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Introduction: Combining many types of imaging data—especially structural

MRI (sMRI) and functional MRI (fMRI)—may greatly assist in the diagnosis and

treatment of brain disorders like Alzheimer’s. Current approaches are less helpful

for forecasting, however, as they do not always blend spatial and temporal

patterns from different sources properly. This work presents a novel mixed deep

learning (DL) method combining data from many sources using CNN, GRU, and

attention techniques. This work introduces a novel hybrid deep learning method

combining CNN, GRU, and a Dynamic Cross-Modality Attention Module to help

more efficiently blend spatial and temporal brain data. Through working around

issues with current multimodal fusion techniques, our approach increases the

accuracy and readability of diagnoses.

Methods: Utilizing CNNs and models of temporal dynamics from fMRI

connection measures utilizing GRUs, the proposed approach extracts spatial

characteristics from sMRI. Strong multimodal integration is made possible by

including an attention mechanism to give diagnostically important features

top priority. Training and evaluation of the model took place using the

Human Connectome Project (HCP) dataset including behavioral data, fMRI,

and sMRI. Measures include accuracy, recall, precision and F1-score used to

evaluate performance.

Results: It was correct 96.79% of the time using the combined structure.

Regarding the identification of brain disorders, the proposed model was more

successful than existing ones.

Discussion: These findings indicate that the hybrid strategy makes sense for

using complimentary information from several kinds of photos. Attention to

detail helped one choose which aspects to concentrate on, thereby enhancing

the readability and diagnostic accuracy.

Conclusion: The proposed method offers a fresh benchmark for multimodal

neuroimaging analysis and has great potential for use in real-world brain
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assessment and prediction. Researchers will investigate future applications of

this technique to new picture kinds and clinical data.

KEYWORDS

multimodal imaging, structural MRI (sMRI), functional MRI (fMRI), neurological
disorders, deep learning framework, data fusion, diagnosis and prognosis

1 Introduction

Identification and understanding of brain illnesses now heavily
rely on brain scans, often known as neuroimaging. Techniques that
provide scientists a great wealth of information on the structure
and operation of the brain include “structural magnetic resonance
imaging” (sMRI) and “functional magnetic resonance imaging”
(fMRI). SMRI gauges brain anatomy including cortical breadth
and gray matter count. Conversely, fMRI studies how brain areas
interact with one another both during specific activities and in
absence of them. Though they each provide something unique,
combining these techniques is still difficult. Combining anatomical
and functional aspects, multimodal neuroimaging presents a more
whole picture of the brain. But the challenge of aggregating such
disparate kinds of data often limits its use in clinical and research
environments (Odusami et al., 2024; Karakis et al., 2023).

Although feature fusion and statistical models are simple to
employ, current approaches for merging many kinds of brain
imaging do not highlight intricate linkages between place and
time. These conventional approaches fail to constantly consider
how the structural patterns in sMRI fit the functional connections
in fMRI. Consequently, the integration and prediction efforts
are not as strong as they need to be. While certain issues are
addressed by advanced deep learning models—such as CNNs
working on their own for geographical data and RNNs working
on temporal data—they do not fully use how these two forms of
data could cooperate. Using CNNs to extract spatial characteristics,
GRUs to monitor changes over time, and an attention strategy to
emphasize features most crucial for diagnosis, the proposed hybrid
architecture fills in this void. This offers a fresh approach to reach
steady multimodal fusion.

Mostly depending on feature fusion or statistical models,
multimodal integration in neuroimaging has been used to mix
data from sMRI and fMRI thus far. Although these techniques are
simple to use, they can overlook the intricate relationships between
structural and functional characteristics. For example, fMRI’s
connectivity patterns might reflect physical paths seen in sMRI,
but traditional fusion techniques poorly describe these spatial-
temporal relationships. These approaches also struggle with the
great degree of detail in brain data, which may cause overfitting and
poor generalizability. As the discipline of neuroimaging expands,
it is becoming evident that new computer systems are required to
properly exploit multimodal data merging.

By enabling automated feature identification and pattern
recognition of complexity, DL has transformed neuroscience.
Examining spatial data from sMRI, such as the breadth of the
cortex and the gray matter count, CNN has done well. Likewise,
RNNs such as LSTM and GRU are excellent at modeling temporal

interactions, hence they may be used to identify dynamic functional
connectivity in fMRI data (Grijalva et al., 2023; Tabassum et al.,
2024). CNNs or RNNs functioning on their own cannot manage the
heterogeneous structure of brain data even with current advances.
To solve this, deep learning models have lately included attention
methods—which flexibly prioritize diagnostically essential traits—
in order to in multimodal fusion challenges, attention processes
have shown promise in allowing models ignore less important
input while concentrating on crucial data. This fresh concept allows
neural models to be more dependable and understandable (Achalia
et al., 2020; Rudroff et al., 2024).

Still, the present approaches of aggregating heterogeneous
brain data are not very successful. Many techniques rely on
basic fusion approaches—that is, combining sMRI and fMRI
features—that ignore the complicated interactions between the
two forms of imaging (Abate et al., 2024; Fu et al., 2024).
Furthermore, traditional machine learning models depend on
handcrafted characteristics, which could result in prejudices and
overlook minute data patterns. Although DL models are quite
strong, their clinical relevance is not always obvious (Grigas et al.,
2024). These issues highlight the need of having a system that
not only efficiently blends spatial and temporal patterns but also
clarifies the method of decision-making.

Since no technique completely exploits the advantages of both
sMRI and fMRI, multimodal neuroimaging suffers a research
vacuum. Most of the present approaches either blend the modes
in a manner that loses their particular merits or tackle the
modes individually. Furthermore, few research have investigated
how sophisticated deep learning models—such as attention-based
mixed models—may be combined with brain data. This hole
demonstrates how helpful it may be to design an understandable
new framework combining structural and functional data in a
logical manner. This work aims to provide a mixed DL framework
that effectively incorporates data from sMRI and fMRI in order
to diagnose and forecast neurological disorders. The proposed
method employs CNNs to extract spatial features from sMRI
data, GRUs to track temporal changes in fMRI connectivity data,
and attention techniques to identify the most critical aspects for
diagnosis. By adding these components, the model aims to provide
a robust and logical approach for merging multidimensional data.
Using the Human Connectome Project (HCP) dataset—a vast
collection of sMRI, fMRI, and behavioral data—the paper also
evaluates how well the system performs.

This research advances several very significant issues. First,
it generates a fresh mixed design fixing the issues with present
multimodal integration methods using CNNs, GRUs, and attention
processes. This framework allows the model to see patterns in
both place and time in neural data, therefore providing a more
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complete picture of brain construction and operation. Second,
the proposed framework on the HCP dataset is thoroughly tested
in the research under close comparison with other previously
used approaches. Especially for the identification of complex
brain illnesses, this evaluation demonstrates the practical value
of the model in the actual world. Finally, the research places
great weight on the need of being understandable. It achieves
this by guiding our understanding of the characteristics rendering
the predictions of the model utilizing attention processes. In
professional settings, developing trust and acceptability depends
much on this emphasis on transparency. This effort aims to
solve significant issues in merging data and provide easily
understandable models thus improving multimodal neuroimaging.
A major advance for neurology assessment and prediction is using
the advantages of both sMRI and fMRI to create the proposed
hybrid DL framework. This work employs modern deep learning
techniques while still emphasizing on being transparent and usable
in clinical situations, therefore the way multimodal neuroimaging
data is handled and utilized might alter.

2 Analysis of existing works

Improved artificial intelligence and brain scans have made
diagnosis and understanding of a broad spectrum of neurological
and mental diseases much simpler. Using scanning techniques
such MRI, fMRI, and PET, scientists have discovered a great deal
about how the brain’s structure and function vary under several
conditions. Machine learning approaches have made diagnosis
even more accurate when coupled with these imaging techniques
and enabled early issue discovery. a robust artificial intelligence
system searching for Parkinson’s disease advanced using clinical
testing and brain data. This approach demonstrated how artificial
intelligence may examine many kinds of data to identify patterns
suggesting the worsening nature of a disease (Islam et al., 2024).

Particularly vital in the “early detection of Alzheimer’s disease”
has been computer-assisted identification. This is so because better
neuroimaging techniques have made it simpler to observe changes
in both structure and function. Using MRI and fMRI, artificial
intelligence models have showed potential in identifying disease-
related biomarkers, therefore enabling early intervention plans
(Shanmugavadivel et al., 2023). Scientists have also examined how
outside elements in the context of sports mishaps correlate with
patterns of brain injury. By use of “multimodal neuroimaging” and
finite element analysis, researchers have developed a method to
forecast brain damage. This offers a fresh approach to investigate
sporting mishaps (Yuan et al., 2024).

Additionally investigated is “post-traumatic stress disorder”
(PTSD) using neuroimaging-based diagnosis. More individualized
treatment strategies result from the identification of brain patterns
connected to PTSD made possible by machine learning techniques
used on MRI data (Jia et al., 2024). GAN has been investigated
as a potential means of adding additional data, enhancing image
quality, and identifying neuroimaging errors. This innovative tool
has allowed us to overcome the issues related to small neural
datasets (Wang et al., 2023).

Since ultra-high-performance gradient MRI devices released,
neuroimaging has evolved much further. Very crucial for

understanding how the brain functions and for more accurate
diagnosis making, these AI-powered devices can capture high-
resolution images of space and time (Chen et al., 2025; Meng et al.,
2025; Wu et al., 2024). In psychology, representation and transfer
learning have evolved into valuable MRI techniques. Especially for
mental health issues, these methods allow you to use what you
have learnt from other related employment to better grasp complex
anatomical findings in neuroimaging (Dufumier et al., 2024).

Furthermore, becoming increasingly prevalent are artificial
intelligence models that fit certain scenarios. Combining
neuroimaging data with predictive analytics using gradient
boosting techniques has allowed one to more individually treat
sorrow. Combining neuroimaging with predictive analytics has
potential (Ali et al., 2022). Furthermore, structural neuroimaging
studies emphasizing the “hippocampus and amygdala subregions”
have provided us vital new insights on how PTSD alters the brain.
The findings of this research have served to demonstrate how
stressful situations may alter the organization of several areas of
the brain (Ben-Zion et al., 2024).

People with Parkinson’s disease—especially those with modest
cognitive impairment—have also been examined using multimodal
scanning. Combining many forms of scanning, researchers have
predicted how a disease would worsen using machine learning. This
approach emphasizes the need of aggregating many kinds of data to
provide accurate forecasts and simplify targeted actions (Zhu et al.,
2024; Zhu et al., 2023). Artificial intelligence-driven neuroimaging
and techniques have transformed the field of neurological and
psychiatric diagnosis. Combining several kinds of photos with
machine learning has made it simpler to understand more
about PTSD and grief and identify neurodegenerative illnesses
like “Parkinson’s and Alzheimer’s.” Early diagnosis and more
individualized therapy resulting from this have been positive. These
developments highlight how crucial it is now to assist individuals
with complex brain illnesses using modern technologies.

3 Proposed methodology

3.1 Dataset description

Data from different types of brain scans, such as sMRI and
fMRI, were gathered for this study from public sources such as
the “Human Connectome Project” (HCP). It has high-resolution
pictures, details about the people in the pictures (like their age
and gender), and professional notes about brain diseases (like
“Parkinson’s disease, Alzheimer’s disease, or PTSD”). We can see
trends over time on functional connectivity maps from fMRI, and
we can see the width and thickness of the gray matter from sMRI.

3.2 Structural (sMRI) and functional
(fMRI) data and preprocessing

3.2.1 Structural MRI (sMRI)
• Data Type: Captures anatomical details of the “brain,

including gray matter volume, cortical thickness, and white
matter structure.”
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• Preprocessing: Includes skull stripping, intensity
normalization, and segmentation into gray matter, white
matter, and cerebrospinal fluid.

3.2.2 Functional MRI (fMRI)
• Data Type: Measures brain activity by detecting blood

oxygen level-dependent (BOLD) signals, used for functional
connectivity analysis.
• Preprocessing: Includes “slice timing correction, motion

correction, spatial normalization, and temporal filtering.”

Both modalities undergo co-registration and alignment to
a common anatomical space (e.g., MNI template) to ensure
spatial correspondence. Preprocessed features such as connectivity
matrices (fMRI) and gray matter volumes (sMRI) are extracted for
machine learning analysis.

3.2.3 Novel method for adaptive filtering and
augmentation techniques

To address variability in the HCP dataset, the proposed
methodology employs an adaptive filtering technique for fMRI data
and a novel data augmentation strategy for sMRI.

3.2.3.1 Adaptive filtering for fMRI

An adaptive filtering technique was implemented to enhance
the signal-to-noise ratio (SNR) while preserving functional
connectivity patterns. the enhanced fMRI signal sfiltered is computed
as:

Sfiltered = Sraw − α.N

where S_raw is the raw fMRI signal, N is the estimated noise
component, and α is a scaling factor determined dynamically
based on local SNR.

3.2.3.2 Data augmentation for sMRI

A novel augmentation strategy applies synthetic
transformations, including elastic deformations and intensity
scaling. Given an sMRI input Ioriginal, an augmented sample
Iaugmented is generated as:

Iaugmented = Telastic
(
Ioriginal

)
+ β.Iscaled

where Telastic represents an elastic transformation, Iscaled is the
intensity-scaled version of Ioriginal, and β is a scaling parameter to
control intensity adjustments.

These techniques ensure improved generalizability and
robustness of the model when handling the diverse and
high-dimensional HCP dataset.

3.3 Feature extraction

3.3.1 CNN for sMRI data
The spatial characteristics of brain structures, such as gray

matter volume and cortical thickness, are extracted from sMRI data
using CNNs. CNNs are well-suited for spatial data as they utilize
convolutional filters to detect hierarchical features.

The input sMRI images are represented as a 3D tensor XsMRI
with W × H × D, where W, Santosh H Lavate and D denote the
width, height and depth of the image resp.

A conv layer applies filters K to produce feature maps:

Fspatial = K∗XsMRI + b

Where ∗ denotes the conv operation, b is the “bias term,” and Fspatial
represents “extracted spatial features.”

The feature maps are passed through activation function
using ReLU and pooling layers to reduce dimensionality while
preserving key spatial features. The CNN component incorporates
residual connections to enhance feature propagation and prevent
degradation of performance in deeper layers. Also, dropout
layers are included in both CNN and GRU networks to
mitigate overfitting, especially given the high dimensionality of
neuroimaging data.

3.3.2 GRU for fMRI data
Temporal dynamics in functional connectivity, derived

from resting-state fMRI (RSFC), are captured using GRUs.
RSFC is represented as a sequence of connectivity matrices
XfMRI = C1, C2....CT where T is the number of time steps.

GRUs are employed to model the sequential nature of the data.
The GRU update equations are:

zt = σ(Wz.
[
ht−1, xt

]
+ bz)

rt = σ(Wr.
[
ht−1, xt

]
+ br)

ht = (1− zt)� ht−1 + zt � tanh(wh.
[
rt � ht−1, xt

]
+ bh)

where, zt is the “update gate,” rt is “reset gate,” ht is “hidden state,”
xt is “input at time t,” and Wz, WrWh are weight matrices.

The output of the GRU provides a representation of
the temporal relationships within the RSFC data denoted by
F_temporal. The GRU architecture employs a bidirectional
structure, capturing forward and backward temporal dependencies
in fMRI connectivity data, thus improving the representation of
dynamic brain activity.

3.4 Attention mechanism

The attention mechanism dynamically prioritizes features from
both modalities, ensuring that the most diagnostically relevant
information is emphasized. The attention mechanism in this
framework is distinct in its use of a hierarchical cross-modality
approach, which aligns spatial features from sMRI and temporal
features from fMRI dynamically.

3.4.1 Cross-attention module
The cross-attention module aligns spatial features from sMRI

(spatial) with temporal features from fMRI (F temporal).

• The attention weights are computed using a compatibility
function:

αij =
exp(eij)∑N

k = 1 exp(eik)
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Where eij = Qi.KT
j is “compatibility score” between query Qi and

key Kj.Q and K are learned projections of Fspatial and Ftemporal resp.

• The attended features are computed as:

Fattended =

N∑
j = 1

αijVj

where, Vj is the “value vector associated with Kj.
′′

The new Dynamic Cross-Modality Attention Module in the
suggested framework figures out feature relationships between
sMRI spatial features and fMRI temporal features on the fly.
This module matches features based on task relevance and uses
query-key-value pairs to figure out attention weights that are
specific to each mode. This moving alignment makes sure that the
methods work together perfectly, which improves the accuracy of
predictions and the ease of understanding. The attention weights A
are computed using a scaled dot-product mechanism:

A = softmax

(
Qspatial Ktemporal√

dk

)

where, Qspatial = WqFspatial (query for sMRI feature),
Ktemporal = WkFtemporal (key for fMRI features), Wq and Wk
are learned weight matrices and dk is the dimension of the key.

3.4.1.1 Feature fusion

The attended features F_fused are computed by combining
attention-modulated fMRI features with sMRI features

Ffused = Fspatial + A.Vtemporal

This module dynamically aligns the two modalities, ensuring
diagnostically relevant features are prioritized, thereby enhancing
multimodal data integration.

3.4.2 Integration of attention outputs
The attended features from both modalities are concatenated

and passed through a dense layer for classification or regression:

Ffinal = Dense(concat(Fspatial, Ftemporal, Fattended))

Figure 1 illustrates two key aspects of the proposed model. The
Figure 1a shows the feature importance derived from attention
mechanisms, highlighting the contributions of gray matter volume,
cortical thickness, and functional connectivity metrics. Gray matter
volume exhibits the highest importance, indicating its critical role
in predictions. The Figure 1b presents example predictions using
multimodal inputs, plotting sMRI (gray matter volume) against
fMRI (functional connectivity). Data points are color-coded by
the predicted labels, demonstrating the model’s ability to classify
healthy (blue) and diseased (red) cases effectively. This visualization
emphasizes the model’s interpretability and predictive strength.

The feature importance analysis - Figure 1 identifies gray
matter volume (sMRI) and functional connectivity (fMRI) as
key biomarkers for brain disorder classification, aligning with
clinical research. Gray matter atrophy in the hippocampus and
frontal cortex is linked to Alzheimer’s, Parkinson’s, and multiple
sclerosis, while altered functional connectivity in the default mode
network (DMN) is associated with Alzheimer’s, schizophrenia,

and depression. The proposed CNN-GRU model effectively
captures these disruptions, enhancing diagnostic interpretability
and potential clinical application. Future work may integrate SHAP
or Grad-CAM for improved feature attribution.

This Figures 1a, b highlights the key features contributing
to brain disorder classification, emphasizing gray matter volume
(sMRI) and functional connectivity (fMRI) as the most significant
biomarkers. Reduced gray matter in the hippocampus and
prefrontal cortex aligns with findings on neurodegenerative
disorders, while altered functional connectivity in the Default
Mode Network (DMN) further aids classification. These insights
improve model interpretability, ensuring biologically relevant
feature prioritization for clinical applications.

3.5 Model architecture

The proposed model architecture integrates sMRI and fMRI
data using a hybrid DL framework as shown in Figure 1. The
structural data is processed through a Convolutional Neural
Network (CNN), which extracts spatial features such as gray matter
volume and cortical thickness. The CNN employs convolutional
and pooling layers to capture hierarchical patterns from the
sMRI images. Functional MRI data, represented as time-series
connectivity matrices, is fed into a Gated Recurrent Unit (GRU)
network, which is optimized to capture temporal dependencies and
dynamic patterns of brain connectivity.

The process of combining elements is enhanced via an attention
strategy. More weight is given to the most diagnostically valuable
information from both as the attention technique provides distinct
characteristics from the CNN and GRU varying weights on the
fly. Combining the outputs of the focus module into a single
feature representation is accomplished at a feature fusion layer.
This helps the model to make excellent use of the fused data
from sMRI and fMRI.

Finally, the characteristics are arranged via completely
connected layers such that they may be used for classification
or regression. Using the multimodal characteristics acquired,
this section of the model approximates the objective name—
like “healthy” or “diseased.” With an eye on finding the
appropriate loss function for every job—like cross-entropy for
classification—the full design is explained from start to end. This
architecture guarantees good combination of spatial and temporal
information, so it is a helpful instrument for neuroimaging-based
assessment and prediction.

The figure outlines the CNN-GRU model with a Dynamic
Cross-Modality Attention Module for multimodal neuroimaging.
It integrates CNNs for spatial feature extraction (sMRI), GRUs
for temporal analysis (fMRI), and an attention mechanism that
aligns spatial and temporal features. The feature fusion layer merges
these representations for accurate classification. This architecture
effectively captures spatial-temporal patterns, enhancing diagnostic
accuracy, interpretability, and clinical applicability.

3.6 Ablation study

To evaluate the effectiveness of the proposed hybrid framework
as shown in Figure 2, ablation experiments were conducted to
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FIGURE 1

(a) Feature importance from attention mechanisms and (b) multimodal input predictions in the proposed mode.

FIGURE 2

Proposed model architecture.

assess the impact of the attention mechanism and compare the
performance of the combined CNN-GRU model against standalone
CNN and GRU architectures.

3.6.1 Impact of the attention mechanism
The attention mechanism dynamically prioritizes relevant

features, enhancing the integration of spatial and temporal data.
The performance improvement was measured by removing the
attention module from the hybrid model and evaluating key
metrics:

1Accuracy =

AccuracyHybridwithAttention − AccuracyHybridwithoutAttention

The accuracy dropped from 96.79% to 93.45% without
attention as compared to with attention mechanism, yielding a
performance improvement (1Accuracy) of 3.34% emphasizing the
importance of the attention mechanism in feature prioritization.

The ablation study confirms the critical role of the attention
mechanism and the superiority of the CNN-GRU hybrid
architecture in leveraging both spatial and temporal features for
enhanced neuroimaging performance.

4 Results and discussion

4.1 Evaluation parameter comparison
with existing work

The comparative analysis highlights the superiority of
the proposed CNN-GRU hybrid framework with attention
mechanisms over existing models as shown in Table 1. Liu et al.
(2015) achieved 93.2% accuracy using ADNI with multimodal
neuroimaging features, while Lu et al. (2018) achieved 95.6%
accuracy with a deep neural network on the same dataset. Prabhu
et al. (2022) combining MRI and EHR data, reported 92.7%
accuracy. In contrast, the proposed model outperforms these with
a 96.79% accuracy, leveraging the Human Connectome Project
dataset. Also, its precision (95.34%), recall (94.85%), and F1-score
(95.09%) demonstrate balanced and robust performance, ensuring
reliable predictions for neuroimaging tasks.

The superior performance of the proposed CNN-GRU
framework can be attributed to its ability to simultaneously
leverage spatial and temporal patterns through its hybrid
architecture. Unlike traditional models, which often rely
on shallow feature concatenation, this approach dynamically
integrates information using attention mechanisms, resulting in
robust feature prioritization. Moreover, the proposed framework
demonstrates improved computational efficiency due to optimized
network design and better interpretability, a critical requirement
for clinical applications.

4.2 Result for ablation study

The ablation study results demonstrate in Table 2 the
importance of the attention mechanism and the hybrid
architecture in improving model performance. The Hybrid
CNN-GRU with Attention achieved the highest accuracy (96.79%),
sensitivity (94.85%), specificity (97.89%), and precision (95.34%),
outperforming all other configurations. Removing the attention
mechanism reduced performance significantly, with accuracy
dropping to 93.45%, highlighting its importance in feature
prioritization. Standalone CNN and GRU models exhibited
lower accuracies (92.45% and 91.89%, respectively) and reduced

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1552178
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1552178 March 18, 2025 Time: 16:20 # 7

Bhattacharya et al. 10.3389/fnhum.2025.1552178

TABLE 1 Evaluation parameters comparison of proposed work with existing works.

References Method Dataset Accuracy Precision Recall F1-score

Liu et al., 2015 Multimodal neuroimaging
feature learning

ADNI 93.2 91.5 92.4 91.9

Lu et al., 2018 Multimodal and multiscale DNN ADNI 95.6 94.3 93.8 94

Prabhu et al., 2022 Multi-modal DL using MRI and
EHR

Private EHR and imaging
dataset

92.7 91.8 90.4 91.1

Proposed framework CNN-GRU with attention
mechanisms

HCP 96.79 95.34 94.85 95.09

TABLE 2 Evaluation of ablation study.

Model configuration Accuracy Sensitivity Specificity Precision

Hybrid CNN-GRU with attention 96.79 94.85 97.89 95.34

Hybrid CNN-GRU without attention 93.45 91.78 95.12 92.3

Standalone CNN 92.45 90.23 93.8 91

Standalone GRU 91.89 89.67 92.34 90.12

sensitivity and precision, emphasizing the advantage of combining
spatial and temporal features in a hybrid setup. The results validate
the effectiveness of the proposed architecture.

The proposed Dynamic Cross-Modality Attention Module
enhances multimodal feature fusion by selectively prioritizing
diagnostically relevant spatial (sMRI) and temporal (fMRI)
features. Unlike standard attention-based models that rely on
predefined weighting schemes or static alignment between
modalities, our approach dynamically reassigns feature importance
based on the context of neuroimaging data, ensuring more
meaningful cross-modality interactions.

Several recent studies have employed attention mechanisms
for multimodal neuroimaging analysis. For example, Lu et al.
(2018) used a self-attention-based fusion model that computes
feature importance independently for each modality before
concatenating them. However, such approaches may not fully
capture the interactive dependencies between structural and
functional features. Similarly, Wang et al. (2023) proposed an
attention-gated CNN-RNN model, which assigns static attention
weights to different imaging regions but lacks real-time feature
recalibration across modalities.

Our model differs from these approaches by introducing a
hierarchical attention strategy that aligns spatial and temporal
features dynamically. Instead of assigning independent attention
scores, the proposed framework leverages query-key-value
mapping to assess cross-modal feature importance on the
fly, allowing sMRI-based spatial features to influence fMRI-
derived temporal dynamics, and vice versa. This enables a more

interpretable and biologically relevant integration of neuroimaging
modalities, enhancing the model’s ability to distinguish between
healthy and diseased conditions.

4.3 Enhancing generalizability and
external validation

The proposed hybrid CNN-GRU model achieves high accuracy
(96.79%) in diagnosing brain disorders using the HCP dataset.
However, external validation is crucial to ensure its applicability
across diverse clinical settings, as HCP primarily includes healthy
individuals, limiting its representation of real-world neurological
variations. Future studies should validate the model using datasets
such as ADNI, which contains multimodal imaging data across
different stages of cognitive impairment, or other clinical datasets
covering neurodegenerative and psychiatric disorders. Integrating
PET scans from ADNI alongside sMRI and fMRI could further
enhance diagnostic precision.

To improve generalizability, domain adaptation techniques like
transfer learning can refine the model by pre-training on HCP
and fine-tuning on clinical datasets. Also, harmonization strategies
such as feature normalization and GAN-based augmentation could
mitigate biases from variations in scanning protocols. Assessing
performance across diverse demographic and age groups would
further evaluate adaptability. These enhancements would help
transition the model into a clinically deployable framework for
neuroimaging-based disease diagnosis.

TABLE 3 Paired t-test results.

Model comparison P-value

Accuracy Precision Recall F1-score

CNN-GRU with attention vs. standalone CNN 0.0018 0.0025 0.0013 0.0017

CNN-GRU with attention vs. standalone GRU 0.0021 0.0029 0.002 0.0023

CNN-GRU with attention vs. CNN-GRU without
attention

0.0045 0.0048 0.0039 0.0042
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4.4 Statistical significance of
performance improvements

To validate the statistical significance of the observed
performance improvements, paired t-tests were conducted to
compare the proposed CNN-GRU with Attention framework
against three baseline models: Standalone CNN, Standalone GRU,
CNN-GRU without Attention as shown in Table 3.

All comparisons resulted in p-values < 0.05, indicating that
the performance improvements of the proposed CNN-GRU with
Attention model are statistically significant compared to the
baseline models. This confirms that the observed differences are
not due to random variations but are meaningful improvements in
classification performance.

5 Conclusion, limitation and future
scope

The proposed CNN-GRU hybrid framework with attention
mechanisms effectively integrates structural (sMRI) and
functional (fMRI) neuroimaging data, achieving superior
performance across metrics like accuracy (96.79%) and
F1-score (95.09%). The attention mechanism significantly
improves feature prioritization, enabling robust classification
for neurological diagnoses. These results demonstrate the
potential of this model for clinical applications in multimodal
neuroimaging analysis.

The study isn’t perfect because it only used one dataset (HCP).
This means that it might not work as well with other datasets
or in real clinical cases. They also use a lot of resources because
they are hard to program, which makes them less useful for
larger collections.

In the future, the model could be tried on different sets
of data, such as groups of people with the same disease. It’s
possible that things could work better and be more flexible with
changes like transformer-based designs or transfer learning. If
more imaging methods, like PET or DTI, are added, it might
help doctors make more accurate diagnoses and be more useful
in more scenarios.

For use in hospital situations, the suggested method shows
a lot of promise. For instance, it might help find brain diseases
earlier in places with few resources and help make better
care plans for each person. It can also be changed to include
other imaging methods, such as PET or DTI, which makes it
better for a wider range of brain diseases. Because a lot of
people can understand and use it, it seems like a good idea to
use it in scans.
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