
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Hum. Neurosci.
Sec. Cognitive Neuroscience
Volume 19 - 2025 | doi: 10.3389/fnhum.2025.1549824
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Despite growing industrialization, the cognitive and psychological impacts of construction noise on workers remain inadequately addressed in empirical research. This study examines the impact of different noise types and intensities on the cognitive performance and learning efficiency of construction workers, using electroencephalogram (EEG) and behavioral data. Specifically, it analyzes the effects of complex noise and steady noise on workers' attention, mental workload, mental fatigue, and mental stress. The results indicate that complex noise significantly reduces learning efficiency, notably impairing accuracy and reaction time relative to steady noise. This adverse effect is attributed to the unpredictability and variability of complex noise, which disrupts workers' cognitive processing and heightens mental fatigue. In contrast, although steady noise does not significantly impact mental workload, it induces greater mental fatigue and mental stress than complex noise, especially at high noise levels. The findings also reveal that workers develop some level of adaptation to continuous noise, mitigating its overall impact on learning efficiency. However, elevated noise levels, regardless of type, consistently lead to significant declines in attention and increases in mental stress and mental fatigue. This research makes an original contribution by providing evidence-based insights into the interaction between noise characteristics and worker cognition, offering practical implications for targeted noise management strategies to improve learning efficiency and well-being in construction environments.
Keywords: Construction workers, Noise, Learning efficiency, cognitive state, Electroencephalogram
Received: 22 Dec 2024; Accepted: 05 Mar 2025.
Copyright: © 2025 Cao, Lu, Zheng and Qin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Peicheng Qin, Hainan University, Haikou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.