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Introduction: To foster innovation and optimization in engineering product design, it 
is crucial for engineering professionals to effectively integrate knowledge and make 
informed decisions within interdisciplinary collaborative environments. Understanding the 
factors that influence group decision-making performance can enhance communication 
and knowledge integration among experts from diverse disciplinary backgrounds. 
By analyzing decision-makers’ attention allocation and information processing at 
the cognitive level, the innovation and practicality of solutions can be significantly 
improved. However, the complexity and multitude of factors affecting decision-making 
performance pose challenges, particularly due to the lack of quantitative research 
and unified metrics at both group and cognitive levels. This gap hinders the quality 
and efficiency of engineering group decisions.

Methods: This study introduces an eye-tracking method to investigate interdisciplinary 
group decision-making in engineering design, leveraging group decision-making 
performance theory and eye-tracking technology. Experiments were conducted 
in the context of Chinese cruise ship cabin design. Using Partial Least Squares 
Structural Equation Modeling (PLS-SEM), a quantitative model was developed to 
assess the impact of visual attention on group decision performance.

Results: The results demonstrate that group average gaze duration and group 
average number of gazes directly influence group decision-maker satisfaction and 
decision acceptability. Furthermore, these factors indirectly affect interdisciplinary 
group decision-making performance by impacting group decision quality.

Discussion: The findings provide a foundation for developing effective interdisciplinary 
group decision support systems, enhancing cognitive performance, and offering 
new methodological insights for future engineering design decisions. This research 
contributes to bridging the gap in quantitative assessment of group decision-
making performance, paving the way for improved decision quality and efficiency 
in engineering contexts.
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1 Introduction

In the era of the knowledge economy, rapid technological development and innovation 
are the key forces driving social progress. Engineering product design, as an essential area of 
technological innovation, is greatly influenced by the multidisciplinary group decision-making 
process, which plays a decisive role in enhancing the innovation and practicality of products. 
Interdisciplinary group decision-making complexity arises from multiple levels: Firstly, teams 
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must rapidly integrate knowledge and perspectives from multiple 
disciplines. Secondly, the process includes decision problem cognition, 
decision problem analysis, decision problem solving, and plan 
integration and selection (Feng and Chen, 2022), demanding 
coordination and integration at each stage. Lastly, many factors affect 
these decisions, such as cognitive differences, communication 
efficiency, processing capabilities, professional backgrounds, 
organizational culture, and environmental changes. These factors 
interact to shape the complexity and dynamics of group decision-
making. Studying these factors reveals how subjective and objective 
elements affect outcomes, guiding measures to optimize group 
decision-making.

However, both academia and industry currently have a relatively 
superficial understanding of this group decision-making process. 
Existing research primarily focuses on qualitative studies from the 
perspectives of psychology, education, and management, and has not 
yet delved into quantitative analyses of the underlying mechanisms 
and influencing factors at the cognitive level of individual engineers 
(Parayitam et al., 2017). A significant gap exists in current theoretical 
research, which has resulted in a lack of unified and objective 
standards as well as calculation methods for evaluating group 
decision-making performance during the practical application of 
engineering design decisions. This deficiency leads to subjectivity 
and inconsistency in the evaluation of group decision outcomes. The 
primary reason lies in the limitations of traditional behavioral 
experiments, which are unable to effectively investigate the cognitive 
processes of individual engineers. Consequently, it becomes 
challenging to accurately capture cognitive dynamics, quantify 
cognitive states, or integrate professional knowledge with group 
consensus. As a result, gaining an in-depth understanding of the 
decision-making process remains elusive. Therefore, innovative 
experimental methods and research tools are urgently required to 
address these challenges and advance the field. The advancement of 
eye-tracking technology has equipped researchers with a tool for 
real-time measurement of cognitive activities. By recording eye 
movements, eye-tracking technology can accurately reflect an 
individual’s visual focus, thereby revealing their cognitive processing. 
This technology has been widely applied in fields such as cognitive 
psychology, human-computer interaction, and market research, but 
its application in interdisciplinary group decision-making research 
in engineering product design is still in its infancy (Zheng et al., 
2024). This paper designs an eye-tracking experimental research 
method for the interdisciplinary group decision-making process in 
engineering product design and constructs a model of factors 
affecting group decision-making performance using partial least 
squares analysis and structural equation modeling. It identifies the 
attention allocation indicators that have the greatest impact on 
group decision-making performance, quantitatively analyzes 
decision-makers’ visual attention patterns at the cognitive level of 
engineering technical foci, reveals the relationship between 
interdisciplinary technical focus attention mechanisms and decision-
making performance, and fills the gap in current research at the 
cognitive level. By taking the design of Chinese cruise ship cabin 
rooms as a case study, this paper analyzes how decision-makers’ 
visual attention allocation patterns affect the quality and efficiency 
of group decisions when facing interdisciplinary technical focus and 
proposes measures and recommendations to enhance 
interdisciplinary group decision-making performance from the 
perspective of visual cognition.

2 Literature review

2.1 Research on group decision-making 
performance measurement

Group decision-making performance is a multidimensional 
outcome variable that involves assessments at multiple levels. Existing 
studies commonly use the Analytic Hierarchy Process (AHP) to break 
down group decision-making performance into several components, 
including, but not limited to, decision quality, efficiency, participant 
satisfaction, and emotional acceptance (Feng and Chen, 2022). The 
relative importance of these factors is determined through pairwise 
comparisons or expert evaluations, which are then used to calculate 
the weight of each decision factor (Jaafar, 2017).

Decision quality is a key indicator for evaluating the contribution of 
a decision to achieving organizational goals, and it is assessed and 
measured using subjective and objective analysis methods (Ge et al., 
2021). The subjective analysis method primarily relies on survey scales 
to collect team members’ subjective perceptions of decision quality, 
which are usually tailored according to the research question. Jana et al. 
(2017) proposed using interval values in the survey scales to represent 
the subjective uncertainty of decision quality. Dong (2011) designed a 
decision quality scale from a business perspective, focusing on how the 
group’s daily performance and future growth potential affect decision 
quality. The objective analysis method is more commonly applied in 
behavioral simulation studies. Researchers typically design cases with a 
clear optimal outcome, assessing decision quality by comparing the gap 
between participants’ choices and this optimal result. These approaches 
are crucial for developing a more systematic understanding of group 
decision-making processes and their outcomes (Arvai and Froschauer, 
2010). In addition, the studies by Mesmer-Magnus and Dechurch (2009) 
and Reimer et al. (2010) explored the impact of information sharing on 
decision quality through experimental methods, demonstrating the 
effectiveness of objective analysis methods.

Decision efficiency refers to the efficiency with which various 
factors—such as decision-makers, decision systems, and the operating 
environment—coordinate and cooperate according to certain rules to 
complete a specific task in a particular application context (Ming and 
Huchang, 2024). Zhang et al. (2018) proposed, from the perspective 
of group decision-making consensus, that consensus efficiency is 
derived through five comparative criteria: the adjusted number of 
decision-makers, the adjusted number of alternatives, the adjusted 
number of preference values, the distance between original preference 
information and adjusted preference information (adjustment cost), 
and the number of negotiation rounds required to reach consensus.

Decision participant satisfaction refers to the extent to which team 
members experience positive and enjoyable feelings during the 
decision-making process, making them willing to work in the same 
team again. Researchers have consistently emphasized the necessity of 
focusing on lower-level analyses to consider the satisfaction of 
individual team members. The studies by Crijns et al. (2023) and 
Torre-Ruiz et  al. (2014) focused on the formation of individual 
satisfaction during team decision-making, with results indicating that 
communication within the team and the decision-making process 
significantly impact individual satisfaction. Cai et al. (2024) 
determined the decision maker’s satisfaction with the attributes in 
different alternatives by organising large groups of people to provide 
opinions in the form of linguistic variables and ranking the linguistic 
opinions by optimising the model weights.
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Decision acceptability refers to the extent to which the decision 
outcome is accepted by both internal and external stakeholders. The 
assessment of decision acceptability often employs subjective analysis, 
which involves calculating acceptance scores or external feedback. 
Erickson et  al. (2014) and Mee and Young (2018) developed and 
modified the Team Function Scale (TFS), refining its content through 
in-depth interviews, content validity assessments, and internal 
consistency reliability tests to more accurately capture and evaluate 
overall team functioning during the decision-making process. Building 
on this foundation, Sun and Xin (2017) proposed the “Process-Outcome 
Conceptual Model” for group decision evaluation, assessing real group 
decisions from four dimensions: information processing, interpersonal 
interaction, objective task outcomes, and subjective emotional outcomes.

Current research has made progress in the multidimensional 
analysis of group decision-making performance; however, there is a lack 
of clear definitions and measurement methods for the quantitative 
assessment of each performance dimension, and a unified standard to 
weigh the proportion of subjective and objective survey results is missing 
(Parayitam et al., 2017). Moreover, there is a significant deficiency in 
measuring interdisciplinary group decision consensus in existing studies. 
The formation of consensus facilitates effective information integration 
and knowledge sharing, reduces conflicts and misunderstandings in the 
decision-making process, and is crucial for ensuring decision efficiency 
and quality (Chae and Lee, 2013). It is also key to fostering effective 
communication and collaboration among decision-makers from 
different professional backgrounds. The absence of related research 
prevents the revelation of how disciplinary knowledge differences affect 
the degree of consensus through behavioral analysis, necessitating 
cognitive research tools for further exploration.

2.2 Application of attention allocation 
indicators in group decision-making

The application of eye-tracking technology provides a new 
perspective for interdisciplinary group decision-making research. By 
quantitatively measuring various attention allocation indicators, it has 
become an effective means of studying participants’ cognitive activities 
and visual focus. In the process of visual information processing, fixation 
behavior manifests as a relative state of stillness of the eyes, reflecting the 
subjects’ reception and processing of information. Compared to other 
cognitive measurement tools, the non-invasive, real-time, and high 
spatial resolution characteristics of eye-tracking technology make it an 
ideal tool for studying visual attention allocation (Li, 2018). Research by 
Chae and Lee (2013) demonstrated that gaze tracking is an efficient 
method for collecting individual cognitive states during decision-
making. Via et al. (2018) explored the impact of responsibility types and 
causal chains on decision quality using eye-tracking technology, noting 
that the primary indicators obtained from eye-tracking devices are 
fixation duration and frequency. By measuring attention allocation 
indicators, researchers can reveal decision-making strategies and gain 
insights into underlying cognitive mechanisms (Zheng et al., 2024).

2.2.1 Group average fixation duration ratio
The group average fixation duration ratio, also known as “fixation 

point duration,” describes the length of time an individual visually fixates 
on a specific Area of Interest (AOI) (Diao et al., 2017). In the context of 
group decision-making in engineering, AOIs are multidisciplinary 
technical focal points, such as key semantics in engineering data charts 

or design proposals. A longer fixation time implies that the brain is 
engaging in deeper information processing for that area, which may 
indicate that the area is more attractive to the individual, or that the 
individual finds it difficult to extract information from the presented 
content (Amit et al., 2016). Eye-tracking devices can capture the fixation 
durations of all decision team members on each AOI.

2.2.2 Group average fixation count
Group average fixation count refers to the number of fixations 

within an AOI, which reflects an individual’s understanding and 
attention to the presented information (Laoura and Athanassios, 
2023). In the context of group decision-making in engineering, the 
group average fixation count is also an indicator of the importance of 
an AOI (technical focus). Eye-tracking devices can capture the fixation 
counts of all decision team members on each AOI, and the average of 
these fixation counts for a given AOI represents the group average 
fixation count. Fixation duration and count have similarities in 
explaining information processing; however, existing studies have 
overlooked the dynamics of group interactions and collective attention 
patterns, thus failing to explain how group average fixation duration 
ratio and group average fixation count jointly affect the group 
decision-making process (Matthew and Roger, 2023).

2.2.3 Group fixation heatmap overlay distribution
Fixation heatmaps visually illustrate the differences in team 

members’ attention to various AOIs (technical focal points) through 
variations in color intensity. Yan et al. (2018) pointed out in related 
studies that meaningful results can be obtained when these attention 
differences are linked to behavioral outcomes, such as learning or 
decision-making performance. In the context of group decision-
making in engineering, eye-tracking devices can capture the fixation 
heatmaps of all team members during the decision-making process.

2.2.4 Group fixation trajectory consistency
According to eye movement trajectory analysis theory, eye 

movement is a dynamic process guided by internal cognitive models, 
mapping the sequence of visual stimuli processing in the brain (Huang 
et al., 2020). Currently, researchers use various quantitative analysis 
methods to study eye movement trajectories, including string-based 
analysis, probabilistic models, and geometric vector methods. The 
main steps include preprocessing fixation data, defining and coding 
areas of interest, forming eye movement trajectory sequences, and 
calculating similarity scores to compare the similarity of two eye 
movement trajectories, where the similarity score reflects similarity or 
difference in cognitive processes (Tjon et al., 2023; Zachary et al., 
2022). Although fixation trajectory consistency provides a new 
perspective for understanding cognitive synchronization among team 
members, existing literature still lacks in-depth exploration of how 
group fixation behavior interacts with decision-making performance.

While the attention allocation indicators offer a new perspective 
for understanding cognitive synchronization among team members, 
there is a dearth of in-depth exploration in the literature regarding how 
group gaze behaviors interact with decision-making performance, and 
the quantitative relationships and mechanisms of influence between 
these indicators and decision performance remain unclear (Zachary 
et al., 2022). Researchers have begun to explore how these indicators 
reflect individual decision strategies and cognitive mechanisms, but 
there is a research gap concerning their collective impact on group 
decision-making processes and the specific pathways through which 
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they affect group decision performance. This is partly due to 
technological and cost limitations of eye-tracking equipment, which 
complicate data collection and analysis at the group level. Additionally, 
methods for analyzing group dynamics and collective attention 
patterns are immature, necessitating exploratory work at the group 
level to understand the mechanisms of eye-tracking indicators in group 
decision-making processes.

2.3 Summary

Existing research on interdisciplinary group decision-making in 
engineering product design, group decision-making performance 
theories have proposed relevant measurement dimensions. However, 
these have primarily focused on the behavioral performance of 
decision-makers, neglecting the establishment and quantitative 
analysis of cognitive structures at individual and group levels, which 
are essential for explaining the mechanisms by which various factors 
influence group decisions. Measurement methods often rely on 
subjective scales to assess decision-makers’ behavioral performance, 
whereas eye-tracking technology offers a new perspective and 
method for quantifying decision-makers’ cognitive behaviors. 
Despite this, previous studies have not sufficiently explained or 
quantitatively analyzed how eye-tracking indicators relate to multiple 
dimensions of group decision-making performance, including 
quality, efficiency, participant satisfaction, and acceptability, and how 
these indicators impact the decision-making process and outcomes. 
Building on a systematic review of relevant literature, this paper 
employs eye-tracking experimental design and attention allocation 
indicators to explore the attention allocation mechanisms of decision-
makers regarding technical foci and their impact on group decision-
making performance. A quantitative model is constructed using 
Partial Least Squares Structural Equation Modeling (PLS-SEM) to 
reveal the mechanisms by which visual attention allocation affects 
group decision-making performance. This study delves into the 
attention allocation mechanisms for technical foci and the factors 
influencing group decision-making performance in interdisciplinary 
contexts, filling gaps in previous research and providing new 
theoretical support and empirical evidence for future research 
and practice.

3 Experimental process

Building on the literature review, this study aims to conduct 
empirical research on group-level eye-tracking cognitive 
measurement experiments to explore the specific link between 
group-level attention allocation and group decision-making 
performance. The experiment consists of two phases: the individual 
decision-making phase with a single disciplinary background and the 
group decision-making phase with a multidisciplinary background. 
Upon arriving at the laboratory, each group of participants first 
signed an informed consent form and then completed an anonymous 
basic information questionnaire. The basic information questionnaire 
contains 10 questions aimed at collecting demographic data such as 
participants’ age and gender, as well as their academic background 
and engineering project experience. Following this, participants 
proceeded to the eye-tracking signal measurement stage. The 
experimental process flowchart is shown in Figure  1. It should 
be noted that, due to the individual decision-making stage and group 
decision-making stage for the same subjects in the same decision-
making environment for the same decision-making content, and the 
two decision-making stages are separated by a short time, does not 
have the potential learning effect.

This experiment employs a multi-attribute decision-making 
task (MADM), considering the ranking or selection of limited 
alternatives based on multiple attributes. For interdisciplinary 
decision-making groups, this study introduces a group discussion 
phase based on the MADM task, proposing an interdisciplinary 
group discussion MADM task paradigm. Participants are required 
to use their disciplinary knowledge to discuss various attributes 
and selection criteria of the alternatives with participants from 
other disciplines. According to the Concept-Knowledge theory 
(C-K theory), interdisciplinary technical foci within the decision 
task can construct the cognitive structures in participants’ minds. 
The think-aloud protocol is employed to effectively capture 
fragments of participants’ thoughts, and thus participants are 
required to verbally express themselves using their disciplinary 
technical foci (disciplinary terms) during the group discussion 
phase (Li, 2018). Upon completion of all design phases, the 
interdisciplinary group discussion MADM task will conclude 
(showed in Figure 2).

FIGURE 1

Flowchart of eye-tracking experiment for interdisciplinary decision-making in engineering product Design.
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The interdisciplinary group discussion MADM task proposed in 
this study mainly collects two types of data: first, the alternative 
evaluation matrix filled out by participants during the MADM task, 
with numerical values reflecting the participants’ decision outcomes. 
Second, participants’ attention allocation results regarding the 
technical focus during the MADM task, which, together with the 
decision outcomes, form a “cognitive level-decision performance” 
structure. This structure will serve as an explicit representation of the 
participants’ cognitive structure toward the design task objects in the 
interdisciplinary group discussion MADM task, revealing the 
influence direction of interdisciplinary technical foci on decision 
cognition and decision performance.

4 Case selection, participant 
recruitment, and system development

4.1 Selection of experimental paradigm

The design of cruise ship cabins, as a typical scenario in 
interdisciplinary engineering product design, is a classic multi-
attribute decision-making (MADM) task, completed through 
collaborative decision-making by scholars from structural 
engineering, design engineering, and environmental engineering. 
In the multidisciplinary design of cruise ship cabins, participants 
with different disciplinary backgrounds emphasize different 
attributes of the design object. According to the survey results, 
participants with a structural engineering background tend to focus 
more on the functionality and practicality of the design, such as the 
arrangement of storage space and the layout of lighting and 

windows. Participants with an environmental engineering 
background are more inclined to consider the comfort of 
passengers, such as temperature and air quality control and noise 
isolation. Participants with an aesthetics background place greater 
emphasis on aesthetics and brand image. For different types of 
cruise ships, such as family-oriented, luxury, or themed types, 
cabin design should match the specific type and enhance its 
aesthetics by selecting appropriate colors, materials, and 
decorations. This type of task, which involves making an optimal 
choice by considering multiple factors, is a multi-attribute decision-
making (MADM) task.

In terms of simulating multidisciplinary knowledge integration, 
the experiment involves a simulated real-world cruise ship cabin 
design task, encouraging participants with different disciplinary 
backgrounds to integrate their specialized knowledge to collaboratively 
solve design problems. This simulation mirrors multidisciplinary 
collaboration in engineering practice, providing a realistic research 
environment. The knowledge used in experimental design comes from 
the textbooks “Ship Aesthetics and Cabin Design” (Yang and Wang, 
2021) and “Research and Design of Ship Cabin Environmental 
Engineering” (Yang, 2020). The decision-making materials were 
selected based on the following considerations for typicality:

 1 The integrity of the knowledge system: The textbook 
comprehensively introduces cabin design, covering five major 
aspects: cabin internal structure and layout, color environment, 
lighting environment, cabin insulation design (air 
environment), and noise environment, ensuring the 
comprehensiveness and systematic nature of the experimental 
materials at the knowledge level.

FIGURE 2

Multidisciplinary group discussion MADM task paradigm flowchart.
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 2 The integration of multidisciplinary knowledge: The book 
integrates theories and practices from aesthetics, ergonomics, 
environmental science, and other disciplines, which is highly 
aligned with the multidisciplinary group decision-making 
theme of this study.

 3 The richness of practical cases: Through specific case analyses, 
it illustrates the application of ship aesthetics in actual ship 
modeling and cabin design, providing rich context simulations 
and discussion materials for the experiment.

 4 The advancement of design methods: The textbooks were 
published in 2020 and 2021, and the design concepts and 
methods reflect the latest developments in ship design, helping 
to stimulate in-depth discussions among participants.

4.2 Selection of engineering concept 
displays

Regarding the selection of technical focus, the standard 
experimental scheme provided by “Research and Design of Ship Cabin 
Environmental Engineering” (Yang, 2020) serves as the input data. 
After preprocessing steps including text cleaning, text classification 
(categorizing texts based on disciplinary knowledge from the standard 
scheme), tokenization, and stopword filtering, the processed text data 
is input into a named entity recognition algorithm to extract technical 
focus entities. To determine the disciplinary classification of these 
technical focus terms, a corresponding interdisciplinary knowledge 
network is constructed with technical focus entities as nodes and the 
frequency of their occurrence in the text data as edges. Through this 
approach, nodes from the same discipline naturally cluster, allowing 
classification based on disciplinary affiliation, which is recorded in 
Table  1. The single-discipline technical focus categories include 
Structural Engineering (SE), Aesthetic Design (AD), and 
Environmental Engineering (EE). Furthermore, by employing 
complex network analysis to calculate the centrality of nodes, entities 
with higher complexity, referred to as High Centrality Network terms 

(HCN), can be  identified. If these entities appear in multiple 
disciplinary clusters, they are classified as interdisciplinary technical 
focus and recorded in Table  1. It is important to note that the 
interdisciplinary technical focus network serves solely as a 
classification tool, and only the extraction and classification results of 
technical focus are presented here.

4.3 Selection of decision-making materials

According to the definition of the MADM task for cruise ship 
cabin design, the experimental case must meet the following criteria:

 1 The case must involve a problem of selecting or comparing 
multiple alternatives;

 2 Each alternative must contain multiple different attributes for 
decision-makers to compare;

 3 To ensure the reasonableness and accuracy of group scoring, 
the number of attributes for each alternative must be consistent 
with the number of decision-makers.

Based on these requirements, three design alternatives were 
developed using the “VIP Cabin Design Example of a Ro-Ro 
Passenger Ship” provided by “Research and Design of Ship Cabin 
Environmental Engineering” (Yang, 2020; as shown in Table 2), 
for evaluation and selection by a multidisciplinary group decision-
making team. This case focuses on cabin design and includes five 
design aspects: spatial planning and layout, color environment, 
light environment, air environment, and noise environment. 
Considering that the MADM task for cruise ship cabin design only 
involves knowledge from three disciplinary fields—structural 
engineering, aesthetics, and environmental science—the attributes 
of the alternatives for the multidisciplinary group decision-
making in this experiment were modified to three: “cabin internal 
structure and layout,” “color and light environment,” and “cabin 
insulation design and noise environment.”

TABLE 1 Engineering technical focus and their respective disciplines in multidisciplinary alternatives.

HCN Technical focus 
(HCN)

SE Technical focus (SE) AD Technical focus (AD) EE Technical focus 
(EE)

HCN_1 Cabin internal structure and 

layout

SE_1 Semi-partition form AD_1 Light coffee-colored carpet EE_1 Rectangular ceiling light

HCN_2 Color and light environment SE_2 Lower part of partition AD_2 Dark blue carpet EE_2 Molecular ball-shaped 

colored light

HCN_3 Cabin insulation design and 

noise environment

SE_3 Steel material AD_3 Light gray sofa EE_3 Natural and soft yellow 

light

HCN_4 Double-layer marine acrylic 

glass with blinds

SE_4 Half-height wing wall (rigid 

partition)

AD_4 Dark blue sofa EE_4 Bright white light

HCN_5 Wool SE_5 Wood material AD_5 Single-layer steel bulkhead 

combined with magnesium 

oxide fireproof board

EE_5 Color temperature, 

illuminance

HCN_6 Synthetic fiber SE_6 Storage rooms, lavatories 

arranged around bedroom

AD_6 Single-layer steel bulkhead 

combined with rock wool board

EE_6 Insulation

HCN_7 Insulation material SE_7 Storage rooms, lavatories 

arranged in noise isolation area

AD_7 Single-layer steel bulkhead 

combined with glass
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In terms of decision consensus and conflict design, the MADM 
task for cruise ship cabin design requires a multidisciplinary team 
with backgrounds in structural engineering, aesthetics, and 
environmental science to design the ship cabin. The decision-making 
task involves the team of three evaluating the feasibility of the three 
alternative design proposals shown in Table 2 (denoted as Options A, 
B, and C) and providing a final team decision. Since the number of 
alternatives exceeds the number of final selections, it meets the 
requirement for reaching group decision consensus, defined as a 
“state of mutual agreement among group members.” Table 2 compares 
three design options (Option A, B, and C) for ship cabin designs, 
focusing on differences in internal structure/layout, color/light 
environment, and thermal insulation/noise control. Option A 
employs steel partitioning at the lower section with double-layer 
acrylic glass at the upper section, light-colored carpets, and soft 
yellow lighting. Option B uses semi-high rigid partitions (marine 
half-height wing walls) with the same flooring materials and lighting 
design as Option A. In contrast, Option C adopts wooden or dark-
blue-themed partitions, dark-colored carpets, and high-brightness 
white lighting. Regarding thermal insulation and noise control, 
Option A utilizes magnesium oxide fireproof boards, Option B 
employs rock wool panels, while Option C uses glass for insulation 
purposes. Additionally, the arrangement of storage spaces in Option 
C differs from the other two designs.

To ensure that decision-makers from different disciplines 
experience cognitive conflict and reach consensus based on the 
options, all three design proposals are designed with multidisciplinary 
content in the three attribute dimensions. For example, in the “cabin 
internal structure and layout” attribute dimension, in terms of choice 
conflict, “partition material must be the same as the bulkhead” is 
knowledge belonging to structural engineering, leading structural 
engineering decision-makers to prefer Option B or Option C. In 
terms of cognitive conflict, “half-height wing wall” is a specialized 
technical focus of structural engineering, which may create cognitive 
barriers for decision-makers in aesthetics and environmental 

engineering, leading to cognitive conflict. In this dimension, Option 
C is the closest to the standard proposal (Table 3).

4.4 Recruitment criteria for experimental 
participants

Considering the ability to complete engineering design tasks and 
the corresponding knowledge reserve of engineering experience, the 
recruited participants must meet the following criteria:

The experiment recruited 24 groups of participants from the 
faculty and students at the School of Mechanical Engineering at 
Shanghai Jiao Tong University and from a shipbuilding company. A 
total of 24 qualified participant groups (72 individuals) were 
recruited. The participants had an average age of 25.17 years, with a 
standard deviation of 4.61 years; among them, 47 were male and 25 
were female. There were 40 undergraduate students, 24 masters, and 
8 doctors. All 72 participants had either participated in engineering 
internships or were currently employed within the past year.

4.5 Software and hardware for the 
experiment

The experiment was conducted in an independent, quiet laboratory 
environment. The experimental system ran on a computer with 4GB of 
memory and a Core i5 processor, and the experimental content was 
displayed to participants via a 1920 × 1,080 pixel, 60 Hz refresh rate 
monitor (display area width 507 mm, height 283 mm). Using the built-in 
experiment design functionality of Experiment Center software, the 
three alternative group decision design schemes were imported in the 
form of images. Participants only needed to press the spacebar to 
sequentially browse the full-screen presentation of the design scheme on 
the computer screen. Once the experiment started, participants followed 
the instructions from the experimental system and completed the 

TABLE 2 Proposed design alternatives for ship cabins.

Decision content Option A Option B Option C

Cabin internal structure 

and layout

The bedroom and office area adopt a semi-

partition format. The lower part of the 

partition uses steel materials. The upper part 

is a double-layer marine acrylic glass with 

blinds.

The bedroom and office area adopt a semi-

partition format. The partition is in the form 

of a marine half-height wing wall (rigid 

partition). The upper part is a double-layer 

marine acrylic glass with blinds.

The bedroom and office area adopt a semi-

partition format. The lower part of the 

partition uses wood materials consistent with 

the bulkhead. The upper part is a double-

layer marine acrylic glass with blinds.

Color and light 

environment

The office area has a light coffee-colored glass 

wool carpet and a light gray sofa. The office 

area is equipped with a rectangular ceiling 

light (40 W). The bedroom bedside lamp uses 

soft yellow natural light (color temperature 

2,800 K, illuminance 100 lx).

The office area has a light coffee-colored pure 

wool carpet and a light gray sofa. The office 

area is equipped with a rectangular ceiling 

light (40 W). The bedroom bedside lamp uses 

soft yellow natural light (color temperature 

2,800 K, illuminance 100 lx).

The office area has a dark blue glass wool 

carpet and a dark blue sofa. The office area is 

equipped with a molecular ball-shaped 

colored light (15 W). The bedroom bedside 

lamp uses bright white light (color 

temperature 3,500 K, illuminance 200 lx).

Cabin insulation design 

and noise environment

The cabin bulkhead uses a combination of 

single-layer steel bulkhead and magnesium 

oxide fireproof board as insulation material. 

Insulation thickness is 50 mm. Storage 

rooms, lavatories, etc., are arranged around 

the bedroom.

The cabin bulkhead uses a combination of 

single-layer steel bulkhead and rock wool 

board as insulation material. Insulation 

thickness is 25 mm. Storage rooms, lavatories, 

etc., are arranged around the cabin ceiling as 

noise isolation areas.

The cabin bulkhead uses a combination of 

single-layer steel bulkhead and glass as 

insulation material. Insulation thickness is 

50 mm. Storage rooms, lavatories, etc., are 

arranged around the cabin ceiling as noise 

isolation areas.
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corresponding operations using the keyboard. Eye movement data were 
recorded using an Eye-Logic eye tracker fixed below the screen, with a 
sampling frequency of 60 Hz. To collect verbal feedback from 
participants, the entire experiment process for all participants was 
recorded using screen recording software with audio capabilities. The 
experimental setup, including participant conditions and the geometric 
relationships of the equipment, is shown in Figure 3.

5 Experimental data acquisition and 
statistic results

5.1 Raw data collection

The experiment collected the following three types of raw data:

 1 Basic participant information, such as gender, age, and self-
reported experience, through a basic information questionnaire.

 2 Decision-making processes and time consumption during both 
individual decision-making and group decision-making phases 
were recorded using EV screen recording while running the 
decision-making experiment program via Experiment 
Center software.

 3 Eye movement fixation data for participants performing 
MADM tasks during both individual decision-making and 
group decision-making phases were collected using the 
Eye-Logic eye tracker and Experiment Center software’s data 
synchronization system.

5.2 Quantitative representation of research 
factors

5.2.1 Group decision-making performance
Commonly used metrics for evaluating group decision-making 

performance include decision quality, decision efficiency, participant 
satisfaction, and emotional acceptability. In the engineering field, 
participants with different disciplinary backgrounds may have varying 
understandings and preferences for the same issue. This requires that, 
when evaluating group decision-making performance, not only 

should the overall outcome be  considered, but the judgments of 
participants from different disciplinary backgrounds on each decision 
attribute must also be thoroughly understood to quantify the degree 
of consensus among participants with different backgrounds. 
Therefore, in calculating the multidisciplinary group decision-making 
performance in engineering, this study adds the key variable of 
consensus degree in addition to traditional metrics such as decision 
quality and efficiency, to more accurately assess and optimize the 
group decision-making process.

5.2.1.1 Decision quality
In this experiment, the decision scheme design was adapted from 

a standard design example—the luxury cruise VIP cabin design 
example—providing a clear and quantifiable optimal outcome 
standard, which meets the conditions for using objective analysis. 
However, due to the nature of group decision-making, which requires 
all members to reach consensus, it cannot be guaranteed that every 
decision-maker will have the same level of recognition regarding the 
decision outcome’s quality. Therefore, this study uses an adapted 
decision quality measurement scale, combining subjective and 
objective analysis methods to provide a more comprehensive 
assessment of decision quality. The weights of the two methods are 
determined by data variance, as described in section 4.3.2.

Assuming there are p decision alternatives with q decision 
dimensions, for the k th−  decision-maker ( )1,2, ,k m= … , the decision 
results are recorded using a multi-attribute decision matrix. The 
individual decision matrix is ( ) ( )( )kk

ij
p q

D d
×

= . In the multidisciplinary 

group decision experiment, the participants’ differences lie only in their 
disciplinary backgrounds, so the weights of individual decision matrices 
within the same group are considered identical. Therefore, the group 
decision matrix can be denoted as Equation 1:

 

( ) ( )

1

1 mG G
ij ij

k
D d

m =
= ∑

 
(1)

The group decision matrix for the standard scheme used in the 
experiment is denoted as ( ),standard i j p qD d

×
= . Let the decision-

making quality be 1y , then 1y  can be calculated as Equation 2:

TABLE 3 Recruitment criteria for experimental participants.

Criteria Ship structure/Architecture Aesthetics/Industrial design Environmental engineering

Academic 

background

Possessing or soon to obtain a bachelor’s, master’s, 

or doctoral degree in Engineering Mechanics/Ship 

and Ocean Engineering/Architecture, having 

systematically studied courses such as Theoretical 

Mechanics, Material Mechanics, Structural 

Mechanics (or Structural Dynamics, Structural 

Design Principles).

Possessing or soon to obtain a bachelor’s, master’s, 

or doctoral degree in Industrial Design/

Environmental Design/Art Design, having 

systematically studied courses such as Interior 

Environment Design, Design Drawing and 

Perspective.

Possessing or soon to obtain a bachelor’s, master’s, 

or doctoral degree in Environmental Science and 

Engineering/Environmental Science/

Environmental Engineering, having systematically 

studied courses such as Environmental 

Engineering Principles, Environmental 

Monitoring (Technology).

Project 

experience

Internship and project experience in Ship Structure/Industrial Design/Environmental Engineering for at least 3 months.

Vision Normal unaided or corrected vision in both eyes, no strabismus, and no history of corrective eye surgery.

Other  ① No history of mental illness;

 ② Adequate reading comprehension and verbal communication skills for survey questionnaires and technical documents;

 ③ Ability to perform basic computer operations according to monitor prompts.
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5.2.1.2 Consensus degree
In group decision-making, consensus is typically quantified based 

on the consistency of decision matrices. As mentioned previously, let 
there be m decision-makers in the experiment. For the k -th decision-
maker ( )1,2, ,k m= … , let the individual decision matrix be  ( )k

ijD , and 

the group decision matrix be: ( ) ( )

1

1 mG k
ij ij

k
D d

m =
= ∑ , The group decision 

matrix is then normalized to the maximum value to obtain the collective 
decision matrix ( )G

ijD . Let the consensus degree { }1 2, , , mCD e e e…  
be denoted as 2y , then 2y  can be calculated as Equation 3:
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2

1 1
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5.2.1.3 Decision efficiency
Based on the group decision consensus theory proposed by Zhang 

et al. (2018), decision efficiency is measured using indicators such as 
decision time, individual preference adjustment distance, group 
preference adjustment distance, and the number of discussion rounds 
required to reach consensus. In this experiment, the number of team 
members and the number of alternatives is fixed, while differences 
among experimental groups are in decision time, group preference 

adjustment distance, and number of discussion rounds. Therefore, three 
decision efficiency comparison standards are proposed:

 1 Decision time (T): The time required for group discussion, 
measured in seconds.

 2 Group preference adjustment distance (D): The distance between 
the decision results before and after group discussion. In group 
decision-making, Manhattan distance is widely used to 
measure the distance between preferences.

 3 Number of group decision discussion rounds (R): In the 
experiment, participants take turns speaking in the order of 
“structural engineer—design engineer—environmental 
engineer.” Once all three have spoken, one discussion round is 
completed, and the round count is incremented by 1.

According to the definition of Equation 3 and the variable symbols, 
let the decision efficiency be  3y . Then 3y  can be calculated as Equation 4:

 

( ) ( )
1 1

3
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/
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(4)

5.2.1.4 Group decision participant satisfaction
Group decision participant satisfaction is primarily measured and 

analyzed using subjective scales. In this study, an adapted decision 
quality measurement scale was used to collect individual participants’ 
subjective ratings of their satisfaction with the experimental process. 
The scores were averaged and analyzed statistically, with the resulting 
group decision participant satisfaction denoted as the variable 4y .

5.2.1.5 Group decision acceptability
Like group decision participant satisfaction, decision acceptability 

is usually assessed using subjective analysis. This involves calculating 

FIGURE 3

Participant experimental setup and equipment layout diagram.
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the acceptability scores based on team members’ subjective 
perceptions of decision acceptability or external feedback. The scores 
are then averaged and statistically analyzed, with the resulting group 
decision acceptability denoted as the variable 5y .

5.2.2 Attention distribution on technical focuses
Considering the operability of the experiment and the accuracy 

of the results, this study selects participants who are native speakers 
of Chinese and specifically uses Chinese design materials as display 
materials for eye-tracking experiments. This choice is primarily based 
on several considerations: firstly, the widespread availability and ease 
of access to Chinese materials make it more feasible to construct 
experimental stimuli and control experimental conditions. Secondly, 
considering the readability of the materials, using the participants’ 
native language—Chinese—ensures that language comprehension 
barriers are minimized during the experiment, thereby more 
accurately capturing the participants’ visual attention allocation and 
cognitive processing.

In terms of metric acquisition, the Eye-logic eye tracker was 
utilized to collect data on participants’ fixation duration, fixation 
position coordinates, and fixation count. These data were automatically 
processed and aggregated using BeGaze software, enabling direct 
extraction of Attention Allocation Indicators through the interface. 
The software calculated the Group average fixation duration ratio and 
Group average fixation count using arithmetic mean methods. 
Additionally, the Group fixation heatmap overlay distribution was 
generated through Boolean union operations. By vectorizing the 
coordinates of each AOI to form eye movement trajectories (Figure 4 
shows some of the gaze trajectories for the ship cabin design task, 
noted as the gaze trajectory vectors { }SE _1,SE _ 2,SE _ 3,HCN _ 4

   

), 
the Group fixation trajectory consistency was determined by 
computing the cosine similarity of these trajectories.

In this study, to reflect the actual decision-making habits of 
engineers, we define the drawing area (DWG) as an area of interest 
(AOI). However, compared to textual materials, the drawing area 
focuses more on specific visual elements and has limitations in 
representing interdisciplinarity. Therefore, in studying 
interdisciplinary group decision-making processes, the size of the 
DWG AOI is intentionally set smaller to highlight technical foci 
presented in textual information. This design aims to ensure that the 
experimental materials can more comprehensively capture the 
allocation of visual attention in interdisciplinary group decision-
making, providing more accurate data support for analyzing the 
attention allocation mechanisms of decision-makers toward technical 
foci and their impact on group decision-making performance.

Technical focus information encompasses areas of interest with 
high network centrality-specific terms (HCN), engineering terminology 
in the field of ship structure engineering (SE), aesthetics design (AD), 

and environmental engineering (EE). By statistically analyzing the 
eye-tracking data on the gaze time and gaze count on the aforementioned 
four AOIs and the DWG and calculating the ratio of gaze time and gaze 
count on each AOI, we  quantify the participants’ visual attention 
allocation on various content in multi-attribute decision-making tasks.

5.3 Experimental statistical analysis of 
results

5.3.1 Statistical analysis of visual attention 
distribution

Figure 5 shows an example of the division of Areas of Interest 
(AOIs) in the ship cabin decision materials. High network centrality-
specific terms (HCN), engineering terms from the ship structure field 
(SE), engineering terms from the design engineering field (AD), 
engineering terms from the environmental engineering field (EE), and 
blueprints (DWG) are marked with different colors, while unmarked 
areas are considered unrelated (others).

The colored areas in Figure 6 represent the regions of primary 
focus for participants during the decision-making phase, with the red 
areas indicating regions where participants allocated more of their 
visual attention.

The visual attention distribution results for each Area of Interest 
(technical focus) in the decision materials are shown in Table  4. 
Participants’ visual attention was primarily distributed across the 
HCN, SE, AD, and EE areas, indicating that most of the 72 participants 
were able to focus on the information-dense parts of the decision 
materials. Additionally, the coefficient of variation for visual attention 
allocated to the DWG area was relatively high, suggesting significant 
variability in participants’ ability to discern image information, 
indicating considerable differences among the 72 participants.

5.3.2 Group decision-making task performance 
statistics

In this experiment, the evaluation of group decision-making 
performance was characterized by a weighted combination of 
subjective and objective analyses. In the subjective scale survey, based 
on the collected questionnaire data, the mean scores for group 
decision quality, group decision consensus degree, group decision 
efficiency, outcome satisfaction, and acceptability were 4.345, 4.297, 
4.525, 4.567, and 4.636, respectively. These mean values indicate that 
participants generally had a positive attitude toward the group 
decision-making process and outcomes. The variances for these 
metrics were 0.418, 0.399, 0.461, 0.470, and 0.426, respectively. These 
relatively small variances suggest a certain level of consistency among 
participants’ evaluations, although some individual differences 
were present.

FIGURE 4

Eye-tracking trajectories and corresponding AOIs for cabin design tasks (partial).
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In terms of objective analysis, group decision-making 
performance was evaluated by observing and recording participants’ 
behavior during the ship cabin design task. According to variable 
definitions, objective data for group decision outcome satisfaction and 
acceptability were not collected. Notably, the variance for group 
decision efficiency was relatively high, at 1.361. This is because, when 

calculating efficiency, participants’ behaviors were standardized to a 
scoring range of Feng and Chen (2022) and Jana et al. (2017). The 
occurrence of extreme values may have increased the variance, 
reflecting significant differences in group decision efficiency among 
participants, which could be  related to individual work habits, 
decision-making styles, and team collaboration efficiency.

FIGURE 5

An example of areas of interest in the decision materials.

FIGURE 6

An example of fixation duration heatmap on learning materials.
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To more accurately evaluate group decision-making performance, a 
variance-weighted method was used to process the results of subjective 
and objective analyses, with the weight being inversely proportional to 
the variance. Notations can be checked in Table 5. For the independent 
variable iX , let its objective analysis result be  i,objX  and its subjective 
analysis result be  i,subX . The weights are denoted as i,objω  and i,subω , 
respectively. Then ωi and Xi can be calculated as Equations 5,6:

 

( )
( ) ( )

i,obj i,sub 2 2
i,subi,obj

1 1, ,
std Xstd X

 
 ω ω =
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This method tends to assign higher weights to variables with lower 
variability, ensuring that the final evaluation results comprehensively 
reflect the actual situation of the group decision-making process and 
outcomes. The results after weighted analysis are shown in Table 6. By 
using this method, we can more accurately identify the key factors 
affecting group decision-making performance, providing a basis for 
subsequent interventions and improvements.

5.4 Structural equation model results

To explore the relationship between group decision-making 
performance (five dependent variables: group decision quality Y1, 
decision consensus degree Y2, group decision efficiency Y3, group 
decision outcome satisfaction Y4, and decision acceptability Y5) and 
the attention distribution on technical focus learning materials (four 
independent variables: group average fixation duration ratio on 
HCN, SE, AD, EE, and DWG areas X1, group average fixation count 
X2, group main trajectory similarity X3, and group fixation trajectory 
X4), as well as their causal relationships, a preliminary analysis was 
conducted to examine the correlations among all independent and 
dependent variables (Table 7).

By constructing a correlation coefficient matrix for the 
independent variables and a correlation coefficient matrix for the 
dependent variables, it was found that there were certain correlations 
among the attention distribution on technical focus learning materials 
X1 to X4. In addition, there were also correlations among the five 
dimensions of group decision-making performance Y1 to Y5, as shown 

in Table 8. This indicates that these dimensions are interconnected to 
some extent. The presence of such correlations can affect the stability 
and interpretability of subsequent regression models.

To more accurately explore the relationships among the variables, 
Partial Least Squares (PLS) was used to construct a structural equation 
model. PLS reveals the predictive power of independent variables on 
dependent variables and is used for estimating model parameters. It 
is suitable for cases with small sample sizes, complex models, or high 
correlations among variables. The data preparation, parameter 
estimation, and model evaluation processes were all implemented 
using SmartPLS 4.0 software.

Based on the correlations among the variables, the model assumes 
a direct linear relationship between the independent variables X1 to X4 
and the dependent variables Y1 to Y5.

After conducting significance tests on the path coefficients of the 
model, the relationships among variables were adjusted by designating 
some variables as mediators (variables that act as intermediaries 
between independent and dependent variables) to enhance the 
model’s interpretability. The adjusted model hypotheses are illustrated 
in Figure 7. Specifically, X2 is designated as a mediator, connecting the 
independent variable X1 to the dependent variable Y4, and it also has 
a direct effect on Y4. And Y1 is designated as a mediator, linking the 
independent variables X3 and X4 to other dependent variables Y3 and 
Y4, and has direct effects on Y3 and Y4. The results of the PLS-SEM 
analysis are shown in Figure 6.

The model’s R2 scores (R-square) and adjusted R2 scores (R-square 
adjusted) are shown in Table 9. R2 is used to represent the proportion 
of variance in the dependent variable explained by the independent 
variables in a regression model. A higher R2 value indicates stronger 
explanatory power of the model. In practical applications, as the 
number of independent variables in the model increases, R2 can 
artificially increase even if the added variables do not substantially 
improve the model’s explanatory power. R2 adjusted accounts for the 
addition of unnecessary independent variables, providing a more 
balanced standard for comparing models. Therefore, researchers 
typically prioritize R2 adjusted when selecting and evaluating models.

Since group average fixation count (X2) has been adjusted to be a 
mediator variable between X1 and Y4, its R2 represents the explanatory 

TABLE 4 Visual attention distribution results for each area of interest in 
the decision materials.

Area of 
interest 
(AOI)

Fixation duration 
(time) ratio

Fixation count ratio

Mean SD CV Mean SD CV

HCN 23.76% 5.27% 0.222 25.15% 4.36% 0.174

SE 30.54% 5.96% 0.195 29.66% 4.99% 0.168

EE 21.84% 3.89% 0.178 22.11% 3.24% 0.147

AD 17.41% 3.41% 0.196 18.30% 2.57% 0.140

DWG 6.47% 6.24% 0.966 4.80% 3.73% 0.778

TABLE 5 Notations of PLS-SEM.

Notation Explanation

X1 Group average gaze duration

X2 Group average gaze times

X3 (with DWG) Group gaze trajectory similarity

X4 (without DWG) Similarity of group gaze trajectories

Y1 Group decision-making Quality

Y2 Group decision-making Consensus Degree

Y3 Group decision-making efficiency

Y4 Group decision-making Satisfaction

Y5 Group decision-making Acceptability

K _ obji The objective part of variable ( )K K Xor Y=

K _ subi The subjective part of variable ( )K K Xor Y=
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power of the independent variable X1 on the variance of X2. The R2-
value is 0.750, and even after adjustment, the R2 adjusted remains at 
0.738. This indicates that the variable has high stability and explanatory 
power in the model and can effectively predict its own variance.

In the fitting of the dependent variables, group decision satisfaction 
(Y4) and group decision acceptability (Y5) have the highest R2-values, at 
0.791 and 0.792, respectively, and the R2 adjusted values also remain 
high at 0.769 and 0.782, respectively. This indicates that the model has 
strong explanatory power for these two dependent variables, effectively 
predicting group decision satisfaction and acceptability.

Next, group decision efficiency (Y3) and group decision consensus 
degree (Y2) have relatively high R2-values, at 0.758 and 0.655, 
respectively, with R2 adjusted values of 0.747 and 0.639. This suggests 
that the model can effectively explain and predict group decision 
efficiency and the degree of consensus.

Lastly, group decision quality (Y1) has a low R2-value of 0.060, with 
an adjusted R2 of −0.034, indicating that the current model has weak 
explanatory power for group decision quality. This may imply that 
other important factors affecting group decision quality have not been 
captured by the model, or that the relationship between the existing 
independent variables and group decision quality is more complex.

The model’s Variance Inflation Factor (VIF) scores are shown in 
Table 10. VIF scores are used to detect multicollinearity issues, where 
a VIF greater than 10 typically indicates the presence of 
multicollinearity. PLS-SEM reduces correlations between variables by 
constructing components that are linear combinations of the original 
variables, capturing most of the variance among them. Therefore, even 
in the presence of multicollinearity, PLS-SEM can provide stable 
estimates. In this study, all variables had VIF scores below 10, 
indicating that there is no significant multicollinearity issue among 
the variable combinations constructed in the PLS-SEM model.

The path coefficient scores of the model are shown in Table 11. Path 
coefficient analysis reveals that, for the mediator variable group average 
fixation count (X2), the influence path “group average fixation duration 
(X1) - > group average fixation count (X2) - > group decision satisfaction 
(Y4)” is significant. However, for the mediator variable group decision 
quality (Y1), only the paths “group decision quality (Y1) - > group decision 
satisfaction (Y4) - > group decision acceptability (Y5)” and “group decision 
quality (Y1) - > group decision efficiency (Y3)” is significant.

6 Experimental discussion and analysis

6.1 The effect of attention allocation on 
group decision-making performance

This study employs the Partial Least Squares Structural Equation 
Modeling (PLS-SEM) analysis method to explore the relationship 
between the visual attention allocation to technical-focused learning 
materials (four independent variables: group average fixation time 
ratio on HCN, SE, AD, EE, DWG—X1, group average fixation count—
X2, group primary trajectory similarity—X3, and group fixation 
trajectory—X4) and group decision-making performance (five 
dependent variables: group decision quality—Y1, the degree of 
decision consensus—Y2, group decision efficiency—Y3, satisfaction 
with group decision outcomes—Y4, and decision acceptability—Y5). 
Through PLS-SEM analysis, both direct and indirect relationships 
among multiple variables can be assessed, providing deeper insights 
into the factors influencing group decision-making performance.

According to the PLS-SEM regression analysis model shown in 
Figure 6, it is evident that the visual attention allocation to different 

TABLE 6 Performance of group decision-making tasks for ship cabin design.

Performance dimension Subjective analysis Objective analysis Weighted analysis

Mean SD Mean SD Mean SD

Group decision quality 4.345 0.418 4.792 0.148 4.742 0.145

Group decision consensus degree 4.567 0.470 4.962 0.071 4.953 0.072

Group decision efficiency 4.297 0.399 3.708 1.361 4.165 0.414

Group decision outcome satisfaction 4.525 0.461 – – 4.525 0.461

Group decision acceptability 4.636 0.426 – – 4.636 0.426

Bold values indicates that the data set has a higher variance, proving that the data are more dispersed.

TABLE 7 Correlation coefficient matrix for independent variables.

Variables X1 X2 X3 X4

X1 1 0.857 −0.088 −0.334

X2 0.857 1 −0.04 −0.403

X3 −0.088 −0.04 1 0.173

X4 −0.334 −0.403 0.173 1

TABLE 8 Correlation coefficient matrix for dependent variables.

Variables Y1 Y2 Y3 Y4 Y5

Y1 1 −0.09 0.446 0.449 0.294

Y2 −0.09 1 0.086 0.021 0.063

Y3 0.446 0.086 1 0.825 0.743

Y4 0.449 0.021 0.825 1 0.876

Y5 0.294 0.063 0.743 0.876 1

TABLE 9 R2 scores of PLS model.

Variables R-square R-square 
adjusted

X2: Group average gaze times 0.750 0.738

Y1: Group decision-making quality 0.060 −0.034

Y2: Group decision-making consensus degree 0.655 0.639

Y3: Group decision-making efficiency 0.758 0.747

Y4: Group decision-making satisfaction 0.791 0.769

Y5: Group decision-making acceptability 0.792 0.782
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areas of interest (technical focus) in the decision-making materials 
primarily influences interdisciplinary group decision-making 
performance through two key indicators: group average fixation time 
and group average fixation count. These indicators directly affect 
participant satisfaction and the acceptability of group decisions, while 
indirectly influencing the quality of group decisions. Specifically, 
participants allocated visual attention to the HCN, SE, AD, and EE 
regions, which are closely related to the structure and function of core 
components in engineering design. Among these, the interdisciplinary 
technical focus area (HCN) received the highest proportion of 
visual attention.

Participants in the interdisciplinary technical focus areas exhibited 
higher average fixation time and fixation count, indicating that these 
areas contained critical information for the decision-making process or 
posed certain difficulties in understanding the technical focus. This 
finding is consistent with previous research, which shows that the most 
important conceptual nodes in design semantic networks are often 
interdisciplinary technical focus (Feng and Chen, 2022). In this 

FIGURE 7

PLS model analysis results.

TABLE 10 VIF scores of PLS model.

Variables VIF

X1 1.000

X2 1.000

X3 1.000

X4 1.000

Y1 _obj 1.019

Y1_sub 1.019

Y2_obj 1.075

Y2_sub 1.075

Y3_obj 1.010

Y3_sub 1.010

Y4_sub 1.000

Y5_sub 1.000
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experiment, these technical focal points served as key information 
within the decision-making materials, capturing participants’ visual 
attention and facilitating the construction of interdisciplinary cognitive 
structures and the ability to solve interdisciplinary engineering decision 
problems. The following four conclusions were drawn:

1. Group decision-making teams exhibited high levels of attention 
in areas related to “critical decision-making engineering semantics.”

2. Groups that spent more time focusing on the “critical decision-
making engineering semantics” areas tended to demonstrate higher 
decision-making quality without external cues.

3. Although group similarity intuitively has a significant impact 
on decision performance, it is not statistically significant.

4. Participants from diverse disciplinary backgrounds often 
prioritize design terms and parameters relevant to their own fields, 
while overlooking interdisciplinary considerations. For example, 
decision-makers with expertise in structural engineering tend to 
emphasize aspects such as structural integrity and vibration dynamics. 
Those with an environmental engineering background focus on 
passenger comfort, including factors like temperature control and 
noise isolation. Similarly, decision-makers with an aesthetics 
background prioritize design elements that align with the ship type 
and brand image. However, an overemphasis on single-discipline 
perspectives can compromise decision quality or prolong discussions, 
ultimately reducing decision-making efficiency.

The path analysis results of the PLS-SEM model provide data 
support for the above conclusion 1 and conclusion 2:

1. The average group fixation duration positively influences the 
average group fixation count.

2. The average group fixation count positively impacts participant 
satisfaction and the acceptability of group decisions.

All these findings highlight the importance of participants’ deep 
understanding and consistent focus on interdisciplinary technical 
focal points in achieving high-quality, efficient group decision-making 
in interdisciplinary contexts.

In addition, participants’ allocation of visual attention to the 
drawing area (DWG) within the interdisciplinary decision-making 
materials had a negative impact on group decision-making 
performance. Specifically, excessive focus on the DWG area 
significantly reduced decision-making efficiency and the acceptability 
of group decisions. This may be due to the abstract nature of the 
information in the DWG area, which is less straightforward in 
conveying meaning compared to the text regions. This abstraction 
hindered participants’ understanding of design principles and 

methods, making it difficult for the group to differentiate between 
alternative solutions. As a result, it negatively affected the construction 
of interdisciplinary cognitive structures, leading to a decline in group 
decision-making efficiency.

6.2 Practical recommendations in 
engineering product design

In engineering product design, effective interdisciplinary group 
decision-making is essential for fostering innovation and practicality. 
This study, using eye-tracking technology, analyzed how attention 
allocation affects decision performance through technical-focused 
materials, offering data-driven insights. Based on the findings, the 
following recommendations are proposed:

 1 Optimize decision materials: Enhance the layout and visual 
presentation of decision materials to direct attention to key 
information areas, especially technical focal points, using bold 
fonts, highlights, or color coding.

 2 Strengthen interdisciplinary training: Provide interdisciplinary 
training to improve understanding across disciplines. 
Regularly assess cognitive abilities such as attention and 
memory, offering targeted support to enhance decision-
making integration.

 3 Implement consensus-driven processes: Develop processes that 
promote constructive discussions and multiple rounds of 
decision-making to ensure all viewpoints are considered, 
improving decision quality and comprehensiveness.

7 Conclusion and future work

This study presents an innovative approach to analyzing group 
decision-making performance in engineering design using 
eye-tracking technology. It quantitatively examines how decision-
makers’ visual attention allocation impacts decision performance, 
identifying average fixation time and counting as key factors 
influencing satisfaction and acceptability. These findings contribute to 
new theoretical insights and offer practical guidance for achieving 
high-quality, efficient decisions in engineering product design.

The key innovations of this study are: (1) Employing eye-tracking 
technology to investigate visual attention dynamics in interdisciplinary 

TABLE 11 PLS model path coefficients.

Variables Original sample 
(O)

Sample mean 
(M)

Standard deviation 
(STDEV)

T statistics (|O/
STDEV|)

p-values

X1- > X2 0.866 0.862 0.047 18.261 0.000

X2 - > Y4 −0.230 −0.241 0.112 2.048 0.041

X3 - > Y1 0.112 0.099 0.180 0.621 0.534

X4 - > Y1 0.201 0.196 0.147 1.362 0.173

Y1- > Y3 0.871 0.845 0.103 8.452 0.000

Y1- > Y4 0.849 0.838 0.091 9.299 0.000

Y3 - > Y2 0.810 0.741 0.280 2.894 0.004

Y4 - > Y5 0.890 0.869 0.073 12.225 0.000
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group decision-making contexts; (2) Developing a novel performance 
evaluation framework that connects attention allocation mechanisms 
to decision-making outcomes using metrics such as average fixation 
count and gaze trajectory similarity; and (3) Demonstrating the 
method’s practical applicability through a real-world case study focused 
on the design of cabins for Chinese cruise ships.

This study offers several key contributions: (1) It introduces a 
multi-attribute group decision-making paradigm, integrating 
engineering knowledge with cognitive science to enhance 
communication and decision-making efficiency across disciplines. (2) 
By quantifying visual attention allocation, it employs PLS-SEM 
analysis to develop a performance evaluation model, revealing how 
attention to technical foci impacts decision outcomes. (3) The 
method’s application in ship cabin design validates its effectiveness in 
improving decision quality, efficiency, and satisfaction. Additionally, 
the study provides strategies to overcome interdisciplinary decision-
making challenges, including optimizing decision materials and 
fostering consensus-driven processes.

The proposed model has some limitations: (1) The influence paths 
related to gaze trajectory similarity show weak statistical performance, 
indicating the need for improved interpretability and predictive 
accuracy. (2) The mechanisms of intermediate or latent variables 
remain unclear, requiring further experiments and theoretical analysis 
in future research.

To address the issues, future research can be  improved in the 
following ways:

 1 Expanding the sample size: Increasing the sample size will 
enhance the statistical power of the model, which may improve 
the significance of the loadings.

 2 Exploring new measurement indicators: Introducing new 
metrics or methods, such as psychophysiological indicators, 
could more comprehensively capture the multidimensional 
characteristics of group decision-making performance.

 3 Considering potential mediating variables: Exploring whether 
potential mediating variables, such as team trust and 
communication quality, influence the relationship between 
independent and dependent variables.

 4 Multi-wave data analysis: Utilizing multi-wave data to analyze 
the dynamic changes in visual attention allocation during the 
decision-making process may help uncover more complex 
decision mechanisms.

This paper demonstrates the validity of the experimental analysis 
results in the actual interdisciplinary decision-making process through 
experimental validation in the case of cabin design in a shipbuilding 
company. Although the problem of ship cabin design only covers the 
knowledge of ship structure, environmental engineering and aesthetics, 
the knowledge distribution of the disciplines to solve the problem is 
relatively even, and there is no disciplinary barrier, so it can be inferred 
that the experimental method and the experimental conclusions are also 
applicable to the design of products in other fields of engineering, such 
as aerospace, automobile manufacturing, biomedical engineering, urban 
planning, and so on. In addition, because the design case comes from 
engineering design practice, the decision-making material, decision-
making process, decision-making personnel ratio are basically consistent 
with the engineering practice, and has been recognized by the experts of 
a shipbuilding company, it can be  applied to the real-time decision 
support system engineering company.

In summary, this study offers key insights for engineering design 
decision-making: organizations should optimize decision materials, 
enhance interdisciplinary training, and adopt consensus-driven 
processes. As eye-tracking technology advances and data quality 
improves, future research will focus on refining model parameters to 
better handle large datasets and enhance scalability. Further 
validation in fields like aerospace and automotive design is expected. 
Additionally, future studies will explore the impact of mediating 
variables, such as team trust and communication quality, and apply 
multi-wave data analysis to uncover dynamic decision-making 
mechanisms, providing more comprehensive theoretical and 
practical support.
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