5.5. Drawbacks of Our Method
In previous sections, we described our method and demonstrated
its relevance for the complex task of detecting motion-based

anomalies in videos. However, our method is not free of draw-
backs and failure cases. In particular, since the LOF measure
is density-based, a sufficient number of “normal” events should
be captured on the training phase of our method. Furthermore,
the resolution of detected anomalies is directly related with the
chosen block size, together with the capabilities of the chosen
motion detector. In other words, anomalies that are too small
to be captured by either our block-based method or motion
detector might be ignored. Nonetheless, our method provides
promising results on real (noisy) datasets, where in fact these
issues did not seem to be of major concern. Let us recall that
UMN, UCSD, and PETS datasets were built from real commercial
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FIGURE 11 | Result samples of the Music Festival video. Blocks including anomalous motion detected by our method (single grid version) are framed in red.

TABLE 7 | Frames per second (FPS) processing of various methods.

Method SRC (Cong
et al., 2013)

BM (Wu
et al., 2014)

SS (Hu
et al., 2013

Ours

FPS 0.263 1.037 5 1.302
CPU (GHz) 2.6 3.16 3 2.5
Platform Matlab Matlab n.c. C++

Best rate is shown in bold, and second best are underlined.

surveillance cameras, at low resolutions and with compression
artifacts.

5.6. Computation Time
The current implementation of our whole workflow in C++
enables us to process 1.3 frames per second with 2.5GHz CPU,
as reported in Table 7, the computation of the collection of
affine motion models included. Several steps of the method
are parallelizable, which, if implemented, could lead to greatly
decrease the computing time. In particular, computation of per-
block histograms and evaluation of LOF, which currently takes
around 65% of the total execution time, can be effectively pro-
cessed in parallel.

We also provide in Table 7 a comparison of the execution
time measured in processed frames per second (FPS) for several
motion-based anomaly detection methods. We acknowledge that
the numbers correspond to different implementations, so that
this comparison is only indicative. Besides, the reported execu-
tion time may not encompass the whole workflow and the size
of the processed images may vary, making computation time
comparison tricky. For instance, the execution time for the SS
method (Hu et al., 2013) does not include the computation of the
optical flow fields and of the cumulative flow word histograms.
Nevertheless, our method is prone to process more efficiently
than other reported methods, due to its capacity to be highly
parallelized.

5.7. Impact of LAF Histograms
In this section, we aim to demonstrate the contribution of the
LAF histograms we have introduced. To this end, we compare our
algorithmwith amodified version of itself. Themodification con-
sists in building histograms of optical flow (which translates into

histograms of Translation motion classes). In fact, we used optical
flows provided by three methods: the pyramidal implementation
of the Lucas–Kanade method (LK) (Bouguet, 2001), the varia-
tional method defined by Brox et al. (2004), and the polyno-
mial expansion-based flow estimation method (FB) (Farnebäck,
2003). We built these flow-based variants of our method by com-
puting optical flow histograms (HOF) still weighted by motion
vector magnitudes (which is equivalent to histograms of Trans-
lation classes only), but with more quantized orientations (12
bins). Results on the UCSD ped1 (full ground truth) dataset are
reported in Figure 12. They show that our original method greatly
outperforms the flow-based versions, which yet benefit from a
finer quantization of translation orientations. Our method clearly
leverages labeled affine flows and LAF histograms to get superior
performance. We believe that the reason is twofold: (i) computing
affine flow yields less noisy flow vectors and (ii) introducing
histograms of localmotion classes bringmore explicit information
on the nature of the motion.

5.8. Impact of LOF Criterion and Number of
Translation Classes
We now demonstrate the beneficial role of the LOF criterion.
To assess it, we have compared the LOF criterion to a baseline
version of our algorithmwhich directly thresholds LAF histogram
distances. For this baseline version, the histogram hβ

i extracted
from training data is called the “reference histogram” of a given
block Bi. Each bin l of this histogram is computed as follows:

hβ
i (l) =

1
Ti

Ti∑
ς=1

ς+1∑
τ=ς−1

∑
p∈Bi

ψ(p, τ, l), (14)

where Ti is the number of histograms computed over the training
sequence corresponding to normal behaviors for block Bi, and
ψ(p, t, l) is defined in equation (6). In the proposed method
described in the paper, these Ti histograms form the feature space
where the LOF measure of the histogram hti is computed for a
given block Bi at time t. For the baseline method, we compute
the average histogram hβ

i from these Ti histograms as defined in
equation (14).
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The rule for setting the detection threshold in the baseline
version is similar to the one used in our proposed method with
LOF but applies directly to the distance between the test histogram
hti , computed at time instant t, and the reference histogram hβ

i for
the corresponding block Bi. The threshold in the baseline version
is computed at every block from a p-value on the distribution
of distances of the reference histogram to the available training
histograms for that block. The same spatiotemporal filtering is
applied to the output of the thresholding of the distance between
the test histogram and the reference histogram.

We compare these two versions by providing ROC curves
obtained on the UCSD ped1 dataset for the pixel-level evaluation
criterion in Figure 12. At the same time, we provide results with
a smaller number of translation classes for our full LOF-based
method. The areas under the ROC curves are summarized in
Table 8. With these experiments, it is clearly demonstrated that
the local outlier factor is effectively of great importance in our
proposed pipeline. Moreover, the use of eight translation classes
shows a substantial advantage over using only four translation
classes.

5.9. Statistical Significance of the
Presented Experiments
In order to determine whether the gain in performance is statisti-
cally significant, we adopt a binomial test of statistic significance
for all the comparisons at the frame level provided in the previous
subsections. The choice of the binomial test is explained by the
fact that frame-level detection involves a binary labeling process

(normal vs. anomalies). Assuming that the null hypothesis is
to have methods with equal score (p1 = p2), and the alternative
hypothesis to have different scores (p1 ̸= p2), we need to compute
the test statistic, which is given by

z =
p̂1 − p̂2√

p̂(1 − p̂)(2/N)
, (15)

where p̂ = p̂1 + p̂2
2 , p̂1, and p̂2 are the computed scores normalized

to 0–1 range, and N is the number of frames of the particular
experiment (i.e., total number of frames in the videos of the given
dataset).

The test is intended to verify if our scores are different (better or
worse) to the scores of other methods with a particular degree of
statistical significance. We set the test to be at the 95% confidence
level. In other words, to reject the null hypothesis, we need to com-
pare z to the critical region value of zα/2, with the cutoff α= 0.05,
i.e., zα/2 = 1.96. If |z|< zα/2, the null hypothesis is rejected. We
can infer the best method by the sign of z, or, alternatively, the
sign of p̂1 − p̂2.

In particular, for the UMN and UCSD dataset we take accuracy
scores at the Equal Error Rate point of the ROC curve to evaluate
significance. For PETS 2009, we simply use the accuracy scores
provided in the “Overall” row of Table 4. All the significance tests
are summarized in Table 9.

For UMN, it turns out that SRC and our method are not
statistically different, but our method surpasses with statistical
significance SF and CI methods. Similarly, for the PETS 2009

FIGURE 12 | Left: anomaly detection evaluated with the pixel-level criterion. Plots of ROC curves for our method with LAF histograms and for flow-based
baselines on the UCSD ped1 (full ground truth) dataset. Right: ROC curves for the pixel-level criterion on the UCSD ped1 dataset with full ground truth. In green:
results obtained using the LOF measure and 8 Translation classes. In red: results obtained with the LOF measure with only 4 Translation classes. In blue: results
obtained with the baseline version without LOF (histogram distance thresholding).

TABLE 8 | Areas under the curves (AUC) of three versions of our anomalous motion detection method on the UCSD ped1 dataset with full ground truth.

Variant Baseline without LOF 8 translation classes (LOF) 4 translation classes (LOF)

Pixel level 63.10 74.36 71.27
Frame level 74.64 79.85 76.68

Best results are indicated with bold font and second best are underlined.
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TABLE 9 | Significance of the frame-level experiments for all the presented datasets.

UCSD UMN PETS2009 S1 PETS2009 S2

Comp. z Sig. Comp. z Sig. Comp. z p Sig. Comp p Sig.

SS 7.03 Yes SRC 1.09 No BM −0.99 No BM −0.90 No
SF −8.68 Yes SF −21.90 Yes SF −8.50 Yes SF −3.83 Yes
AD −24.31 Yes CI −6.91 Yes CI −4.54 Yes CI −1.74 No

The non-significant gains are shown in bold for clarity. The z scores are computed from a binomial test (see text).

experiments, the results of our method are significantly better
than FF, CI and SF methods. Our improvement over BM turned
out to be not significant under the 95% confidence test. Finally,
for UCSD dataset, all the results from Table 5 are statistically
significant when comparing our multi-grid method against all the
others (including our single-grid method).

6. CONCLUSION

We have presented an original and efficient anomalous motion
detection-and-localization method which can capture diverse
kinds of anomalousmotion in common real scenarios. It can work
in a fully unsupervised and online way for crowded scenes. The
LAF histogram and the data-driven detection criterion based on
the LOF factor are two distinctive contributions of our approach.
Threshold value for anomaly detection decision can be automat-
ically and locally adapted, based on statistical arguments. The
current implementation of our algorithm is fast, although it could
be significantly further accelerated by doing massive paralleliza-
tion over blocks. Our method supplies state-of-the art results in
several experiments and competitive results for the other ones. It
can successfully deal with datasets comprising different camera

viewpoints and dynamic contents involving both local and global
anomalousmotion. Local anomalousmotion localization is inher-
ent in the block-based proposed method and was experimentally
demonstrated accurate enough.
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