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Computer Screen Use Detection
Using Smart Eyeglasses
Florian Wahl*, Jakob Kasbauer and Oliver Amft

ACTLab, Chair of Sensor Technology, University of Passau, Passau, Germany

Screen use can influence the circadian phase and cause eye strain. Smart eyeglasses with
an integrated color light sensor can detect screen use. We present a screen use detection
approach based on a light sensor embedded into the bridge of smart eyeglasses. By
calculating the light intensity at the user’s eyes for different screens and content types,
we found only computer screens to have a significant impact on the circadian phase. Our
screen use detection is based on ratios between color channels and used a linear support
vector machine to detect screen use. We validated our detection approach in three
studies. A test bench was built to detect screen use under different ambient light sources
and intensities in a controlled environment. In a lab study, we evaluated recognition
performance for different ambient light intensities. By using participant-independent
models, we achieved an ROC AUC above 0.9 for ambient light intensities below 200 lx.
In a study of typical ADLs, screen use was detected with an average ROC AUC of 0.83
assuming screen use for 30% of the time.

Keywords: eyewear, circadian clock, wearable sensor, activities of daily living, glasses, activity recognition, eye
strain

1. INTRODUCTION

People spend a large portion of the day looking at computer, television, or tablet screens. For
example, in 2015, the average US adult spent 9 h and 52min in front of different screens every
day (eMarketer, 2016). Many office workers spend more than 6 h in front of a computer screen
(PresseBox, 2008). Extended screen use often causes eye strain, the most common repetitive strain
injury. For example, in the United States, 65% of the population suffer from eye strain (The Vision
Council of America, 2016). In addition, screen use can influence the circadian phase. The circadian
clock is entrained by timing and intensity of light exposure. Morning light exposure advances
circadian clock phase, and light exposure in the evening delays it (Revell and Eastman, 2005). The
circadian system ismost sensitive in the blue range of the light spectrum (Brainard et al., 2001). LED-
backlit screens emit high energy in the blue light spectrum compared to other wavelengths and other
indoor light sources. Thus, screen use could shift circadian phase (Cajochen et al., 2011), leading to,
e.g., difficulty to fall asleep at night and consequently sleep deprivation. A fundamental requirement
for guidance and intervention to prevent eye- or sleep-related health problems is therefore to detect
screen use when it actually occurs.

Ambient sensors, e.g., proximity sensors (Jaramillo-Garcia et al., 2014), do not suffice for screen
use detection as they cannot distinguishmere presence from looking at a screen. To detect screen use,
light measurements have to be taken as close as possible to the eye. Only few head-worn wearables
have been proposed for context recognition that could be used to robustly detect light received at the
eyes. Eyeglasses appear to be practical, everyday accessories and could house a light sensor, without
changing their main function as eyeglasses or substantially modifying the eyeglasses appearance.
Considering the sensor’s typical field of view of 60°, the best measurement of light actually received
at the eyes may be between the eyes, i.e., at the eyeglasses bridge.
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Light reaching the eyes originates from a mixture of sources,
which differ in the intensity and spectral distribution. Common
light intensities range over several orders of magnitude, e.g., from
500 lx at a office desk to 100,000 lx outside on a sunny day. When
exposed to large amounts (above 1,000 lx) of natural or artificial
light, screens may contribute a negligible share. Consequently,
screen use matters if there is only dim ambient light, e.g., during
evening or night hours when ambient light intensity is low. Due to
the relevance of blue light energy of LED-based screens, spectral
irradiance patterns could help to discriminate screen use from
other light sources. Thus, a spectral decomposition of the incident
light measurement is required at the sensor. The detection algo-
rithm has to cope with noise added by head motion. In addition,
a broad range of screens, content types, and ambient lighting
conditions complicate the detection of screen use as screen light
emissions vary.

In this article, we introduce an approach to detect screen use
with smart eyeglasses that provide a color light sensor embed-
ded into the eyeglasses bridge. Electronics to store, process, and
transmit measured light data were integrated into the eyeglasses
frame. Our approach involves three steps to investigate the chal-
lenges related to screen use recognition: a test bench environment
was used to investigate screen use detection in a fully controlled
environment, ambient light intensity, andwithout headmotion. In
a lab study, screen use was investigated with participants wearing
smart eyeglasses in different ambient light intensities. Finally, a
study of typical activities of daily living (ADLs) evaluated detec-
tion of screen use in unconstrained daily life situations. By using
features derived from the ratios between color channels, we detect
when screen use occurs.

In particular, this article provides the following contributions:

1. We analyzed screens, content type, and typical viewing distance
to derive device-specific light intensity at the user’s eyes. We
found that computer screens provide highest light intensi-
ties due to their size, displayed content, and typical viewing
distance.

2. We analyzed screen use detection performance under different
ambient light sources and intensities in a test bench environ-
ment, which indicated a perfect screen use detection.

3. We evaluated our screen use detection approach using smart
eyeglasses worn by 14 participants in a lab study. For light
intensities below 200 lx, an ROCAUCof above 0.9 was reached
using participant-independent models.

4. We applied our approach to data recorded in a study investigat-
ing different ADLs. In seven participants, we detected screen
use with an average ROC AUC of 0.83 when assuming 30%
screen use.

2. RELATED WORK

According toDuffy andWright (2005), light is the dominant factor
in entrainment of the circadian rhythm. Phase shifts of −2 to
+3 h per day are possible depending on the intensity and timing
of light exposure. The authors report that a misaligned circadian
clock can lead to impaired performance, alertness, and upset
gastrointestinal functions. Kantermann and Roenneberg (2009)

found that light during night can damage DNA, and thus lead
to cancer putting those in shift work especially at risk. Brainard
et al. (2001) found spectral sensitivity of the circadian system to
peak at 464 nm wavelength. Being exposed to blue light in the
evening delays the production of melatonin and thus delays cir-
cadian phase. Screen use potentially causes circadian phase shift,
e.g., when working late nights in front of a computer screen. As
misaligned clocks negatively influence health, episodes of screen
use could be detected automatically to support behavioral change.

The effect of screen use on the circadian rhythm has been
analyzed in several studies. Cajochen et al. (2011) found a signif-
icant delay in dim light melatonin onset (DLMO) from evening
exposure to LED-backlit computer screens compared to cold
cathode fluorescent lamp (CCFL)-backlit computer screens. Prior
to their regular bedtime, 13 participants performed a 5-h screen
use episode during which melatonin was sampled every 30min.
Wood et al. (2013) conducted an experiment on 12 participants
using a tablet 2 h prior to bedtime. They found that melatonin
was suppressed by 23% on average after 2 h of tablet use in the
evening compared to no tablet use. After 1 h of tablet use, the
effect was smaller with only 7% melatonin suppression compared
to no tablet use. Chang et al. (2015) investigated the influence
of using light-emitting eReaders at night instead of reading print
books. In their crossover protocol, 12 participants read for 4 h
prior to bedtime during five consecutive evenings per device.
They found that DLMO was delayed by more than 1.5 h when
using the backlit eReader over the paper book. These findings
confirm circadian phase shift effects through screen use in the
evening. Thus, an automatic detection of screen use could inform
users about their behavior and support them in implementing an
effective compensation.

Studies investigating light influences on human physiology
often used wrist-worn devices to record light exposure. Wahl
et al. (2014) compared wrist- and head-worn light sensors and
found substantial differences in measured light intensities. One
core problem with wrist-worn light measurements was a frequent
occlusion of the sensor by long-sleeve clothing. Another issue
is that light sensor sensitivity depends on angular displacement,
typically 50% sensitivity at ±60° displacement, which requires
sensors to be worn in an orientation similar to the eyes. Others
used head-worn devices such as the Daysimeter (Bierman et al.,
2005), which offers accurate recordings but were found imprac-
tical for continuous use in everyday life due to their form factor
and clip-on to eyeglasses. Regular eyeglasses are themost common
vision aid, worn by many. For example, in Germany, 63.5% of the
population above 16 years and 92% above 60 years wear eyeglasses
(Institut fürDemoskopie Allensbach, 2014). In our previouswork,
we embedded a multimodal, multipurpose sensing system into
regular eyeglasses termed WISEglass. WISEglass was used for a
wide variety of sensing applications ranging from daily activity
recognition (Wahl et al., 2015c), dietary monitoring (Zhang et al.,
2016) to motion-based video game control (Wahl et al., 2015a).
The smart eyeglasses were validated in a study on 9 participants
performing typical ADLs (Wahl et al., 2015b,c). Nine activity
clusters were detected from accelerometer and gyroscope data
with 77% accuracy. Screen use detection using a color light sensor
showed amean accuracy of 80%. This article provides an in-depth
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evaluation of screen use detection with color light sensors in three
subsequent studies. We investigate different screen types, ambient
light sources, and content types.

Intervention measures can be applied to minimize influence of
screen use on the circadian phase. Heath et al. (2014) studied if
tablet use 1 h prior to bedtime influences the circadian phase. In
their study on 16 participants, unfiltered light was compared to
light filtered with the f.lux application. They could not find sound
proof that 1 h of tablet screen had a significant impact on the
circadian phase. van der Lely et al. (2015) investigated the effect
of blue light-blocking glasses on the circadian phase. In 13 young
males who spent 3 h prior to going to bed in front of a computer
screen for 1week each, they found a significant increase in mela-
tonin when using blue light-blocking glasses. There are suitable
intervention measures based on either software or hardware to
minimize the effect of screen use on the circadian phase. Thework
presented in this article could support users by reminding them
to wear blue light-blocking glasses or (automatically) enabling
a software-based intervention to screen light profile and light
intensity.

3. LIGHT MONITORING IN EYEGLASSES

TheWISEglass project aims to embed amultimodal sensor system
in regular eyeglasses that could be worn as an everyday accessory,
just like eyeglasses are worn today. Our first prototype was based
on regular eyeglasses and is shown in Figure 1A.

Subsequently, a 3D printed version was built as shown in
Figure 1B. Both prototypeswere used for the analyses presented in
this article. We added compartments inside the temple ends of the
eyeglasses to house the baseboard and battery. Compared to our
first prototype, the compartments improve balancing the compo-
nent weight. The compartments disappear behind a wearer’s ears
when attached; thus, WISEglass appears as regular eyeglasses to
bystanders. We included a small compartment on the bridge of
the eyeglasses to embed a color light sensor. The bridge location
can be used to unobtrusively measure light. 3D printed eyeglasses
could be fitted to the wearers head to achieve similar wearing
comfort as in existing eyeglasses models.

Integrated sensors are controlled and sampled by the on-board
microcontroller. Data can be stored in flash memory for later
download or streamed directly via Bluetooth Smart. The battery

lasts for 32 h when sampling light sensor data at 50Hz. Sampling
rates can be configured depending on the application.

4. EVALUATION METHODOLOGY

In this section, we describe goals, sensing approach, recording
protocol, and evaluation methodology for each of the three anal-
ysis studies.

Starting from the illuminance at the screen during PC work
and TV use, we calculated the light intensity at the user’s eyes
for different devices as described in Section 4.1. A test bench was
used to derive a baseline of the irradiance provided by screens
at regular viewing distance and under controlled environmental
lighting conditions. The test bench analysis is further described in
Section 4.2. In a lab study (described in Section 4.3), data were col-
lected using the same desk setup and viewing distances for every
participantwhile ambient light intensity varied due toweather and
time of the day. The ADL study (Section 4.4) investigates a natural
variability of screen use, where activities were suggested, but the
execution left to participants.

In this work, we obtain data from a TCS34725 (ams AG, 2013)
light sensor made by ams. Light was measured in four different
spectra: red, green, blue, and clear. After downloading the raw
data, virtual light channels were computed from multiple raw
color channels by deriving channel ratios. As an example, the ratio
of the blue to clear light channel expresses how much blue light is
measured in relation to the total amount of light.

4.1. Light Intensity Calculations
The light intensity at the user’s eyes is necessary to quantify the
impact of screen use on the circadian phase. We calculated the
light intensity at the user’s eyes for different device types during PC
and TV use at typical viewing distances. The area Awas computed
from the aspect ratiow:h and the diagonal length l of the screen as

A =
w · h · l2

w2 + h2 . (1)

The luminance L for each screen was researched online and
used to compute luminous intensity I as

I = L · A. (2)

FIGURE 1 | Eyeglasses prototypes used in this work. The eyeglasses prototypes integrate a color light sensor with red, green, blue, and clear channels into the
eyeglasses bridge. In the prototype shown in panel (B), electronics for recording, transmitting, and storing sensor data were integrated into the eyeglasses frame.
(A) First prototype based on regular spectacles. (B) 3D printed prototype.
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Different screen activities yield different light intensity levels
at the user’s eyes. During high-illuminance screen activities, e.g.,
editing documents at a PC screen, a majority of pixels is typi-
cally bright. In contrast, low-illuminance screen activities, e.g.,
watching a movie, feature dark backgrounds. To reflect screen
activity-dependent light intensity differences, we used two activ-
ity prototypes to describe typical screen activities: PC work for
high-illuminance screen activities and watching TV for low-
illuminance screen activities. To incorporate the effect of content
into the textbook irradiance computations, we added the content
factor µPC and µTV in equations (3) and (4), respectively. Our
test bench measurements found TV content to produce one-third
of the light intensity at the user’s eyes compared to PC content.
Content factors were therefore set to µPC = 1 and µTV = 1

3 .
Finally, we used a typical viewing distance d for each device to
compute light intensity at the user’s eyes during PC use EPC and
TV use ETV as

EPC =
I
d2 · µPC, (3)

ETV =
I
d2 · µTV. (4)

For the light intensity analysis, the distance d between screen
and eyes is essential. However, viewing distances differ per device
type. We used the following viewing distance settings in this anal-
ysis. Smartphone users maintain an average viewing distance of
32.2 cmwhenweb browsing (Bababekova et al., 2011). Tablets and
eBook readers are typically used at 50 cm distance (Shieh and Lee,
2007; Campbell, 2013). For PC use, the German Social Accident

Insurance (DGUV) recommends a viewing distance of 50 and
65 cm (Deutsche Gesetzliche Unfallversicherung e.V. (DGUV),
2015). In this investigation, we assumed 50 cm for notebooks and
60 cm for desktop PC use. Investigations on TV use found the
average viewing distance to be above 200 cm (Nathan et al., 1985;
Lee, 2012).

4.2. Test Bench
We built a test bench to analyze light irradiance from screens
under controlled ambient lighting conditions. The test bench
included four different types of dimmable ambient light sources.
Movie or PC use content was displayed on a computer screen to
simulate different content types. Light irradiance was measured
at a distance of 50 cm, where the recommended distance for
screen use at the workplace is between 50 and 65 cm (Deutsche
Gesetzliche Unfallversicherung e.V. (DGUV), 2015).

4.2.1. Sensing Approach
The test bench was constructed out of wooden boards and alu-
minumprofiles forming a cuboid of 200 cmheightwith a footprint
of 100 cm× 100 cm. The floor panel was mounted at a height of
40 cm from the ground leaving a distance from floor to ceiling of
160 cm. The height resembles the typical distance between table
surface and ceiling lamps in office spaces. The screenwasmounted
at the rear end of the floor panel. Irradiancewasmeasured at 50 cm
distance, resembling the typical viewing distance of computer
screens. A model of the test bench is shown in Figure 2A.

A

B

FIGURE 2 | Test bench analysis. Different ambient light sources were mounted on the ceiling of the construction. On the floor panel screen use was simulated on a
24′′ IPS LED-backlit screen. Four color light sensors were placed at 50 cm distance from the screen. Light irradiance reference measurements were recorded using a
spectral irradiance meter. (A) 3D model of the test bench. (B) Schematic of device arrangement in the horizontal plane at the floor panel.
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FIGURE 3 | Test bench analysis. Spectrum of an HP EliteDisplay E241i 24′′ LED-backlit IPS panel displaying a full white image. The spectrum was computed by
averaging 26 samples from the spectral irradiance meter. It can be seen that the blue spectral component is more prominent than the green and red components.

Initially, we analyzed the spectral irradiance of a typical LED-
backlit screen.Here, we used the SpectraRadXpress BSR112E-VIS
miniature spectral irradiance meter by BWTEK. The recorded
spectrum ranges from 380 to 750 nm wavelength with a resolu-
tion of 3 nm. Connected to a PC running the BWSpec software,
samples were recorded at 26.3Hz. Spectral measurements were
averaged per second resulting in a sampling rate of 1Hz. Dark
calibration was conducted prior to recordings.

For test bench recordings, an HP EliteDisplay E241i 24′′ IPS
panel LED-backlit screen was used. The screen configuration was
reset to factory default prior to recordings. Figure 3 depicts the
spectrum of the screen with all pixels set to white. The three
spectral peaks reflect the composition of the three primary colors:
red, green, and blue. The intense blue peak is the characteristic for
LED-backlit screens (Cajochen et al., 2011).

Subsequently, we investigated the screen irradiance measured
by a typical commercial color light sensor under different light-
ing conditions. Data from four TCS34725 (ams AG, 2013) color
light sensors, the same as used in WISEglass, were recorded.
We used four sensors to accommodate for intersensor variation.
Each light sensor was connected to an Arduino via I2C bus and
triggered an interrupt when a newmeasurementwas ready. Sensor
integration time was set to 50ms resulting in a sampling rate
of 20Hz. Arduinos were connected to a computer running the
CRNT software to record data (Bannach et al., 2008). Sensor gain
was set to 60× resulting in a 27.6% saturation of the clear light
channel at 1,000 lx indoors, a typical indoor light intensity on a
sunny day. Figure 2B shows the installation on the floor panel of
the test bench.

Three lamp sockets were mounted at the ceiling of the test
bench for LED lamps, halogen lamps, and fluorescent lamps. We
evaluated screen use detection using four different artificial light
sources described in Table 1. The spectra of the lamps at full
brightness are shown in Figure 4.

4.2.2. Recording Protocol
The test bench recording protocol contained three independent
variables: screen state S, lamp type T, and lamp intensity D.

TABLE 1 | Test bench analysis.

No. Lamp type Color
temperature (K)

Energy
consumption (W)

1 Halogen 3,000 35
2 LED 2,700 5.9
3 Cold CCFL 8,000 18
4 Warm CCFL 2,700 18

Artificial light sources and their core properties according to manufacturer specifications.

A B

C D

FIGURE 4 | Test bench analysis. Spectra of the four different ambient light
sources used. Spectral distribution differs per lamp type. CCFL lamps show
few, relatively high-energy peaks. (A) Halogen (1), (B) LED (2), (C) cold CCFL
(3), and (D) warm CCFL (4).
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FIGURE 5 | Data processing pipeline for light sensor data from raw color channel data to classifier output. Virtual light channels were computed from
color light sensor data. After sliding window segmentation, features were extracted. In addition to features listed, the 5, 10, 25, 75, 90, and 95% percentiles were
calculated. Subsequently, a linear support vector machine was used to classify screen use episodes.

Screen state was set to one of the three following states: (1) off
for not screen use S= off, (2) displaying TV content S= tv, or (3)
displaying PC use content S= pc. To switch between S= off and
S= tv, pc a xrandr script was used. The James Bond Spectre movie
trailer was used to simulate TV content.1 To simulate PC content,
a video tutorial on iPython notebooks was played.2 Videos were
played in an endless loop.

The lamp typewas either one of the four different lamps listed in
Table 1 or darkness:T = {Halogen, LED,Cold CCFL,WarmCCFL,
dark}. Lamp intensity was set to D= {100% . . . 10%} in steps of
10%. We recorded 10min of data for a total of S×T ×D= 141
states (T = dark has no steps for D).

4.2.3. Evaluation Procedure
Starting from light measurements, we computed ratios between
multiple color light sensor channels to become independent from
absolute values. Each ratio represents one virtual light channel.
Virtual light channels put each color channel in relation to others.
For example, the virtual channel blue

clear indicates the ratio of blue
light vs. overall light intensity.We computed the virtual light chan-
nels {R, G, B}

C , R
G , B

R ,
B
G , C−{R, G, B}

{R, G, B, C} , log(C−{R, G, B})
log({R, G, B, C}) ,

log({R, G, B})
log(C) ,

log(B)
log(R) ,

log(B)
log(G) ,

log(R)
log(G) ,

√
{R, G, B}√

C ,
√
R√
G ,

√
B√
R , and

√
B√
G , where R, G,

B, and C represent the red, green, blue, and clear channel of the
sensor, respectively.

Virtual light channel data were segmented using a sliding win-
dow.Different window sizes between 3 and 120 swere investigated
while maintaining a fixed overlap of 50% of the window size. For
each virtual light channel, 18 time domain featureswere calculated
as listed in Figure 5, resulting in a total of 756 features per window.
Features were standardized by removing mean and dividing by
their SD.

A linear support vector machine (LSVM) was used to classify
between screen use and no screen use. PC and TV states described

1http://www.youtube.com/watch?v=z4UDNzXD3qA.
2http://www.youtube.com/watch?v=HaS4NXxL5Qc.

in the protocol were considered as screen use class, thus making
detection of screen use independent of the displayed content.
After training the LSVMondata fromall but one sensor, data from
the remaining sensor were used for prediction. Figure 5 depicts
the data-processing pipeline from raw sensor data to classifier
output.

4.3. Lab Study
We evaluated screen use detection using WISEglass in the lab
study. For all participants, we used the same viewing distances
and devices, but did not control ambient light intensity. Fourteen
participants (2 females, 12 males, between 20 and 39 years of age)
were asked to read a print magazine, watch a documentary, and
use a PC for 20min per activity.

4.3.1. Sensing Approach
Color light sensor data were sampled and stored in flash memory
with a sampling rate of 6.5Hz and a gain factor of 1. Data were
downloaded after each participant completed the protocol.

4.3.2. Recording Protocol
After arrival, the protocol was explained to participants in detail.

Participants would perform the following activities for 20min
each: (1) reading a print article, (2) watching a documentary about
coffee on a 27′′ Samsung SyncMaster P2770HD TV at 140 cm
distance, and (3) browsing the Internet using an HP EliteDisplay
E241i 24 in screen at 70 cm distance. The typical ergonomic
distance is between 50 and 70 cm, where 50 cm was used in the
test bench analysis. Figure 6 depicts the activities as performed by
each participant.

Both screens were reset to factory defaults prior to record-
ings. Participants wore WISEglass during data recordings. Ambi-
ent light intensity was measured with a standard lux meter
(AMPROBE LM-120) at the beginning of each recording. A total
of 15.2 h of data were recorded during the lab study.
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FIGURE 6 | Lab study. Activities reading a print magazine, watching TV, and PC use were performed by participants for 20min per activity.

4.3.3. Evaluation Procedure
We applied the same evaluation procedure as described in Section
4.2.3with the following changes. To reduce the number of features,
mRMR (Peng et al., 2005) feature selection was applied. Different
numbers of features were evaluated as described in Section 5. We
used the same LSVM classifier as in the test bench but applied
Leave-one-participant-Out (LOPO) cross-validation jointly for
feature selection and classification.

4.4. ADL Study
To evaluate if screen use can be distinguished from other typical
ADLs, we used data from a previous study. In total, nine partic-
ipants (3 females, 6 males, between 20 and 27 years of age) were
involved in the study. The ADL data set was recorded to evaluate
activity recognition using the WISEglass inertial measurement
unit (Wahl et al., 2015c).

4.4.1. Sensing Approach
Participants wore WISEglass for the duration of the recordings.
Data from the light sensor were sampled and stored in flash
memory at 6.5Hz.

4.4.2. Recording Protocol
The study protocol was designed to include many typical ADLs
across a regular day. Participants executed a scripted protocol
while being followed by an observer labeling the data during
recording time using the ACTLog application for Android (Spina
et al., 2013). In total, 66.08 h of data were recorded. After arrival,
the study protocol was explained in detail. Participants were com-
pensated for their efforts with a 25 Euro Amazon voucher and
three meals during the recordings. Data from two participants
were excluded due to hardware issues during recordings leaving
seven participants for the ADL analyses. Table 2 provides a listing
of the performed ADLs, their total recording duration, and the
activity cluster they belong to.

To evaluate the detection of screen use, we used the computer
work activity as the screen use class. We omitted data of the
unlabeled class and from the watching a movie activity, where
participants looked at a projector screen. Projectors are different
from regular screen, use and this is not the goal of this work.

4.4.3. Evaluation Procedure
For the ADL study, we modified the evaluation procedure
described in Section 4.2.3 and Section 4.3.3 as follows.

All results for the ADL data set were computed using the best
200 features selected bymRMR feature selection. Feature selection
was performed on training data only for each validation fold.

TABLE 2 | ADL study.

No. Cluster Activity Duration [min:s]

1 Eat Breakfast 84:43
Lunch 156:49
Dinner 181:53

2 Walk Lab to bathroom 17:37
Lab to gym 36:27
On treadmill 2 km/h 47:06
Gym to lab 35:56
Lab to cafeteria 20:11
Queuing for lunch 6:28
Picking up lunch 13:20
Cafeteria to lab 25:28
Lab to restaurant 58:36
Restaurant to lab 55:26

3 Brush Teeth 39:17

4 Stairs Walking 19:49

5 Jog On treadmill 5 km/h 45:27

6 Cycle On gym trainer 91:14

7 Read A book 276:31

Desk work 273:34

8 Screen Computer work 253:50
Watching movie 187:56

9 Cleaning Vacuuming 45:22
Wiping tables 45:02

Activities and their recorded total duration for nine participants.

The percentage of screen use in the ADL data set was approx-
imately 11% of the entire data set. We applied downsampling to
adapt the ratio of screen use per participant from 10 to 90% in
steps of 10%. Downsampling was performed by randomly remov-
ing windows of 5 s of the desired class. To ensure stability of our
results, we repeated the selection process 10 times per screen use
ratio and averaged the results.

5. RESULTS

In this section, we first analyze the impact of screen use depending
on content and screen type. Subsequently, we present screen use
evaluation results for test bench recordings, lab study, and ADL
study.
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5.1. Impact of Screen Content and Devices
For typical PC content, backgrounds are often white, resulting in a
majority of pixels emitting light. For TV content, backgrounds are
rather dark, resulting in a majority of pixels emitting little to no
light. We measured irradiance using the reference spectrometer
as described for the test bench investigation (Section 4.2) during
PC use and watching TV activities and found average irradiance
during PC use to be 3 times higher than for watching TV with
0.03mW/cm2 for PC use and 0.01mW/cm2 for watching TV.
Thus, when using the same screen for watching TV at 200 cm
distance, light exposure is 48 times lower compared to PC use at
50 cm distance.

Table 3 shows light intensity at the user’s eye for typical devices
and content types. According to our results, PC use with a desktop
setup has the highest light intensity at the user’s eyes and was
thus investigated further. Light intensity is a primary considera-
tion in this investigation, as intensities above 50 lx have substan-
tial impact on the circadian phase (Wood et al., 2013). Overall,
watching TV is less critical than PC use due to viewing distance
and content type. Screen size was also important. While bright,
smartphone screens are too small to critically influence circadian
phase considering that light intensities are typically below 50 lx.

5.2. Test Bench Recordings
By using the extracted feature and LSVM classification, screen
use could be detected independent of lamp type and ambient
light intensity. Averaging over all lamp types, a receiver operating
characteristic area under curve (ROC AUC) of ≈1 was achieved,
indicating that screen use could be detected independent of the
ambient light type. Table 4 summarizes the recognition results for
the test bench recordings. For screen use ~199 h (66.6%) and for
non-screen use ~99.5 h (33.3%) of data were used.

5.3. Lab Study
We investigated the impact of window size on screen use detection
performance for the Lab study data. For all window sizes, an
ROC AUC was between 0.85 and 0.90. Windows of 5 s produced
the largest ROC AUC at the shortest recognition delay. For an
online implementation of screen use, detection recognition delay
is crucial. Thus, we chose for 5-s windows for further analysis.

To analyze the impact of feature reduction on detection perfor-
mance, we applied mRMR feature selection. Figure 7 shows the

number of features used vs. ROC AUC performance. Using ≈70
or more features increased performance. For 200 features, results
were stable with an average ROC AUC above 0.9.

Figure 8 shows ROC AUC over ambient light intensity. For 10
of 14 participants, an ROC AUC above 0.9 was achieved. In all
7 samples with an ambient light intensity below 200 lx, the ROC
AUCwas above 0.9. In 3 of 14 participants, ambient light intensity
was above 500 lx, which is the recommended light intensity for
working environments (Deutsche Gesetzliche Unfallversicherung
e.V. (DGUV), 2015), and an ROC AUC dropped below 0.8.

TABLE 4 | Test bench.

Metric Halogen LED Warm CCFL Cold CCFL Dark

ROC AUC 0.99 1.0 1.0 1.0 1.0

Results for recordings using different ambient light sources. Results show that screen use
can be detected independent of ambient light type.

FIGURE 7 | Lab study. ROC AUC vs. feature number is plotted where gray
diamonds represent outliers. Performance drops when using less than ≈70
features.

TABLE 3 | Light intensity at the user’s eyes during PC use and watching TV for typical devices.

Device Aspect
ratio

Diagonal
[cm]

Area
[m2]

Luminance
[cd/m2]

Luminous intensity
[cd]

Distance
[m]

Light intensity
PC [lx]

Light intensity
TV [lx]

w:h l A L I d EPC ETV

Galaxy S7 16:9 12.95 0.0072 350 2.51 0.32 24.51 8.17
iPhone 6s 16:9 11.94 0.0061 50 3.35 0.32 32.71 10.90
iPad air 2 4:3 24.64 0.0291 420 12.24 0.5 48.95 16.32
Dell XPS 13 16:9 33.78 0.0488 276 13.46 0.5 53.84 17.95
MacBook Pro 15 16:10 39.12 0.0688 315 21.66 0.5 86.65 28.88
HP monitor 16:10 60.96 0.1670 250 41.75 0.6 115.98 38.66
Samsung TV 16:9 101.60 0.4411 120 52.93 2.0 13.23 4.41

We used screen size, luminance information, and typical viewing distances to calculate light intensity at the user’s eyes as described in Section 4.1.
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FIGURE 8 | Lab study. Recognition performance over ambient light intensity.
Each participant is represented by a dot. The dashed trend line shows the
relationship between ambient light intensity and ROC AUC. The 95%
confidence interval around the trend line is shaded gray. It can be seen that
screen use detection performance decreased when ambient light intensity
increased.

5.4. ADL Study
We evaluated screen use detection within a large variety of ADLs.
Figure 9A depicts positive predictive value (PPV), true positive
rate (TPR), and false positive rate (FPR) for different screen use
percentages. It can be seen that PPV increases with screen use
percentage from 0.45 to 0.98, while TPR and FPR did not show
relevant changes.

Figure 9B shows ROC AUC per participant for 30% screen
use. For all participants, an ROC AUC was between 0.69 and 0.91
with an average of 0.83. ROC AUC performance was stable per
participant.

6. DISCUSSION

Today computers are on almost every desk, and the amount of
work being digitalized is still growing. Further growth of screen
use during the day and the eveningmay lead to circadianmisalign-
ment and an increase of people suffering from eyestrain. We thus
expect that screen use above 30% is reasonable and potentially
growing in the future. Our screen use detection results during
ADL showed relevant performance with an average ROC AUC of
0.83 at 30% screen use.

Previous study protocols administered continuous screen use
for 1–5 h (Cajochen et al., 2011; Heath et al., 2014; Chang et al.,
2015; van der Lely et al., 2015) when investigating circadian phase
shifts due to screen use. Wood et al. (2013) found measurable
melatonin suppression after 2 h of tablet use. Our proposed detec-
tion only required 5 s of data, thus detecting screen use well before
a measurable suppression of melatonin. Depending on real-time
detection requirements, majority voting could be applied over
multiple windows to smoothen the classifier result.

Circadian phase shift can be induced by light sources other than
screens. For example, looking at a high-energy blue light source
could also shift the circadian phase butmay not be detected by our
screen use detector. Smart eyeglasses measure light intensity for
each spectral component and thus can measure different sources
of phase shift. In contrast to other light sources, it is possible to
minimize the risk of phase shift due to screen use by adapting the
screen color profile. Therefore, the detection of screen use is of
interest.

6.1. Performance Metrics
For screen use detection, a low false alarm rate is crucial as false
alarms tend to frustrate users. While ROC AUC is a good per-
formance measure for balanced data sets, we additionally derived
precision of the screen use detection (PPV), correctly detected
screen use (TPR), and falsely reported screen use (FPR). TPR
reports the ratio of correctly detected screen use. FPR describes
the ratio of falsely reported screen use. An ROCAUC is computed
from TPR and FPR only and is thus insensitive to class skew
(Fawcett, 2004). In unbalanced data, where screen use instances
are rare (e.g., for 10% screen use), FPR can be low and TPR can be
high, even though PPV is low.

6.2. Ambient Light
Our lab study showed that screen use detection works best for
ambient light intensities below 200 lx. Interpreting light emitted
by the screen as signal and ambient light as noise, an increase
in ambient light adds noise, thus decreases signal-to-noise ratio.
However, increased ambient light eliminates the need for screen
use detection. For example, circadian phase shift induced by
screen use typically occurs at low ambient light intensity only.
Circadian phase response curves express impact of light exposure
on circadian phase depending on its timing.

Light intensities span multiple orders of magnitude ranging
from 0–1,000 lx indoors to more than 100,000 lx outdoors on a
sunny day. Our screen detection approach is meant for indoor
screen use. In outdoors, the sunlight already influences the circa-
dian phase. ADL recordings included outdoor episodes of walk-
ing, and our system did not falsely report screen use due to the
high brightness values.

Absolute light intensities differ depending on the environment,
lamp type, viewing distance, content, time of day, and weather.
Virtual light channels based on ratios of the different light color
components made the feature space independent from absolute
light intensities. Further calibration of the color light channels due
to their different energy-related response was not needed, since
the subsequent pattern analysis weights the features with respect
to the classification task.

6.3. Screen Use Activities
In the test bench study, we combined PC and TV content into
one screen use class to ensure that screen use could be detected
independent of displayed content. For both content types, dis-
tance between screen and sensor was 50 cm. The combination
of video content and close viewing distance could happen in
deployment, e.g., when watching video content online using a
notebook. However, our calculations (Table 3) showed that TV
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A B

FIGURE 9 | ADL study. (A) PPV, TPR, and FPR for 10–90% screen use. Gray diamonds represent outliers. (B) Per participant ROC AUC score at 30% screen use.

use, even at a short viewing distance, has no substantial impact on
the circadian phase.

Section 5.1 reported on light intensity at the user’s eyes for
different device and content types. Previous research investigated
the influence of screen use on circadian phase (Cajochen et al.,
2011) and found that screen use can induce circadian phase shifts.
Wood et al. (2013) suggested 50 lx as the critical threshold for
the circadian system. Our calculations showed that TVs, while
typically being the largest screens used, produce less than 50 lx
at the user’s eyes due to the large viewing distance. Typical TV
content caused one-third of the irradiance compared to PC use.
Heath et al. (2014) found that 1 h of tablet use prior to bedtime
did not significantly impact circadian phase. While used at a
close distance, smartphones and tablets are not large enough to
reach the 50-lx threshold. PC use was the only combination of
distance, content type, and screen size that could produce a light
intensity of over 50 lx at the user’s eye. In contrast, the work of
Chang et al. (2015) found significant melatonin suppression after
5 days of using a backlit eReader for 4 h prior to bedtime at 30 lx
only. However, their control was reading a paper in ambient light
conditions of less than 1 lx, the amount of ambient light in deep
twilight. Such low light intensities might make reading difficult.
We chose to investigate PC use with a desktop setup because it has
the strongest light intensity at the user’s eyes.

6.4. Assumptions
We used PC work as the prototype activity for high irradiance
screen use activities as we assumed it was the activity with yielding
the highest light intensities at the user’s eyes. Typically during PC
work, backgrounds are white, e.g., when editing a document or
browsing the web, resulting in a majority of bright pixels.

Test bench results showed that screen use was detected well
when sensors weremounted in a fixed position independent of the
amount or type of artificial light, or the content being displayed
on the screen. In reality, people move their head during screen
use and sometimes look away from the screen for brief moments.

Such movements are hard to annotate during an observational
study and thus introduced noise to our screen detection. Head
motionwas clearly visible in the raw light sensor signal of the ADL
study. Additional sensor information, e.g., from a motion sensor
could be used to detect head motion and thus interruptions of
screen use.

6.5. Practical Applications
Possible intervention measures have been investigated (Heath
et al., 2014; van der Lely et al., 2015). The latest update of Apple
iOS introduced a software feature to adapt screen color profiles
to minimize unwanted circadian phase shifts. In this work, we
showed that detecting screen use is feasible with the light sensor
of smart eyeglasses. The screen use detection could be used to
control the screen color profile.

Ambient monitoring methods could detect the presence in
front of a desktop screen, e.g., camera-based face detection or
ultrasound-based proximity detection (Jaramillo-Garcia et al.,
2014). However, screen-based light intensity must be assigned to
an individual user to implement alerts, where wearable systems
are advantageous. In addition with wearable systems, privacy con-
cerns could be easily addressed. An ambient monitoring solution
requires one setup per screen, and the presence information alone
is not sufficient to identify relevant screen illuminance as users
may already use a software intervention tool, e.g., f.lux to adapt
the screen’s spectral composition. In addition, a presence detector
cannot distinguish between being next to and actually looking at a
screen. With the light sensor embedded into the smart eyeglasses
bridge, the wearable system captures a wearer’s field of view.

We intentionally chose eyeglasses as a sensing platform because
regular eyeglasses are worn bymany. Smart eyeglasses, like regular
eyeglasses, are worn throughout the day. In contrast to head-worn
light measurement devices such as the Daysimeter (Bierman et al.,
2005), smart eyeglasses may be used for multiple applications
(Amft et al., 2015). In contrast to other smart eyewear, where the
focus is on interaction and displaying information, e.g., Google

Frontiers in ICT | www.frontiersin.org May 2017 | Volume 4 | Article 810

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Wahl et al. Computer Screen Use Detection

Glass, our work is focused on sensing.While the camera of Google
Glass could be used as a color light sensor substitute, the larger
power consumption may limit continuous use.

Detecting screen use is challenging as the screen-emitted light is
distributed over the visible spectrum, with frequency components
close to other light sources. Screen use was found to suppress
evening rise in endogenous melatonin significantly and thus mis-
aligning circadian rhythms (Cajochen et al., 2011). Screen use can
also cause repetitive strain injuries (RSI), such as eye strain (The
Vision Council of America, 2016). With our screen use detection,
it is possible to support users by suggesting intervention measures
when needed, including adapting a screen’s color profile to prevent
circadian phase shifts and taking regular breaks to reduce RSI
risks.

Screen use detection can be used beyond detecting impact
on the circadian phase. Regular breaks are important to prevent
eye strain, the most common repetitive strain injury (The Vision
Council of America, 2016). Screen use detection can suggest
breaks during computer work and remind users to implement the
20-20-20 rule: every 20min of screen work take a 20-s break and
look at something at least 20 feet away.

7. CONCLUSION

We introduced an approach for screen use detection based on a
color light sensor embedded in smart eyeglasses and evaluated it
on three studies. Our evaluation showed perfect results for the test
bench analysis. Lab and ADL study results introduced noise due
to head motion and ambient light variation.

Lab study results revealed that screen use detection perfor-
mance is related to ambient light intensity. Screen usewas detected
with over 0.9 ROCAUC at an ambient light intensity below 200 lx.
A data set of typical ADLs was used to further evaluate screen use
detection. Screen use was detected with an average ROC AUC of
0.83 for 30% screen use. Detection performance was evaluated on
person-independent models for lab and ADL data sets.

Our work could be applied to other wearables as few hardware
components are required. A color light sensor, battery, and wire-
less interface could be embedded into smart jewelry, e.g., a brooch
or necklace. However, it is essential that the light sensor’s field of

view is aligned with the wearer’s eyes. Our screen use detection
algorithm is independent of the sensor position.

The proposed system detected screen use quickly due to the
short window size of 5 s. Screen use information could be used
to prevent eye strain by reminding users to take regular breaks.
Undesired impact of screen use, e.g., circadian phase shift, could
be minimized by either notifying the user or (automatically)
activating a software intervention measure, e.g., f.lux. We thus
conclude that smart eyeglasses are a feasible platform for screen
use detection.
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