
Frontiers in Human Neuroscience 01 frontiersin.org

Neuroplastic effects of 
transcranial alternating current 
stimulation (tACS): from 
mechanisms to clinical trials
Desmond Agboada 1*, Zhihe Zhao 2 and Miles Wischnewski 3*
1 Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany, 
2 Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, United States, 
3 Department of Psychology, University of Groningen, Groningen, Netherlands

Transcranial alternating current stimulation (tACS) is a promising non-invasive 
neuromodulation technique with the potential for inducing neuroplasticity and 
enhancing cognitive and clinical outcomes. A unique feature of tACS, compared 
to other stimulation modalities, is that it modulates brain activity by entraining 
neural activity and oscillations to an externally applied alternating current. While 
many studies have focused on online effects during stimulation, growing evidence 
suggests that tACS can induce sustained after-effects, which emphasizes the 
potential to induce long-term neurophysiological changes, essential for therapeutic 
applications. In the first part of this review, we discuss how tACS after-effects could 
be mediated by four non-mutually exclusive mechanisms. First, spike-timing-
dependent plasticity (STDP), where the timing of pre- and postsynaptic spikes 
strengthens or weakens synaptic connections. Second, spike-phase coupling 
and oscillation phase as mediators of plasticity. Third, homeostatic plasticity, 
emphasizing the importance of neural activity to operate within dynamic physiological 
ranges. Fourth, state-dependent plasticity, which highlights the importance of 
the current brain state in modulatory effects of tACS. In the second part of this 
review, we discuss tACS applications in clinical trials targeting neurological and 
psychiatric disorders, including major depressive disorder, schizophrenia, Parkinson’s 
disease, and Alzheimer’s disease. Evidence suggests that repeated tACS sessions, 
optimized for individual oscillatory frequencies and combined with behavioral 
interventions, may result in lasting effects and enhance therapeutic outcomes. 
However, critical challenges remain, including the need for personalized dosing, 
improved current modeling, and systematic investigation of long-term effects. 
In conclusion, this review highlights the mechanisms and translational potential 
of tACS, emphasizing the importance of bridging basic neuroscience and clinical 
research to optimize its use as a therapeutic tool.
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1 Introduction

Over the past century, several neuromodulation methods have been developed, with varying 
degrees of success. While such tools are used to test brain function in fundamental neuroscience 
research, sooner or later their potential therapeutic benefits must be explored in clinical studies. 
A clinically proven non-invasive neuromodulation technique for the treatment of major 
depressive disorder, obsessive-compulsive disorder, and more is transcranial magnetic 
stimulation (TMS) (Blumberger et al., 2018; Cole et al., 2020; Cohen et al., 2022). By providing 
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repetitive magnetic impulses to a particular brain region, neuroplasticity 
can be induced, which may alleviate symptoms (Rossini et al., 2015; 
Lefaucheur et al., 2020). TMS is associated with minor side effects and 
is used in both advanced and mild stages of neurological and psychiatric 
disorders (Rossi et  al., 2021). Treatments often last for 6–8 weeks, 
although more intense abbreviated therapies can finish within 
1–3 weeks (Burke et al., 2019; Lefaucheur et al., 2020). A drawback of 
TMS is its significant costs, as well as the need for patients to go to a 
clinic for every intervention. Non-invasive low intensity electrical 
stimulation offers cheaper portable options that lend themselves well for 
home-based treatments. This includes transcranial direct current 
stimulation (tDCS), in which a subthreshold constant current is applied 
between two or more electrodes, with the goal of increasing or 
decreasing cortical excitability (Nitsche and Paulus, 2000; Jamil and 
Nitsche, 2017; Agboada et al., 2019). It is hypothesized that slight de- or 
hyper-polarization of resting membrane potentials are induced by 
anodal and cathodal tDCS, respectively (Stagg and Nitsche, 2011; Jamil 
and Nitsche, 2017). Consequently, the chance of naturally occurring 
neural firing is elevated or lowered. Another method, transcranial 
alternating current stimulation (tACS) applies an oscillating 
subthreshold current between two or more electrodes (Wischnewski 
et al., 2023). As tDCS, tACS affects the resting membrane potential, but 
rather than a consistent increase or decrease, it induces a fluctuation in 
the membrane potential, which can result in an elevated rhythmic 
neural firing (Krause et al., 2022; Wischnewski et al., 2024c). However, 
for these interventions to be  successful clinically, their effects must 
outlast the stimulation duration. In other words, after-effects are crucial 
for the therapeutic efficacy of low intensity electrical stimulation. 
Various studies have demonstrated the physiological after-effects and 
clinical benefits of tDCS (Nitsche et al., 2008; Brunoni et al., 2012; 
Agboada et al., 2020; Mosayebi-Samani et al., 2023). These effects have 
been covered extensively elsewhere (Stagg and Nitsche, 2011; Jamil and 
Nitsche, 2017) and will thus not be discussed here.

The primary hypothesized effect of tACS is that neural firing and 
oscillations become entrained (Schutter and Wischnewski, 2016; Liu 
et al., 2018; Krause et al., 2023; Wischnewski et al., 2023). The external 
oscillatory current induces fluctuations in resting membrane 
potentials, which influences the rhythmic expression of naturally 
occurring neural spikes. These physiological effects have been 
demonstrated in a variety of studies (Fröhlich and McCormick, 2010; 
Ozen et al., 2010; Anastassiou et al., 2011; Krause et al., 2019; Johnson 
et al., 2020; Vieira et al., 2020; Huang et al., 2021; Krause et al., 2022; 
Vieira et al., 2024; Wischnewski et al., 2024c). However, in principle, 
this effect is restricted to the stimulation. When stimulation is turned 
off, the effect on the resting membrane potential and, thus, entrainment 
of neural firing evaporates. Nevertheless, a growing amount of studies 
have shown that tACS does have physiological, behavioral, and 
therapeutic after-effects (Kasten et al., 2016; Wischnewski et al., 2019a). 
In this review, we describe the potential mechanisms by which tACS 
may induce lasting effects. Further, we will discuss clinical studies 
using multisession tACS to inspect the longevity of lasting tACS effects.

2 Primary (online) neurophysiological 
effects of tACS

The alternating current applied to the scalp results in subthreshold 
oscillatory fluctuations in neural resting membrane potentials 

(Wischnewski et  al., 2023). Consequently, neural firing becomes 
rhythmically locked to the external oscillation (Fröhlich and 
McCormick, 2010; Ozen et al., 2010; Anastassiou et al., 2011; Krause 
et al., 2019; Johnson et al., 2020; Vieira et al., 2020; Huang et al., 2021; 
Krause et al., 2022; Vieira et al., 2024; Wischnewski et al., 2024c). 
Meta-analytic evidence suggests that an e-field strength of 0.3 mV/
mm is required for these effects to occur in at least a subset of neurons 
(Alekseichuk et al., 2022; Zhao et al., 2024). Furthermore, if neural 
firing is naturally entrained to a particular phase of a local field 
potential, tACS may result in a phase shift of the spiking (Krause et al., 
2022; Vieira et al., 2024; Wischnewski et al., 2024c). To an extent, the 
online effects of tACS at the neural level translate to the macroscopic 
scale. For instance, motor cortical tACS has been shown to increase 
TMS-evoked muscle responses (Feurra et al., 2011, 2013; Cancelli 
et al., 2015; Heise et al., 2016; Cottone et al., 2018; Wischnewski et al., 
2019a). Furthermore, studies that tracked the tACS phase online 
found that TMS-related motor-evoked potential (MEP) amplitudes 
were larger at particular phases (Guerra et al., 2016; Nakazono et al., 
2016; Raco et al., 2017; Schilberg et al., 2018; Wischnewski et al., 
2024c). While increases in oscillatory power during tACS stimulation 
have been suggested (Helfrich et al., 2014), it is important to consider 
that removing the tACS artifact from online EEG is difficult and there 
is no access to the ground truth. Overall, tACS can entrain neural 
activity at a microscopic and macroscopic level.

3 Secondary (offline) 
neurophysiological effects of tACS

In the bigger picture of potential clinical applications, tACS can 
only be effective as a therapeutic intervention if it induces effects that 
last beyond the stimulation duration. The majority of research studies 
currently has focused on the after-effects of a single session of tACS 
and have suggested that tACS can induce short-term plasticity as a 
secondary effect of tACS besides entrainment (during stimulation). 
Previous studies have shown neurophysiological after-effects of single-
session tACS lasting for an hour or more across various cortical 
regions (Moliadze et al., 2012; Neuling et al., 2013; Strüber et al., 2015; 
Kasten et  al., 2016; Stecher et  al., 2017; Moliadze et  al., 2019; 
Wischnewski et al., 2019a; Ghafoor et al., 2022). Kasten et al. (2016) 
applied 20 min of tACS at the individual alpha frequency over the 
visual cortex and measured changes in endogenous alpha oscillations 
up to 90 min post-stimulation. The results showed that the individual 
alpha power was increased for 90 min, although the difference with 
sham tACS was significant for only 70 min due to a natural increase 
in alpha power over time (Benwell et al., 2019).

Wischnewski et al. (2019a,b) provided causal evidence that the 
observed after-effects are related to NMDA receptor-mediated 
plasticity. They applied 15 min of beta tACS to the primary motor 
cortex using a high-definition montage. In one condition, participants 
received tACS together with a placebo medication, while in the other 
condition, participants received an NMDA receptor blocker. In the 
tACS + placebo condition, increased primary motor cortex excitability 
was observed, as evidenced by increased MEP measured by applying 
single-pulse transcranial magnetic stimulation. Further, beta power, 
but not power in other frequency spectra, was significantly increased. 
Crucially, the effects on excitability and beta power were abolished in 
the tACS + NMDA blocker condition. This suggests that NMDA 
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receptor plasticity was a key underlying factor for the observed after-
effects. The effects were still observed 60 min after stimulation. The 
study did not contain measurements after 60 min, so the effects 
potentially lasted for longer.

Riddle et al. (2020) combined results from three experiments that 
collected EEG before and after alpha tACS. They also collected DNA 
to determine the presence of the Val66Met polymorphism in the gene 
that codes for brain-derived neurotrophic factor (BDNF). Previous 
studies suggest that Val66Met polymorphism diminishes 
responsiveness to stimulation by lowering NMDA receptor-dependent 
synaptic plasticity. They found Met carriers showed less of an increase 
in alpha activity after tACS than non-Met carriers, providing evidence 
for the role of BDNF and synaptic plasticity in tACS-related 
after-effects.

3.1 Spike-timing-dependent plasticity

As discussed, the primary mechanism of tACS is the entrainment 
of neural firing during stimulation. As such, under tACS electrodes, 
neural firing occurs at a particular phase compared to the surrounding 
local field potential (LFP). Animal and computational work has 
demonstrated that prolonged spike-LFP coupling is crucial for 
inducing spike-timing-dependent plasticity (STDP) (Caporale and 
Dan, 2008; Anastassiou and Koch, 2015; Andrade-Talavera et  al., 
2023). STDP is a form of synaptic plasticity in which the timing of 
action potentials between pre- and postsynaptic neurons determines 
whether synaptic strength is increased or decreased (Caporale and 
Dan, 2008; Markram et  al., 2012). Several studies have used 
feedforward neural network models to examine the relationship 
between spike phase-locking and STDP. These models typically 
comprise integrate-and-fire neurons, where pre-synaptic populations 
of oscillating neurons provide input to single post-synaptic neurons 
(Muller et al., 2011; Masquelier et al., 2009; Luz and Shamir, 2016). 

Muller et al. (2011) demonstrated that precise spike phase-locking 
could be achieved through periodic modulation of presynaptic firing 
rates during oscillations in conjunction with STDP. Their findings 
emphasized that the balance between potentiation and de-potentiation 
in the STDP rule critically determines the firing phase of output 
neurons. Masquelier et al. (2009) demonstrated that the interaction 
between oscillatory input and STDP creates an efficient learning 
mechanism by showing that neurons could effectively detect patterns 
in input currents even when phase-of-firing coding was present in 
only a small subset of afferents. Luz and Shamir (2016) investigated 
how phase relationships between pre- and post-synaptic spikes 
influence synaptic weight dynamics. Their work revealed that the 
temporal structure of the STDP rule can establish a preferred firing 
phase in post-synaptic neurons, which proves crucial for the 
emergence of oscillatory behavior. Consequently, synaptic plasticity 
facilitates the downstream transmission of oscillatory signals along 
neural information processing pathways. Together, these studies 
demonstrate the intricate relationship between neural firing and 
oscillations that may result in STDP. As such, modulation of neural 
oscillations via tACS may induce lasting changes without affecting all 
neural populations uniformly.

In the context of tACS, it has been proposed that STDP can 
be induced if the stimulation frequency is at or slightly below the 
endogenous oscillatory frequency (Zaehle et al., 2010; Vossen et al., 
2015; Wischnewski and Schutter, 2017; Schwab et al., 2019, 2021; 
Vogeti et al., 2022; Pariz et al., 2023). This hypothesis rests on the 
observation that long-term potentiation (LTP) is promoted when 
presynaptic activity consistently precedes postsynaptic activity, which 
occurs when tACS matches the frequency of endogenous oscillations 
(Figure 1; Zaehle et al., 2010). In contrast, long-term depression (LTD) 
is related to postsynaptic activity preceding presynaptic activity, which 
is related to tACS at higher frequencies than the endogenous 
oscillation frequency (Zaehle et al., 2010). According to the tACS-
STDP hypothesis, the strongest tACS after-effects would be observed 

FIGURE 1

Potential neuroplasticity mechanisms related to the after-effects of tACS. Effects of tACS are shown by the blue arrows. Left: TACS applied in a 
frequency that is at or slightly below that of endogenous rhythms may result in long-term potentiation (LTP) as it promotes the natural sequence of 
pre-synaptic firing preceding post-synaptic firing. TACS that is at a higher frequency than endogenous rhythms may result in long-term depression 
(LTD) as it promotes post-synaptic firing that precedes pre-synaptic firing. Middle: Homeostatic properties affect the efficacy of tACS. If neural 
oscillations or firing synchrony is already increased tACS may not be able push this effect further and may result in homeostatic plasticity where the 
opposite effect is observed. Right: The current brain state also determines efficacy of tACS. While some in some physiological or behavioral state tACS 
may result in large changes, other psychological/behavioral states may prevent tACS from having a strong effect.
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at or near the individual endogenous oscillatory frequency. Several 
studies provide evidence in favor of this hypothesis (Kasten et al., 
2016; D’Atri et al., 2017; Wischnewski and Schutter, 2017; Schwab 
et al., 2019; Kemmerer et al., 2022). As previously described, Kasten 
et al. (2016) found an increase in alpha power after individual alpha 
tACS. Crucially, these effects were not observed in frequencies of 3 Hz 
above or below the individual alpha frequency. Furthermore, 
Kemmerer et  al. (2022) investigated the effects of tACS at the 
individual alpha frequency as well as two control conditions where 
tACS was applied ±2 Hz above and below the individual alpha 
frequency. Only the tACS condition that matched the endogenous 
oscillation rhythms resulted in a bias of alpha power toward the 
stimulation location. Furthermore, this shift in alpha power was 
related to a change in visual attention only in the individual alpha 
tACS condition but not in the control conditions. Schwab et al. (2019) 
demonstrated the frequency-specificity of tACS after-effects on 
interregional connectivity by applying in-phase tACS. Connectivity 
was increased after in-phase tACS (i.e., when the phase between two 
regions was synchronized) compared to anti-phase and jittered-phase 
tACS (i.e., when the phase between two regions was not synchronized). 
In a follow-up study, Schwab et al. (2021) utilized coupled neuronal 
network models to demonstrate how STDP explains connectivity 
aftereffects. It was revealed that aftereffect directionality depends on 
both tACS frequency and inter-regional conduction delays, with 
maximal effects observed during short conduction delays. These 
findings were subsequently validated through EEG data. Moreover, 
Pariz et al. (2023) conducted a comprehensive investigation of tACS 
influences on synaptic plasticity in heterogeneous multi-layered 
neuronal networks. Their model incorporated varying membrane 
time constants to reflect cortical neuron heterogeneity, revealing that 
disparities in neuronal timescales enable selective and directional 
control of synaptic connectivity through tACS.

Collectively, these computational studies provide valuable insights 
into the mechanisms underlying tACS-induced plasticity while 
suggesting potential strategies for optimizing stimulation protocols. 
The progressive refinement of these models, from simple feedforward 
networks to complex heterogeneous systems, has enhanced our 
understanding of how tACS may induce lasting physiological effects 
through the interaction of spike-timing and synaptic plasticity.

3.2 Spike-phase coupling and plasticity

As discussed above, spike phase-locking is crucially related to 
plasticity and may be strengthened by tACS. Besides the strength of 
spike-phase coupling, the specific phase may also contain information 
about neuroplastic processes (O’Keefe and Recce, 1993; Hafting et al., 
2008; Qasim et  al., 2021). O’Keefe and Recce (1993) found that 
hippocampal firing gradually shifts compared to the theta phase while 
an animal moves through a maze. As such, a shift in the preferred 
firing phase reflected a learning process of a particular spatial map. 
Various studies have linked this so-called phase precession to STDP 
and NMDA receptor-mediated synaptic plasticity (Thurley et al., 2008; 
Muller et al., 2011; Reifenstein et al., 2021; Wischnewski et al., 2024c). 
No direct evidence for tACS-induced spike field coupling in humans 
currently exists. The mechanisms seem plausible as non-human 
primate studies suggested that spiking locks to particular phases of the 
tACS oscillation (Krause et  al., 2019, 2022; Johnson et  al., 2020). 

Furthermore, indirect evidence comes from Wischnewski et  al. 
(2024c), in which it was found that TMS-induced MEP amplitude was 
related to the phase of the tACS oscillation. That is, TMS-related 
neural firing was coupled to a particular phase. Additionally, 
computational modeling suggested that phase coupling was related to 
the modulation of NMDA weights (Zhao et al., 2024). However, more 
direct evidence, such as from surgical patients with invasive recordings 
is crucial.

3.3 Homeostatic plasticity

While the tACS-STDP hypothesis argues for the importance of 
frequency-specificity, it should also be noted that various studies have 
reported frequency-aspecific tACS-related after-effects (Veniero et al., 
2015; Wischnewski et al., 2016; Kleinert et al., 2017; Moliadze et al., 
2019; Venugopal et al., 2024). As such, it is essential to consider the 
dynamic nature and limited resources of the brain. Brem et al. (2014) 
proposed the net zero-sum model, which suggests that 
neuromodulatory effects are limited by energy resources. In simple 
terms, increasing energy expenditure in one domain may result in 
lower energy expenditure in other domains due to the brain’s limited 
resources. Enhanced oscillatory power at the tACS frequency could, 
therefore, result in reduced oscillatory power in other frequency 
bands. A related but distinct concept is the idea of homeostatic 
plasticity (Siebner et al., 2004; Karabanov et al., 2015; Schutter et al., 
2015; Nowak et al., 2017; Agboada et al., 2020; Peterson and Voytek, 
2020). While appealing, the net-zero sum model is somewhat 
simplified as it assumes that the brain is a linear system, which it is 
not. For instance, increases in the amplitude of some frequency bands 
are correlated with increases in other frequency bands (Jensen and 
Colgin, 2007; Hyafil et al., 2015). Similar to the net zero-sum model, 
the homeostatic plasticity hypothesis (specifically concerning brain 
stimulation) suggests that neuromodulatory effects cannot extend 
beyond the dynamic neurophysiological range (Karabanov et al., 2015; 
Schutter et al., 2015; Peterson and Voytek, 2020). That is, neuronal 
firing and synaptic inputs are regulated to prevent dysfunctionally 
strong or weak connections. For example, a synaptic homeostasis can 
be achieved by up-regulating or down-regulating synaptic strength, or 
by changing synaptic input (Turrigiano and Nelson, 2004; Abraham, 
2008). In practice, neurostimulation aimed at enhancing a particular 
neurophysiological pattern may instead suppress it when operating 
near its upper dynamic limit, while neurostimulation aimed at 
inhibiting neural responses may instead enhance them when 
operating near the lower end of the dynamic range (Figure  1; 
Karabanov et  al., 2015). To demonstrate homeostatic plasticity, 
Siebner et  al. (2004) consecutively applied two neurostimulation 
paradigms which are thought to have inhibitory effects, namely 
cathodal transcranial direct current stimulation (tDCS) and 1 Hz 
repetitive TMS. While one might expect additive inhibitory effects, 
1 Hz rTMS actually increase cortical excitability after inhibitory 
tDCS. As such, homeostatic plasticity prevented cortical excitability 
to be inhibited beyond the lower end of the dynamic range. Similarly, 
Agboada et al. (2020) showed no further enhancement but rather a 
diminution of cortical excitability when the motor cortex was 
stimulated with 3 mA anodal tDCS two times within a 3-h interval. 
Interestingly, the less intense 1 mA anodal tDCS protocol enhanced 
excitability with repeated stimulation, showing the lack of further 
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enhancement with the stronger stimulation could be  an upper 
homeostatic ceiling that regulates plasticity. For tACS this could imply 
that increasing an already robust neural oscillation may result in after-
effects where this oscillation is decreased. Despite several tACS studies 
observing this phenomenon (Wischnewski et al., 2016, 2021; Pahor 
and Jaušovec, 2018; Alexander et al., 2019; Zarubin et al., 2020; Riddle 
et  al., 2022), homeostatic plasticity after tACS is yet to 
be systematically investigated.

3.4 State-dependent plasticity

When investigating neuroplastic effects of tACS it is also crucial 
to consider the current state of the brain (Kasten and Herrmann, 2022; 
Schutter et al., 2023). Brain states can fluctuate due to physiological or 
biological processes (e.g., circadian rhythm, neural oscillation phase, 
etc.). Alternatively, brain states are affected by behavioral and cognitive 
states. Examples of these behavioral states are being at rest or in an 
action, eyes open or closed, states of attention, cognitive effort, and 
many more. Behavioral states can typically be  manipulated in 
experimental settings, while often brain states are often not 
controllable. Thus, since behavioral states are used to modulate brain 
states, they are often difficult to disentangle.

While tACS may induce plastic effects at a particular brain or 
behavioral state, it may have no effect when it is in another state. For 
instance, an increase in alpha power and coherence in the visual 
cortex is observed after alpha tACS only when participants have their 
eyes open, while no effects are observed with closed eyes (Neuling 
et al., 2013; Ruhnau et al., 2016; Wang et al., 2022). As such, this 
example reflects an interaction between behavioral and brain states 
that influence the efficacy of tACS. While the previous example related 
to oscillation power, others have shown that oscillation frequency may 
also depend on the state. Feurra et  al. (2013) showed that MEPs 
induced by TMS increase after beta tACS when a person is at rest, 
which is consistent with other findings (Wischnewski et al., 2019b). 
However, when participants performed motor imagery not beta, but 
theta tACS resulted in increased MEPs. Furthermore, during action 
observation, not beta tACS but alpha and gamma tACS increased 
MEPs (Feurra et al., 2019). Taking into account the current brain and 
behavioral state is of particular importance when using tACS in a 
clinical setting. Riddle et al. (2022) have shown that tACS in patients 
with major depressive disorder can reduce alpha power, but this effect 
is associated with positive stimuli only, while no alpha modulation was 
observed during the presentation of negative stimuli.

3.5 Indications of plastic effects in 
macroscopic modalities

Changes in EEG power, either frequency-specific or frequency-
specific, may hint at neuroplastic changes (Bibbig et  al., 2001; 
Zarnadze et  al., 2016; Burgdorf et  al., 2019; Gefferie et  al., 2021). 
However, EEG reflects macroscopic changes in neural activity, while 
synaptic plasticity occurs at the cellular level (Buzsáki et al., 2012; van 
Bree et al., 2024). As such, changes in EEG power from before to after 
tACS do not reflect plastic changes per se. Vice versa, the absence of 
changes in EEG power from pre- to post-tACS does not necessarily 
suggest that no plasticity occurred. The same holds for 

magnetoencephalography (MEG). For instance, Aktürk et al. (2022) 
found increased resting state power when tACS was applied at the 
individual theta frequency but not when tACS was applied 1 Hz below 
the individual theta frequency. Conversely, behavioral performance 
on a visual memory task increased from before to after tACS when the 
stimulation frequency was 1 Hz below the individual theta frequency 
but not when it was exactly at the individual theta frequency. As such, 
different stimulation frequencies resulted in distinct 
electrophysiological and behavioral after-effects. TACS also has been 
shown to have after-effects on neuroimaging, including functional 
magnetic resonance imaging (Alekseichuk et  al., 2016; Cabral-
Calderin et al., 2016; Vosskuhl et al., 2016; Chai et al., 2018). These 
effects appear in the stimulated area as well as distal areas.

Together these observations have two implications. First, null-
results in physiological measures (EEG, fMRI) do not necessarily 
imply that tACS had no effect on brain functioning. Rather, potential 
physiological changes may be invisible to these neurophysiological 
recording methods. More research and novel methods are required to 
distinguish true null-results from seeming null-results. Second, and 
related to the first, tACS may induce behavioral changes in the absence 
of changes in EEG and fMRI. While inconsistencies between 
behavioral and physiological measures is often suggested as a 
limitation, it is to be  expected given the limited sensitivity of 
neurophysiological recording methods.

4 Long-term effects of tACS

4.1 Neurophysiological evidence for 
long-term effects

Long-term or late-phase LTP-like plasticity (L-LTP) which usually 
refers to LTP-like plasticity lasting for longer than a couple of hours 
has been previously reported for other non-invasive brain stimulation 
(NIBS) techniques such as tDCS in the human motor cortex (Agboada 
et al., 2020). Similar to techniques used in other NIBS techniques like 
rTMS and tDCS a single session is typically not sufficient to induce 
L-LTP-like effects. Rather daily application for a couple of weeks may 
be effective (Laste et al., 2012; Grover et al., 2021, 2022; Pantovic et al., 
2023). Currently, to the best of our knowledge, there exists no 
systematic studies on the neurophysiological mechanisms responsible 
for long-term effects of tACS in humans. However, many studies that 
use repeated or spaced stimulation technique have shown long-term 
effects (Grover et  al., 2021, 2022; Yang et  al., 2023). For instance, 
Grover et al. (2022) utilized spaced repetitive stimulation protocol 
with HD-tACS to enhance working memory. They randomized 
participants into two groups that received either synchronous or 
asynchronous theta-gamma tACS in the parietal, and dorsolateral 
prefrontal cortices (DLPFC) for 20 min each day for four continuous 
days. Immediate after-effects of the stimulation were seen in WM 
performance as well as 1 month post-stimulation. The strength of 
these effects was however related to the baseline of participants’ 
performance  – those with lower baseline WM performance 
pre-stimulation performed considerably better in the post-stimulation 
measurements (Grover et al., 2022). The longer effects seen in this 
study could be due to the accumulative effects of repetitive stimulation. 
However, currently little is known about the physiological effects and 
parameters of tACS that relate to L-LTP. Even less clear is how these 
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mechanisms translate from healthy young participants to the diseased 
brain. While clinical trials have shown the therapeutic value of tACS 
(Elyamany et al., 2021; Riddle et al., 2022), it remains to be seen if 
these effects observed in the clinic are a direct translation of what has 
been shown in healthy population.

4.2 Long-term effects of tACS in clinical 
trials

Clinical trials are important to extend the usefulness of tACS from 
the bench to the bedside. Currently few of these exist, as the ‘standard’ 
for using tACS in the clinic is only now getting defined by findings 
from early studies (Elyamany et al., 2021; Frohlich and Riddle, 2021).

First, for a seamless transition from pharmacological methods to 
NIBS, the magnitude and duration of therapeutic effects of tACS must 
be at the very least equal to what is normally observed with standard 
pharmacological therapies. This reduces the need to justify the utility 
of these novel therapies beyond the arguments of less comparative 
side-effects. Secondly, long-term tACS effects in the clinic, like what 
has been observed in healthy participants, helps to better understand 
the basic neurophysiology of cortical regions in diseased states, which 
can improve treatment methods.

In this section, we summarized clinical trials using tACS with a 
bias for trials with longer follow-ups (after-effect measurements). 
While these trials with tACS are still in their infancy, we hope a review 
of them will shed some light on what progress has been made, which 
might be  useful for future clinical applications of tACS. The aim 
therefore is to explore the long-term after-effects of tACS in clinical 
trials, examining the methodological choices and the measurement 
outcomes. While we made some references to tDCS and rTMS were 
necessary, a detailed comparison of the effect of these techniques in 
neuropsychiatric disorders is beyond the scope of this review.

4.2.1 Depression
Abnormalities in theta (Jaworska et al., 2012), alpha (Thibodeau 

et al., 2006; Gollan et al., 2014), beta (Shen et al., 2017; Cai et al., 2018) 
and gamma (Nugent et al., 2019) oscillations have been reported in 
major depressive disorder (MDD).

In the first double-blind randomized clinical trial to examine the 
efficacy of tACS as a treatment for MDD symptoms, Alexander et al. 
(2019) applied 1 mA tACS for 40 min with a bilateral montage (F3, F4, 
and Cz montage) in the DLPFC for 5 consecutive days. Thirty-two 
patients were randomized into three groups – sham, 10 Hz, and 40 Hz 
stimulation. They found patients receiving the 10 Hz tACS had 
significant reduction in depressive symptoms compared to the sham 
and 40 Hz groups as measured by the Montgomery-Asberg and the 
Hamilton Depression Rating Scales (Alexander et al., 2019). At 2-week 
follow-up, the 10 Hz group showed significant reduction in MDD 
symptoms compared to sham and 40 Hz groups. This reduction was 
stable for all three groups at 4-week follow-up though no significant 
differences between the groups were observed. Building upon these 
findings, Riddle et al. (2022) investigated the modulation of individual 
alpha frequency in 84 MDD patients using 1 mA 10 Hz tACS in 
another double-blind randomized placebo-controlled clinical trial. 
With five consecutive days of stimulation, a decrease in the left frontal 
individual alpha frequency was observed for active tACS compared to 
the sham group. These reductions were strongest for patients with 

severe depression as well as those who were on antidepressants. To 
further understand how frontal oscillations interact with the tACS (to 
demonstrate the context-dependency of stimulation effects), patients 
were presented with positive, neutral, and negative images. Without 
stimulation, patients with MDD showed an elevated response in their 
left frontal alpha power, but a reduction for the stimulated group 
(Riddle et al., 2022). While no long-term follow-ups were conducted 
in this study, their conclusions demonstrate the potential for effective 
modulation of alpha oscillations when paired with medication as a 
better treatment for MDD compared to medication alone. This also 
confirms other studies that found a greater degree of response in 
patients with medication and stimulation compared to those with only 
medication (Wang et al., 2022; Zhou et al., 2024). Recently, Zhou et al. 
(2024) investigated tACS as an add-on treatment for patients with 
MDD. Patients undergoing MDD treatment with escitalopram 
(10–20 mg daily) were stimulated for 40 min once daily 77.5 Hz tACS 
for 20 days. Improvements in depressive symptoms were indexed by 
the Hamilton rating scale for depression (HAMD-17) scores. After 
4 weeks of stimulation, the tACS group had higher mean reduction on 
the 17-item HAMD-17 scale compared to the sham group. This 
reduction in depressive symptoms (lower mean scores) was prevalent 
at the week 8 follow-up. The study by Zhou et al. (2024) demonstrates 
not only the cumulative potential of combining stimulation with 
medication but also the long-term plasticity-inducing effect. 
Furthermore, repeated stimulation of twice daily or more for many 
days might be a good way to induce prolonged after-effects, compared 
to single session protocols that do not lead to any changes in depressive 
symptoms (Palm et al., 2022).

4.2.2 Schizophrenia
Alpha rhythms are predominantly responsible for many tasks in 

an awake individual, such as attention, memory, perception, 
consciousness, and visual processing (Buzsáki and Draguhn, 2004). 
The ubiquitous nature of these oscillations makes their dysfunction a 
major problem, often resulting in different neuropsychiatric disorders. 
Previous tACS studies have documented the efficacy of modulating 
the alpha oscillations in the brain (Zaehle et al., 2010; Neuling et al., 
2013; Vossen et al., 2015; Kasten et al., 2016). tACS targeting alpha and 
gamma reduced the prevalence of auditory hallucinations, negative 
symptoms, and improved cognition (Farcas and Iftene, 2022).

In a case report, Sreeraj et al. (2019) applied 2 mA theta tACS 
(6 Hz) in 5 sessions for 20 min each in a patient with paranoid 
schizophrenia. Working memory was assessed with n-back task. Post-
stimulation evaluation revealed an improvement in working memory 
that was stable for 50 days. In a follow-up study, 12 schizophrenia 
patients with persistent delusions were stimulated with 2 mA 10 Hz 
tACS twice daily for 5 days (10 sessions). A reduction in delusions 
severity, and positive and negative symptoms were found, that did last 
for 1 month post-intervention (Sreeraj et al., 2020).

Mellin et  al. (2018) conducted one of the first double-blind 
randomized sham-controlled clinical trials where the 
neuromodulatory effects of tACS were compared to tDCS in 
schizophrenia patients with persistent auditory hallucinations. 
Twenty-two patients were randomized into three groups  – 10 Hz 
tACS, tDCS or sham tACS. Stimulation was delivered in a frontal 
bilateral (F3/F4) montage twice daily for 20 min each over 5 
consecutive days, while the auditory hallucination rating scale 
(AHRS), positive and negative syndrome scale (PANSS), and brief 
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assessment of cognition in schizophrenia (BACS) where used to assess 
clinical symptoms of the disease. As there were no significant 
differences between the three groups post-stimulation, the authors 
used raw effect sizes to show the neuromodulatory changes induced 
by the stimulation (tACS and tDCS) and sham. Within the 5 days of 
stimulation, tACS had the largest effect sizes on the AHRS scale, while 
tDCS showed largest effect sizes on the PANSS and BACS scales. 
Follow-up changes in effects sizes after 1 month was likewise different 
for each stimulation group.

In another randomized double-blind sham-controlled trial, Ahn 
et al. (2019) stimulated the temporal lobe of 22 schizophrenia patients 
with 10 Hz tACS twice daily for 5 days. They reported an enhancement 
of alpha oscillations which further enhanced the 40 Hz auditory 
steady-state response, leading to an improvement in auditory 
hallucinations. Importantly, these effects were stable for one-month 
post-stimulation, demonstrating alpha tACS can modulate networks 
long-term.

4.2.3 Stroke and neglect
TACS has also been shown to have beneficial and lasting effects in 

recovery after stroke (Naros and Gharabaghi, 2017; Schuhmann et al., 
2022; Grigutsch et  al., 2024; Middag-van Spanje et  al., 2024). The 
effects of tACS and neglect training were compared with sham to assess 
the cumulative efficacy of tACS in a double-blind, randomized, 
placebo-controlled trial by Middag-van Spanje et  al. (2024). In a 
6-week period, 18 sessions of 40 min of 10 Hz tACS or sham tACS 
combined with visual scanning training were administered in 22 
visuospatial neglect patients. Assessment of stimulation and training 
efficacy was done immediately after the first, ninth, and 18th training 
sessions as well as 1 week and 3 months after the completion of the 
trial. Compared to the sham group, patients with the combined 
training and tACS showed significantly improved visual search and 
visual detection performance in their neglected side (Middag-van 
Spanje et al., 2024). Grigutsch et al. (2024) tested the effects of theta-
gamma peak-coupled 75 Hz tACS on motor skill acquisition in 78 
young healthy participants and 20 stroke survivors. They found no 
significant effect of the stimulation on general motor skill acquisition 
in the healthy participants and surprisingly, a diminished motor skill 
acquisition in the stroke survivor group. This single session result lends 
credence to a previous study that did not also find any improvement in 
patients when non-repetitive/cumulative stimulation method was used 
(Palm et al., 2022). Overall, while beneficial effects of tACS for stroke 
recovery may exist, more systematic research is required.

4.2.4 Parkinson’s disease
Parkinson’s disease (PD) has been another field that has sprouted 

a variety of tACS studies. A seminal study by Brittain et al. (2013) has 
shown that tACS that is in the same frequency as tremor but in an 
opposing phase can ‘cancel out’ tremor symptoms. They have reported 
a tremor reduction of up to 50%. Besides the tremor frequency, 
another target frequency may be the beta rhythm as studies on PD 
suggests the depletion in dopamine signaling creates a ‘run-away’ 
cortical oscillation in the beta frequency range in the basal ganglia 
(Brown, 2006; Little and Brown, 2014; Neumann et al., 2017). This has 
led to the hypothesis that externally regulating the beta frequency in 
the brain via tACS might counterbalance the maladaptive plasticity in 
PD (Krause et al., 2014; Del Felice et al., 2019; Madrid and Benninger, 

2021; Guerra et al., 2022). In healthy participants, beta tACS (20 Hz) 
applied during a no-go visuomotor task slowed movement (Pogosyan 
et al., 2009). Long-term effects of beta tACS in clinical treatment of 
PD have been explored in recent studies (Del Felice et al., 2019). Del 
Felice et al. (2019) demonstrated the effects of beta and theta tACS in 
reducing tremors in PD patients using a randomized crossover trial. 
Patients were stimulated with 30 Hz tACS and tRNS for 5 days a week 
within 2 weeks in total. When compared with tRNS, tACS improved 
motor and cognitive performance as shown by reduction in symptoms 
in clinical assessments. These changes were present after the first 
session as well as the end of the trial.

4.2.5 Memory impairments – Alzheimer’s disease 
and dementia

Cortical network activity is disrupted or greatly reduced in 
neuropsychiatric disorders. In Alzheimer’s disease (AD) for example, 
anatomical degeneration caused by neurofibrillary tangles and plaques 
led to major disruptions in the vital long-range neuronal synchrony 
(Van Hoesen and Solodkin, 1994; Palop et  al., 2006). These 
disorganizations lead to the loss of olfactory (Vasavada et al., 2015; 
Son et al., 2021) and spatial (Kunz et al., 2015) information processing. 
Gamma power in the medial and lateral entorhinal cortices are 
reduced in a transgenic mice model of AD (Klein et al., 2016). Kim 
et al. (2022) used a light flicker at 40 Hz with treadmill exercise to 
modulate activity in the primary visual cortex of an AD mouse model. 
The authors reported cell apoptosis and a significant reduction of beta-
amyloid and tau protein levels.

Evidence for the importance in AD was also revealed via 
optogenetic methods. Stimulating fast-spiking interneurons 
optogenetically in the mice hippocampus with 40 Hz reduces 
significantly the levels of amyloid plaques (Iaccarino et al., 2016). 
tACS applied in the gamma frequency range was thus been suggested 
as a potential therapeutic treatment for AD (Al Qasem et al., 2022). A 
recent study using mice models of AD explored the neuroplastic 
effects of tACS (Jeong et al., 2021). They investigated the effect of 
gamma tACS on synaptic plasticity in a mouse model of AD. Forty Hz 
tACS was applied in a bilateral montage in the frontal lobe for 20 min 
for two blocks of 5 continuous days each, a total of 10 days. 
Measurements of field excitatory postsynaptic potential (fEPSP) and 
Western blotting analyses were used as indices of neuroplasticity. The 
authors found gamma tACS significantly enhanced fEPSPs for more 
than 90 min post-stimulation compared to the control groups (Jeong 
et al., 2021).

Imaging studies using different biomarkers have revealed tACS 
effects in AD patients (Sprugnoli et al., 2021; Dhaynaut et al., 2022). 
In a series of case and pilot studies, Dhaynaut et al. (2022) found that 
40 Hz tACS significantly reduced p-Tau burden (a marker for AD), 
and increased gamma power but no effect on amyloid plaque 
(Dhaynaut et al., 2022), while Sprugnoli et al. (2021) found increases 
in blood perfusion in the temporal lobe after tACS, which positively 
correlated with changes in memory function and gamma power. 
Furthermore, a single session of gamma tACS in mild cognitive 
impairment and AD patients led to significant improvement in 
episodic memory (Benussi et al., 2021, 2022), while, long-term after-
effects were observed for repeated stimulation over several sessions 
(Kehler et al., 2020; Bréchet et al., 2021). Improvements were observed 
in episodic memory every 2 weeks over a 14-week span with home 
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treatment with gamma tACS (Bréchet et al., 2021). Kehler et al. (2020) 
found that 40 Hz tACS in the DLPFC can improve memory function 
up until one-month post-stimulation.

5 Future outlook of tACS in clinical 
trials

5.1 Optimization via systematic titrations

Similar to other NIBS techniques, tACS parameters critically 
influence neuroplasticity. Dosing for tACS must be  re-examined 
thoroughly for the purposes of optimizing and extending the induced 
after-effects (Wu et al., 2021). Currently, there exist no systematic or 
standardized parameters for all disorders (Frohlich and Riddle, 2021). 
In many of the clinical trials reviewed above, the parameters were 
chosen based on previous pilot studies in small samples. The choice of 
electrode montage, stimulation current amplitude, duration of 
stimulation, number of repeated sessions, as well as the specific task 
all act synergistically to produce desired after-effects. Increasing 
current intensity might be helpful to prolong after-effects of tACS, 
while some configurations of electrode montage led to a better current 
distribution than others (Huang et al., 2017). In many of the clinical 
trials, the stimulation duration of 20–40 min per session was used. 
There is therefore a need for systematic studies that evaluate 
stimulation duration in the context of clinical application to find out 
whether short or long stimulation per session will lead to better 
neuroplastic outcomes.

5.2 Personalization of tACS via e-field 
modeling and closed-loop approaches

Another important aspect of optimizing tACS for clinical 
application is the use of simulations and modeling of current flow in 
the brain (Bikson et al., 2010; Datta et al., 2016; Huang et al., 2017; Van 
Hoornweder et  al., 2023; Baetens et  al., 2024; Wischnewski et  al., 
2024a). This method has already been used extensively in experimental 
research, where the parameters are carefully chosen and current flow 
is modeled to ascertain the outcomes (Huang et al., 2017), but often 
lacking in clinical trials. For specific neuropsychiatric patient 
populations, knowing how current flows in the diseased brain will 
help to fashion out parameters for that specific disease condition and 
sample (Boayue et al., 2018; Suen et al., 2021; Razza et al., 2023). The 
heterogeneity in patient samples as well as in-group differences makes 
it difficult to utilize the same or similar parameters across samples/
populations. For instance, neurological damage can have a major 
effect on electric field distributions (Manoli et al., 2017; Mantell et al., 
2021; Evans et al., 2023; Yoon et al., 2024). Ultimately, individualizing 
treatment parameters of tACS might be the solution to the lack of 
response observed in some patient samples.

Furthermore, closed-loop systems are currently been explored 
for experimental research (Wischnewski et al., 2024b; Zrenner and 
Ziemann, 2024), where there is a control over parameters of tACS 
based on the current brain state of participants. Closed-loop tACS 
is currently being explored by various groups (Brittain et al., 2013; 
Stecher et al., 2017; Ketz et al., 2018; Zarubin et al., 2020; Schwippel 
et al., 2024; Sousani et al., 2024). Brittain et al. (2013) adaptively 

adjusted tACS phase based on incoming tremor signals of PD 
patients. As such, in this study, the closed-loop setup relied on 
peripheral physiological information. Recently, Sousani et al. (2024) 
proposed a closed-loop stimulation approach based on brain-
related physiological signals to study tACS effects in PD. In a 
computational approach they showed that tACS can precisely 
modulate neurons in deeper cortical layers, such as in the basal 
ganglia. Further, closed-loop tACS may have potential in the field 
of neuropsychiatry. In a pilot study, Schwippel et al. (2024) applied 
closed-loop tACS at the individual alpha frequency in 10 MDD 
patients for five consecutive days. They found an 80% remission rate 
2 weeks after the treatment, as well as a significant reduction in 
alpha power. Altogether, closed-loop approaches show great 
potential, and future studies should further explore this method to 
optimize tACS parameters for efficient neurostimulation and 
prolongation of treatment outcomes.

The long-term effects of tACS treatment are essential for the 
adoption of this technique in the clinic. From the few clinical trials 
published so far, none investigated after-effects for longer than 
3 months post-intervention. Currently, the examples of Grover et al. 
(2022) and others demonstrate that there exists the potential to 
observe long-term effects, however, for clinical populations especially, 
follow-ups must be tracked for at least 6 months post-intervention. 
Longer follow-up periods, as well as getting a better understanding of 
long-lasting neurophysiological changes related to tACS, are two 
critical points that future studies should address.

6 Conclusion

TACS as a neuromodulatory tool has potential clinical 
applications. For this to become a reality, the effects induced by the 
stimulation must be long-lasting. In this review, we delved into the 
mechanisms by which this NIBS technique operates, elucidating 
plausible theories, as well as the exploring some recent clinical trials. 
The theories of tACS mechanisms cannot be immediately validated by 
the clinical trials reviewed, as these clinical studies were not concerned 
with mechanistic questions. Mechanistically though, tACS operates 
via subthreshold modulation of endogenous oscillations, which leads 
to entrainment of cortical rhythms within the frequency band of the 
external stimulation. Beyond the influence of cortical oscillations, 
tACS can also induce a modification of synapses that results in 
neuroplastic changes, often governed by the general rules of 
homeostatic plasticity. Finally, tACS like other NIBS techniques 
induces effects that are heavily influenced by the brain state. Recently, 
application of tACS in cognitive and clinical studies have seen a 
dramatic increase with many novel findings that suggest that the 
duration of after-effects can be  long. Long-term after-effects are 
indeed critical for the adoption of this neuromodulation technique, 
especially in the clinic where therapeutic use is often tied to the 
efficacy of stable long-lasting treatments. From the few clinical trials 
reviewed, tACS has shown promising results in the induction of long-
term therapeutic effects in major depressive disorders, schizophrenia, 
Parkinson’s, stroke and neglect, and Alzheimer’s disease. It should 
be noted that, though tACS effects can be explained by the various 
theories put forth, there is currently, to the best of our knowledge no 
systematic clinical study that shows therapeutic effects are a result of 
these mechanisms. We  hope future studies not only optimize 
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parameters of tACS, as well as personalized therapeutic use but also 
evaluate the efficacy of tACS mechanisms in clinical applications 
through neurophysiological methods.
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