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Introduction: Intracortical Brain-computer interfaces (iBCIs) are a promising

technology to restore function after stroke. It remains unclear whether iBCIs will

be able to use the signals available in the neocortex overlying stroke a�ecting

the underlying white matter and basal ganglia.

Methods: Here, we decoded both local field potentials (LFPs) and spikes

recorded from intracortical electrode arrays in a person with chronic cerebral

subcortical stroke performing various tasks with his paretic hand, with and

without a powered orthosis. Analysis of these neural signals provides an

opportunity to explore the electrophysiological activities of a stroke a�ected

brain and inform the design of medical devices that could restore function.

Results: The frequency domain analysis showed that as the distance between

an array and the stroke site increased, the low frequency power decreased, and

high frequency power increased. Coordinated cross-channel firing of action

potentials while attempting a motor task and cross-channel simultaneous low

frequency bursts while relaxing were also observed. Using several o	ine analysis

techniques, we propose three features for decoding motor movements in

stroke-a�ected brains.

Discussion: Despite the presence of unique activities that were not reported in

previous iBCI studies with intact brain functions, it is possible to decode motor

intents from the neural signals collected from a subcortical stroke-a�ected brain.

KEYWORDS

intracortical brain-computer interfaces, neurotechnology, motor control restoration,

stroke, neuroprosthetic, neurorehabilitation, microelectrode array, neuromodulation

1 Introduction

Stroke, a cardiovascular disease (Sacco et al., 2013), occurs when the blood supply is

blocked to a part of the brain or a rupture occurs in a cerebral blood vessel (CDC, 2024a).

Stroke is the leading cause of motor disability in the world, with a global prevalence of over

101 million people in 2019 (Feigin et al., 2021), and affecting over 9.4 million adults in

the United States according to NHANES 2017–2020 data (Martin et al., 2024) alone with

more than 795,000 cases each year (Feigin et al., 2022; CDC, 2024b). Between 60%–80% of

stroke survivors suffer from permanent motor disabilities in their upper extremities (UE)

or lower extremities on one or both sides of their body (Kwakkel et al., 2003; Gandhi et al.,

2020). Despite rehabilitation efforts, 50%–75% of survivors continue to experience long-

term motor deficit in their upper extremities that hinder their ability to complete activities

of daily living (ADLs) and reduce their quality of life (Lai et al., 2002).
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Intracortical brain computer interface (iBCI) technology

has been proven successful in restoring various functionalities

including motor and speech in persons with spinal cord injury

(SCI), amyotrophic lateral sclerosis (ALS), and brainstem stroke

(Hochberg et al., 2006; Donoghue et al., 2007; Collinger et al., 2013;

Bacher et al., 2015; Bouton et al., 2016; Ajiboye et al., 2017; Simeral

et al., 2021; Moses et al., 2021; Willett et al., 2021; Wandelt et al.,

2022; Willett et al., 2023; Costello et al., 2024). In stroke patients,

various non-invasive electroencephalography (EEG), and invasive

electrocorticography (ECoG) techniques have been investigated

to promote motor control rehabilitation (Yanagisawa et al., 2011;

Gharabaghi et al., 2014; Spüler et al., 2014b,a). Despite the success

of iBCIs in persons with brainstem stroke, they have not been

commonly evaluated in persons with stroke above the brainstem

because the risk/benefit proposition for them is distinct—for

example, provision of cursor control is not as significant for a

person who retains an intact hemi-body, and there is more motor

function at risk of harm due to implantation). Furthermore, as

cortical and subcortical strokes adversely affect more corticofugal

and corticopetal fibers than brainstem strokes, it has been unknown

whether the remaining cortex after subcortical stroke would

produce useful motor control signals.

To the best of our knowledge, our team was the first to

demonstrate that residual activity from neurons in the primary

motor cortex above a subcortical chronic stroke region can be

used to restore upper extremity (UE) motor control in the paretic

limb using iBCI control (Serruya et al., 2022). In our proof-

of-concept n-of-1 trial (Cortimo, NCT03913286), four 8 × 8

microelectrode arrays (MEAs) were implanted in the ipsilesional

primary motor cortex of a person with a chronic, subcortical

stroke and the recorded neural activity was decoded in real-time,

enabling the participant to voluntarily operate an UE orthosis to

reach, grasp, and release objects. The participant in the Cortimo

trial served as his own control, as the powered orthosis operation

could be triggered by surface electromyography or by the iBCI,

and the performance of each was compared. Over the course

of the 3-month trial, iBCI control permitted performance of

a greater number of grasping tasks and at greater speed than

peripheral EMG control, as measured by Jebsen-Taylor and the

Action Research Arm Test (ARAT), respectively. When attempting

tasks using EMG-based control, there was more resistance to

orthosis motion due to abnormal muscle synergy, which was

observed as forceful aberrant co-contraction of muscles across

several joints. Supplementary Figure S1 shows the hand kinematics,

electromyography (EMG), and associated neural data from an

iBCI-controlled performance of the ARAT.

The primary motivation for using intracortical arrays was the

evidence from previous human clinical trials demonstrating that

trial participants were able to rapidly acquire direct voluntary

control over outputs (e.g., cursors, FES) derived from the ensemble

activity of multiple single neurons that can only be recorded with

penetrating arrays (Hochberg et al., 2006; Ajiboye et al., 2017).

Findings from the Cortimo trial showed that high gamma band

local field potential neural features were necessary for behaviorally

useful real-time decoding (Serruya et al., 2022). The skull is known

to act as a low-pass filter, and hence this type of decoding would

not be expected to be possible from scalp EEG. Scalp EEG has never

been shown to provide the speed, effortlessness, and dimensionality

of decoded signals as intracranial signals (Tam et al., 2019).

While previous studies with ECoG have demonstrated successful

motor intention decoding and wrist trajectory predictions, the

ECoG grids covered intact motor-related brain areas and/or intact

sensorimotor systems (Spüler et al., 2014a,b). The results in Spüler

et al. (2014a) show that decoding performance was subpar for

participants withmore damagedmotor systems using ECoG arrays.

With microelectrode arrays, it is possible to target the stroke-

affected region specifically and extract residual activity to drive an

external orthosis, as demonstrated in the Cortimo trial.

In this paper, we present some analyses we conducted on the

Cortimo trial data and discuss potential considerations to make

when designing iBCIs intended to restore movement in people

with hemiparesis induced by subcortical stroke. Our experience

in the Cortimo trial suggests that the stroke-affected brain poses

unique challenges for iBCI decoding when compared to an intact,

healthy brain. First, successful iBCI decoding relies on a person

to consistently generate similar ensemble activity patterns with

similar timing across repeated attempts to imagine a particular

movement; however a person with cerebral stroke is likely to have

delayed or variable processing speed, so may be unable to generate

neural activity patterns of intended movement with consistent

timing relative to presented cues. Second, unlike a person who

has completely lost the ability to control a limb (e.g., those with

dense paresis), one with stroke typically exhibits a gradient of

weakness and impairment in the limb, with some movements

relatively preserved, and others significantly impaired. Hence, the

distinctions between “watch, imagine, attempt" (Vargas-Irwin et al.,

2018) are not as evident in persons with stroke as they are in

people with complete motor disconnection. Third, in a person with

stroke, aberrant motor patterns (such as agonist-antagonist co-

contraction or cross-joint flexor synergies) could give rise to spastic

opposition to motorized effectors, resulting in sensory feedback

that reverberates back to sensorimotor cortices, confounding the

decoding of their motor intent.

The purpose of this manuscript is to summarize features

of neural activity that we observed and infer to be due to the

subcortical stroke. Our intent is to bring to light challenges we

experienced while decoding neural signals seemingly unique to a

stroke brain and different from those reported in other iBCI trials.

We will present a subset of data collected during the Cortimo trial

and some offline analyses we conducted. We will also describe

decoding strategies we developed that may inform development of

iBCI devices intended to restore functional movement in people

with post-stroke paresis.

In this work, we will describe electrophysiological observations

of three study sessions in which our participant attempted tasks

with his paretic arm while neural data was recorded from four

implanted arrays, enabling us to observe neural activity at different

distances from the stroke site in response to movements of his

paretic hand, wrist, and entire limb, respectively. These sessions

occurred during the last week of the trial on two different days:

the first session consisted of a closed-loop session in which the

participant used iBCI control of an UE orthosis for reaching,

grasping, and releasing objects; the second consisted of an open-

loop iBCI session in which he performed isometric extension

and flexion of his paretic hand; and the third consisted of an

open-loop session in which he conducted a planar reaching task
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using his paretic arm. Novel offline analysis was performed for

the three sessions, namely, for the iBCI data we investigated

the advantages of statistical methods for channel selection and

of incorporating additional features, including phase-amplitude

coupling (PAC), on motor intent decoding. For the other two data

sessions, we performed offline neural population analysis to unravel

new potential stroke-related neural properties.

Overall, the data collected from these sessions revealed

decreased presence of gamma power, elevated delta power and

frequent coordinated cross-channel firing of action potentials,

which varied with respect to the distance from the stroke region,

when compared to intracortical data from healthy brains. The

bursting activity has not been reported in other iBCI trials,

and we hypothesize that this could be the result of aberrant

post-stroke physiology.

2 Materials and methods

2.1 Background—Cortimo n-of-1 trial

Details about the Cortimo n-of-1 trial, the investigational

device, participant, decoders used, and prior data analyses can be

found in our previous paper (Serruya et al., 2022). In brief, the

participant in the trial had suffered a right hemispheric subcortical

stroke that caused chronic left hemiparesis and transient aphasia.

We demonstrated in the trial that residual neural activity recorded

by the implanted arrays could be decoded and used to control an

upper extremity powered orthosis.

2.1.1 Description of the Cortimo system
The investigational device of our trial, the Cortimo system

(shown in Figure 1A), comprised the following components:

(1) four implanted 64-channel arrays (NeuroPort, Blackrock

Neurotech, Salt Lake City, UT) that were attached to two skull-

mounted connector pedestals (two arrays per pedestal), (2) custom

iBCI software, and (3) an UE powered orthosis. Two pairs of arrays

were implanted in the primary motor cortex precentral knob area,

and each pair was connected to a single percutaneous titanium

connector pedestal (Multiport) secured to the skull. The pedestals

transmitted recorded neural signals to external amplifiers and

computers via a cable connection. The Cortimo software, which our

team developed in MATLAB (Mathworks, Natick, MA), received

the discriminated single and multi-unit signals and local field

potentials (LFPs), decoded them with customized algorithms, and

generated output signals to control (via Bluetooth) the motors of

a commercially available powered UE orthosis (MyoPro, Myomo,

Inc., Cambridge, MA). We incorporated the MyoPro, an FDA-

cleared powered UE orthosis intended to facilitate movement for

stroke patients, to demonstrate that neural signals could be used to

restore voluntary opening and closing of the hand.

The arrays were implanted in the right hemisphere above the

subcortical stroke site, and the pedestals were secured on either

side of the sagittal midline of the skull. For purposes of analysis,

we labeled the pedestals as Left Pedestal (LP) and Right Pedestal

(RP), and their associated array pairs L1 + L2 and R1 + R2

respectively. Figure 1B shows the locations of the implanted arrays

along the pre-central gyrus, the location of subcortical stroke, and

the linear distances of each array from the centroid of the stroke.

Figures 1C, D display the intraoperative views of the arrays and

pedestal locations respectively. It is important to note that due to

a malfunction during the surgical procedure one array (R1) was

not properly inserted (Wu et al., 2021). Consequently, the single-

unit and multi-unit spike activity that it collected was sparse and

unreliable for analysis. Thus, although we analyzed LFPs from all

four arrays, spike data was extracted from all but R1.

2.1.2 Brief description of the full Cortimo dataset
Study visits for neural recording were scheduled for five days

each week of the 3-month long trial, and multiple recording

sessions could occur within a single visit. In this work, we

define a recording session (“session") as one continuous period of

neural recording. The complete Cortimo dataset contained ∼500

recording sessions overall. In each session, raw neural data in

the form of voltage time series were recorded and stored from

the implanted arrays using the NeuroPort (BlackRock Neurotech,

Salt Lake City, UT). The raw neural data was amplified, filtered

using a first-order 0.3 Hz high-pass filter and third-order 7,500

Hz low-pass filter, and digitized at a 30 kHz sampling rate. Single

unit activity and local field potentials (LFPs) were collected using

this data at run-time using the Blackrock Central Software Suite

(Blackrock Neurotech). We used the auto thresholding technique

with a –4.5× RMS threshold multiplier that detected a spike event

if the signal energy in the 1–5 kHz range exceeded the selected

threshold multiplier (Blackrock Neurotech). Along with the neural

data received at 30 kHz sampling rate, The LFPs were also bandpass

filtered between 0.5 and 2.5 kHz and stored at 10 kSamples/s using

the Central Software. For most sessions, neural data was collected

from only one pedestal at a time (i.e., from either arrays L1 +

L2 or arrays R1 + R2). However, for a few sessions, the data was

collected from both pedestals (all arrays). In addition to neural

data, kinematics and EMG signals were collected and recorded

during sessions in binary format using the Cortimo software. Elbow

joint angles and hand aperture were measured by the MyoPro

servomotors at 20 samples/s and root mean square (RMS) EMG

envelopes of elbow and hand extensor and flexor muscles were

measured by the MyoPro EMG sensors at 20 Samples/s.

In some sessions, the participant underwent isometric arm

strength testing and center-out reaching experiments using the

Kinarm Exoskeleton Lab system (BKIN Technologies, Kingston,

ON, Canada) without using iBCI control. During these sessions,

neural data was collected from the arrays along with data collected

from high density surface EMG (HD-sEMG) sensor banks (OT

Bioelettronica, SRL, Torino, Italy) placed along the participant’s

paretic arm.

2.2 Description of selected sessions and
methodology of o	ine analyses

In this work, we present data and offline analysis results

from these selected sessions. The goal is twofold: (1) to present

a deeper investigation into innovative iBCI features and decoders
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FIGURE 1

(A) The Cortimo System consists of recording arrays, relevant hardware, software, and a powered orthosis (image taken from Serruya et al., 2022).

(B) Representative location of the arrays in the primary motor cortex, pre-central gyrus (not to scale). Inset: Magnified view of the arrays and their

respective linear distances from the stroke site. Arrays L1 and L2 were connected to the left pedestal (LP), R1 and R2 to the right pedestal (RP), which

were in turn secured to the skull over left and right hemispheres of the brain respectively. (C) Intraoperative view of arrays during explanation (image

taken from Wu et al., 2021). (D) Location of pedestals on the skull with respect to the sagittal midline.

TABLE 1 The neural recording sessions considered in this analysis.

Activity Outcome
assessed

Duration of
recording session

Data
collected

Data
analyzed

Analyses conducted

iBCI controlled Action

Research Arm Test (ARAT)

Motor function of

the hand

32 min Neural data, Muscle

activity (EMG),

Kinematics

LFP and spikes,

Kinematics

Isolation of Oscillatory

Activity, Power Spectral

Density (PSD) Computation,

Channel selection using

spikes, Phase Amplitude

Coupling (PAC)

Isometric Wrist Flexion and

Extension

Muscle activity in

the forearm

68 min Neural Data,

High-Density

Surface EMG

(HD-sEMG)

LFP and spikes,

HD-sEMG

Isolation of Oscillatory

Activity, PSD Computation

KinArm Visually- Guided

Reaching Task

Movement of the

upper extremity

35 min Neural Data,

Kinarm Data

LFP and spikes,

Kinarm Data

Channel selection using

spikes, PSD Computation,

Population Decoding
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that may optimize iBCI performance for the stroke population; (2)

to describe our participant’s paretic arm function along with neural

data from all four implanted arrays. To achieve the former goal, we

used data from a single recording session in which the participant

used closed-loop iBCI control to trigger opening and closing of his

paretic hand by the MyoPro during the Action Research Arm Task

(ARAT). To achieve the latter goal, we used data from two different

sessions on the same day without the use of iBCI control or the

MyoPro: one in which the participant performed an isometric wrist

flexion and extension task with his paretic arm and another one

in which he performed various planar center-out tasks using the

Kinarm Exoskeleton. Table 1 summarizes these three sessions and

the types of analyses we performed.

2.3 Analysis of data acquired during the
Action Research Arm Test

2.3.1 Task description
The ARAT is a validated outcome measure of UE function that

involves a series of naturalistic unimanual and bimanual tasks, such

as picking up cubes of various sizes (Yozbatiran et al., 2008). In

the Cortimo ARAT session, the participant performed this task

using iBCI control of the MyoPro to open and close his paretic

hand. He was not given visual or auditory cues to imagine or

attempt a particular action but was simply given instructions and

encouragement by the study occupational therapist. He performed

the ARAT naturalistically at his own pace and was permitted to

adjust his posture and position independent of the iBCI system to

complete the tasks. The data collected during the ARAT session

included hand kinematics, EMG of UE muscles, and neural data

as shown in Supplementary Figures S1A–D.

2.3.2 Real-time decoder description
Details of the real-time decoder that we used are described

in our previous paper (Serruya et al., 2022). Briefly, we evaluated

a variety of standard continuous and discrete decoders, applying

them to inputs of either single- or multi-unit spike counts in 100

ms bins, or high gamma power per electrode, but the participant

was unable to achieve reliable voluntary control over any of them.

We investigated the signals and found they had unusual patterns,

likely due to nearby white and gray matter damage. Standard

decoders rely on a person mentally imagining the cued movement

at a consistent timing relative to the cue: our participant, however,

exhibited delayed and varying processing speed (evident even in his

unimpaired hand), such that he did not imagine or attempt certain

movements in a consistent manner, or generate consistent neural

activity patterns. Because the standard decoders based on spike

rates were not effective, we had to investigate other approaches,

and ultimately developed a training-less mapping method that

utilized the LFPs with a sliding-window approach. This technique

triggered a closing movement of the hand using mean spectral

power calculated from the LFPs, and triggered opening when LFPs

corresponding to the state of “relax(ing) the hand" were detected.

We calculated mean spectral power values by averaging the power

in the 100–500 Hz band with 50 Hz increments over the eight

most neuromodulated channels (NCs) from the L1 and L2 arrays

(left pedestal, LP). The NCs were selected using the Blackrock

Central Software Suite (Blackrock Neurotech) from 1-min of data

recorded at the start of the iBCI session. The software identified

NCs by calculating the modulation index which is the variance

of firing rate changes between 0 to 50 Hz in 10 bins with 50 ms

of data each. No channels from R1 and R2 (right pedestal, RP)

were used. The power was calculated using 1-s sliding windows

with 50% overlap from each channel in 100–500 Hz band with

50 Hz increments and then averaging across all channels and

frequency bands. Supplementary Figure S1E shows the features as

Power Spectral Density (PSD) averaged across the channels. We

selected thresholds such that if the mean spectral power exceeded

10 V2/Hz, the MyoPro would close the hand, and if the signal

returned to a baseline range (0.5 and 3 V2/Hz), it would open

the hand. This training-less approach was applied in 15 sessions

collected across 4 days and was found to be successful. In this

manuscript, we present an analysis of a session when the participant

was first learning to use the iBCI control (derived from recordings

of both pedestals) to attempt portions of the ARAT.

2.3.3 Frequency domain analyses
To observe the characteristics of neural data with respect to

distance from the stroke region, we conducted a periodogram

analysis and an Irregular Resampling Auto-Spectral Analysis

(IRASA) (Wen and Liu, 2016). The periodogram enabled us to

identify the activity in the frequency domain corresponding to

the hand motion. Using IRASA, the oscillatory component was

separated from the full spectrum to identify the active frequency

bands in the data.

2.3.3.1 Periodogram

To calculate the periodogram for the ARAT session, the LFP

signals from all channels were first band-pass filtered from 0.5 to

1kHz using an 8th-order Butterworth filter. Then, the 60 Hz line

frequency was eliminated using a band-stop filter. Then, the PSD

values were calculated using Welch’s method in the 0.5–100 Hz

band with 0.5 Hz increment with a 1-s window and an 80% overlap

to produce a feature set every 0.2 s to be used in a decoder (Shawki

et al., 2023).

2.3.3.2 IRASA—Separation of the oscillatory activity from

the full power spectrum

Electrophysiological signals’ PSD consists of two components:

an aperiodic (fractal) component that follows the power law

P ∝ 1/f β (where P is power, f is frequency, and β is

the aperiodic exponent) and a periodic (oscillatory) component

containing characteristic frequency band activities that appear

as spectral peaks. Previous studies showed that the aperiodic

activity can change due to age and disease affecting the balance of

excitatory and inhibitory synaptic currents that can be mistaken

for oscillatory peaks (Donoghue et al., 2020). In stroke-affected

brains, a steepened aperiodic component, reduced beta power,

and slowed alpha bands were found by performing the separation

of aperiodic and periodic components (Johnston et al., 2023).

Moreover, using the same technique, it was found that the

canonical frequency bands that are targeted for motor recovery
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differ in participants with disease (Stolk et al., 2019). Therefore,

we hypothesized that by decomposing the total PSD into

aperiodic and oscillatory components and subsequently isolating

the oscillatory components, we could identify distinctive frequency

bands associated with motor recovery. Investigating these relevant

frequency bands would be essential to building efficient decoders

for a stroke-affected brain.

To isolate the oscillatory components from the full power

spectrum, we applied IRASA to the data collected from each

array using the FieldTrip Toolbox (Donders Institute for Brain,

Cognition and Behaviour, Radboud University, the Netherlands)

implemented in MATLAB (Oostenveld et al., 2011). The IRASA

algorithm separates the aperiodic component from the PSD by

irregularly resampling the timeseries, against which the aperiodic

component is robust, while the oscillatory component becomes

distorted. Before applying IRASA to our data, the 0.5–1,000 Hz

band-pass filtered signals from each channel were z-scored using

a 30-s window. Each channel’s data was divided into 4-s segments

with a 75% overlap to capture two cycles of the 0.5 Hz component

along with a 1-s increment. To determine the aperiodic component,

the algorithm up-sampled the timeseries using 17 resampling

factors ranging from 1.1 to 1.9 with 0.05 increments and down-

sampled the timeseries using the inverse of these resampling

factors. For each of the up-sampling and down-sampling pairs,

the geometric mean of the PSD was computed, and the median

of all pairs was calculated—which was the aperiodic component of

power spectra of the given timeseries. The oscillatory component

was then calculated by subtracting the aperiodic component from

the total PSD.

For the ARAT session, 32 min of consecutive LFP data was

considered from all the channels of each array. The LFP data

was first band-pass filtered from 0.5 to 1kHz using an 8th-order

Butterworth filter. Then, the 60Hz line frequency and its harmonics

were eliminated using band-stop filters. After z-scoring the data

using 30 s of window, IRASA was applied to 0.5–30 Hz band for

this session with a 4-s window and 1-s increment so that two cycles

of 0.5Hz component were included.

2.3.4 O	ine responsive channel characterization
technique

The novel offline analyses presented in this paper include

selecting channels for feature extraction using recorded

spike, and subsequently extracting features from the LFPs.

We identified channels offline by applying a responsive channel

(RC) characterization technique on the signals that were classified

as spikes (which may have reflected single-unit or multi-unit

activity recorded at that channel) (Hosman et al., 2021). This

technique compared the spiking activities of each channel during

the hand closing and opening events and labeled a channel as

responsive if the difference between the two was statistically

significant (Kruskal Wallis [KW], p < 0.01) (Hosman et al., 2021).

Hand kinematic data was recorded as grip aperture (percentage

of the paretic hand’s range of motion), where the hand was

considered fully open at 100% and fully closed at 0%. This

data was later analyzed to identify opening and closing events.

A thresholding technique was applied to find valid closing and

opening events. A closing event was defined as the occurrence of

the hand initiating closing from an 80% or more open position and

reaching the fully closed position (0%). If the hand motion stopped

and resumed during a closing action, the latter closing action that

reached close (or at least 30% closed position) was considered the

closing event. Likewise, an opening event was considered if the

opening was initiated at 30% or less closed position and reaching

an open position (at least 80%). If the hand motion stopped and

resumed during an opening motion, the latter opening movement

that reached open (or at least 80% open) position was considered as

the opening event.

To identify the RCs in arrays L1, L2 and R2 (R1 data was

not used for reasons described previously), we selected 400 s of

kinematic and corresponding neural data, which contained 19

closing events and 21 opening events. This region was chosen

because it contained a significant number of closing events with a

full range of motion (fully open at 100% to fully closed at 0%). The

average trajectories of these events are shown in Figure 2A. Because

the closing events were not externally cued, we assumed that 1 s of

data preceding the event would provide enough data to capture the

motor planning. Event-related spike data was windowed using 1 s

pre- and 1 s post- event detection; such data windows were defined

as the event-related spike activity. The firing rates calculated in

each 100-ms window during the closing and opening events were

compared using KW analysis. The raster plots of two representative

channels from LP and RP corresponding to closing and opening

events along with mean and standard deviation of the firing rates

are shown (Figures 2B, C).

Using KW analysis, it was observed that in the 240-ms window

before an event initiated, firing rates from 57% (73 out of 128)

left pedestal channels were significantly different (KW, p < 0.01)

between the closing and opening events, and hence were denoted

as RCs. For the right pedestal, only 1 of the 64 channels (from R2)

had firing rates statistically different between closing and opening

events, in the windows 0.5 and 0 s before an event initiated. To

compare the data from both pedestals, we selected features of the

channel at 0.16 s before the event started for further analysis.

None of the channels used in the real-time ARAT task were

found to be responsive using the offline statistical technique. This

discrepancy likely arose because the NCs used for the ARAT online

decoder (using LFPs) were selected using the modulation indices

(using spikes) derived from the Central software with 1 min of data

collected prior to the start of the ARAT online-decoding session

as described in Section 2.3.2. However, the offline derived RCs

were computed using 400 s of ARAT data (online decoder) and the

KW analysis. The feature extracted from the LFPs of original NCs

were stable enough to drive the MyoPro device in real time (online

decoder) as shown in Supplementary Figure S1E even though the

spikes were not found to be significantly different using the offline

data and KW analysis.

2.3.5 O	ine feature extraction methods
To extract features corresponding to the closing events, the

LFP data from the RCs was first band-pass filtered from 0.5 to

1kHz using an 8th-order Butterworth filter and the 60 Hz line

frequency component was removed using a band-stop filter. We
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FIGURE 2

The responsive channel characterization technique. (A) the average

trajectories of 19 closing and 21 opening events, aligned at the start

of the event with spikes from one second before and after (B) The

raster plot of a representative channel from the left pedestal (LP, L1

+ L2) with mean and standard deviation of firing rates for closing

and opening events (calculated with 100 ms windows, 20ms

increments). There was increased activity before initiation of a

closing event and low to no activity at initiation of open event

(consistent with participant instructed to relax when he wanted to

open his hands). (C) The raster plot of a representative channel from

the right pedestal (RP, only R2 since R1 was incorrectly implanted)

with mean and standard deviation of firing rates. There is no activity

pattern associated with the closing or opening event.

investigated the use of phase-amplitude coupling (PAC) as an input

feature for motor intent decoding and to see if it might provide

insight into the dynamic behavior of the neuronal organization.We

calculated the PAC between the phases of the low-frequency band

and the amplitude of the high-frequency. We quantified the PAC

using a modulation index (MI) method, which uses the analytic

signal to quantify the PAC between the slower and faster neuronal

oscillations (Tort et al., 2010). We applied this technique to the

phases of 1–4 Hz low frequency band (Ramanathan et al., 2018)

and high frequency amplitudes of 70–450 Hz in 1-s windows with

80% overlap to decode an output every 0.2 s. The signals were

first filtered in these frequency ranges with band-pass filters, and

the appropriate phases and amplitudes were then extracted from

the analytic signal generated using the Hilbert transform. The –

180◦ to 180◦ phase range was separated into 20 bins, 18◦ apart.

The high frequency bands’ amplitudes were then accumulated in

the corresponding binned phases, and the mean of the amplitudes

in each bin was calculated. The mean amplitudes were then

normalized by dividing the bin value by the overall sum, per

the equation:

p(i) =
Ā(i)
N∑

k=1

Āk

, (1)

where, p(i) is the normalized amplitude of the ith bin, Ā(i) is the

mean amplitude in the ith bin,N is the total number of bins, and k is

the index of the bins. Finally, the modulation index was calculated

using the Kullback-Leibler (KL) distance ranging from 0 to 1, where

0 indicates no existing phase-amplitude coupling between the low-

frequency phase and high-frequency amplitudes. In such a case, the

amplitude distribution, p, resembles a uniform distribution. For our

analysis, we computed the average PAC values corresponding to 19

closing tasks.

2.4 O	ine analysis of data acquired during
isometric flexion and extension of the
paretic wrist

In this session, neural data and HD-sEMG data were

recorded while the participant performed isometric contractions

of his forearm muscles. The participant was seated in a chair

instrumented with an isokinetic dynamometer (BioDex; Shirley,

NY) and was strapped in securely to limit movement. Two 64-

channel HD-sEMG sensor banks (8 mm inter-electrode distance,

five columns× 13 rows, ELSCH064NM2; OTBioelettronica; Turin,

Italy) were placed one each over the wrist extensors and wrist

flexors of the paretic arm. Neural data was collected from both

pedestals while the participant performed several verbally cued

wrist extension and flexion tasks, with cues given before every

task. No real-time decoding was performed during these tasks.

The HD-sEMG data was saved in proprietary OTB format (OT

Biolettronica) and the neural data was recorded with the Nuroport.

Furthermore, one EMG channel and a synchronization pulse

train channel were shared between the two acquisition systems

for high temporal resolution offline data synchronization. Th

HD-sEMG data was converted to MATLAB’s data format, MAT,

using the OTBioLab+ software (OT Biolettronica). The HD-sEMG

and neural data were synced using cross-correlation analysis in

MATLAB using the common EMG channel and sync pulses. Three

trials of maximum voluntary isometric wrist extension (“wrist

extension max," WEM) were chosen for further analysis.

2.4.1 Frequency domain analysis
2.4.1.1 Periodogram

The neural data from the three WEM trials were manually

annotated into three time periods based on the sEMG responses:

pre-task, during-task, and post-task. Using periodogram and

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1544397
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shawki et al. 10.3389/fnhum.2025.1544397

IRASA analyses, the neural activity occurring during the WEM

task was analyzed. The LFP signals from all channels were first

band-pass filtered from 0.5 to 1kHz using an 8th-order Butterworth

filter. Then, the 60 Hz line frequency was eliminated using a band-

stop Butterworth filter. The resulting data was z-scored using a

30-s sliding window. The PSD values were calculated using Welch’s

method using a 1-s window with an 80% overlap from 70 to 450 Hz

with 0.5 Hz increment. This approach yields a new decoding output

every 0.2 s.

2.4.1.2 Oscillatory activity

To find the oscillatory characteristics in the pre-task, during-

task, and post-task time periods, we applied the IRASA method

described in Section 2.3.3. The filtered and z-scored LFP data from

each period were analyzed across the three WEM trials using the

MATLAB FieldTrip toolbox.

2.5 Analysis of data acquired during
performance of Kinarm visually guided
reaching task

Neural data and kinematics were recorded while the participant

performed reaching center-out tasks with the affected and

unaffected arm using a Kinarm Exoskeleton Lab. Various types

of data were collected by the Kinarm, including position, angular

velocity, angular acceleration, force, and torque in multiple

dimensions. The sync pulses from NeuroPort were also recorded

in the session for synchronizing the neural data with the recorded

Kinarm data. No real-time decoding was performed during

these tasks.

The Kinarm allowed free movement of the proximal and distal

arm in horizontal planes, facilitating flexion and extension of the

elbow and shoulder joints. The participant operated the Kinarm

manipulandum during the tasks, which were externally cued by

a red target displayed on a computer screen. While performing

tasks with the paretic arm, the participant was permitted to use the

unaffected arm for assistance.

For each trial, the participant was asked to move a cursor to

reach one of eight targets that were arranged in a circle equidistant

from a center position and separated by 45◦. Each trial involved

toggling between a center target and one of the eight targets

(selected randomly) within 14 s. In the given trial time, the

participant was instructed to toggle between the center and the

selected directional targets as many times as possible. After a break,

a new trial would begin with a different peripheral target. We

selected two center-out trials for further analysis: one performed

with the unimpaired arm and one with the assisted paretic arm.

Because we had limited time to perform this session, the participant

only performed two to four trials in each of the eight directions.

Supplementary Figure S2 displays the reaching trajectories for all

targets from these two trials; the movements to and from the

bottom-left (BL) target for both arms are expanded in the insets.

2.5.1 Frequency domain analysis
To observe the frequency domain activity of the arrays during

the center-out task session, we computed the periodogram and

applied the IRASA method described in Section 2.3.3. The LFP

signals from all channels were first band-pass filtered from 0.5 to

1kHz using an 8th-order Butterworth filter. Then, the 60 Hz line

frequency was eliminated using a band-stop Butterworth filter. The

data was z-scored using 30 s of previous data. The PSD values were

calculated using Welch’s method using a 4-s window with a 75%

overlap from 0.5 to 100 Hz with 0.5 Hz increment that captures

a decoding output every 0.2 s. The IRASA method was applied

using the same 4-s window with a 75% overlap to capture the full

two-cycle of 0.5 Hz frequency component.

2.5.2 Neural population decoding of Kinarm
activity

To understand if the directions of the center-out task were

encoded in the neural population, we performed population

decoding using the spike activity. We applied a responsive channel

characterization technique described in Section 2.3.4 to find

the channel for feature extraction by comparing baseline and

movement spikes. Due to the limited number of trials, we combined

both center-to-out data for a given target, and out-back-to-center

data for the target directly opposite (e.g., data collected while

moving from the center to the right target was combined with that

collected while moving the hand from the left target back to center).

By considering both center-out and out-to-center movements in

each of the eight directions, we were able to collect 24 movements

for the paretic arm (three in each direction) and 26 for the

unimpaired arm (three movements each, except for 4 in the left

and bottom directions) The baseline spikes for each target were

collected for 1 s starting from 0.25 s after reaching the previous

target. The movement spikes were collected for 1 s starting from

0.25 s before and 0.75 s after the appearance of a new target. The

firing rates were calculated for each 1-s spike activity with 300-ms

windows and 20-ms increments. Using the Kruskal Wallis analysis

(p <0.01), We found 19 and 12 (of 128 left pedestal channels)

responsive channels (RCs) respectively for the unimpaired and

assisted paretic arm tasks.

The channels identified as responsive were used to calculate

normalized leaky integrated firing rates (NLIFR) with 300-ms

sliding windows with a 20-ms increment. The raster plot and

the averaged NLIFR for all movements within 1 s before and

3 s after the target appeared are shown in Figure 3. For feature

extraction, we chose a segment of 0.5 s before and 1 s after a new

target appearance to investigate the movement planning phase. The

NLIFRs were normalized by the maximum firing rate occurring

within this chosen segment.

A linear model, Linear Support Vector Machine (linear SVM),

and, a non-linear model, k-nearest neighbor (kNN), were chosen

to classify the eight directions. Linear SVM has been widely

used for motor intention decoding and wrist trajectory prediction

because of its superior generalization capabilities and performance

reliability in high-dimensional feature space (Yanagisawa et al.,

2011; Spüler et al., 2014b; Schaeffer and Aksenova, 2018). The kNN

algorithm has been utilized for offline neural signal classification
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FIGURE 3

The spikes and normalized leaky integrated firing rates (NLIFRs)

aligned at the time of target appearance (indicated by the red

dashed line) for eight directions for both the unimpaired right and

paretic left arms. The target reach times are noted with the green

solid lines. The spikes were collected with a 300 ms sliding window

with 20 ms increment and then the leaky integrated firing rates were

calculated and normalized by the maximum firing rate within the

(–1, 3.5)-s long segments. (A) The participant reached 26 targets in

total with his unimpaired right arm. (B) He was able to reach 24

targets with his paretic left arm that was assisted by his unimpaired

right arm.

and predictions, such as motor imagery and arm movement

classification, in various studies (Chin et al., 2007; Ifft et al., 2013;

Kayikcioglu and Aydemir, 2010; Cajigas et al., 2021) due to its

simplicity and ease of implementation (Schaeffer and Aksenova,

2018).

We evaluated the neural features across four distinct

experiments. First, in 50 iterations, two samples for each direction

were chosen randomly for training and the rest for testing. Then,

to investigate the relationship between the samples and the labels,

we performed permutation testing by shuffling the labels with 500

iterations with same training and testing split. Again, to explore

the importance of the responsive channels, we chose 100 sets of

20 random channels from 128 channels of L1 and L2 and ran 50

iterations on each set. Lastly, all 128 channels of L1 and L2 were

tested with 50 iterations. Five metrics were chosen for comparing

the performance models: average accuracy, average precision,

average recall, average specificity, and average F1-score (Manning

et al., 2008).

3 Results

3.1 The iBCI ARAT session

3.1.1 Frequency domain analysis
Power spectral analysis of neural activity recorded from the

four intracortical arrays revealed a pattern where high frequency

power was attenuated and low frequency power increased in the

arrays closer to the centroid of the underlying subcortical stroke

(R1 and R2), relative to the arrays further away (L1 and L2). In

addition to this pattern, which was present throughout the duration

of the session, superimposed patterns that fluctuated were also

evident, with periodic bursts of low-frequency power seen in R1

and R2 and fluctuations in high frequency activity corresponding

to hand motion seen in L1 and L2. Figure 4A displays the hand

kinematics during 120 s of the session, and Figures 4C–F display

the periodogram and spike raster plots for each array during that

time. Figure 4B shows the array location in the precentral gyrus

for reference (not to scale). Figure 4C shows the neural activity

associated with R2 which is the closest to stroke region: rhythmic

activity in the 7–18 Hz ranges from 5–78 s can be observed when

the hand stayed open for about 50 s; this rhythmic 7–18 Hz activity

was also seen in the R1, which was not fully implanted into the

cortex (Figure 4D). In the R2 array, a high frequency burst is

noticed at the 106th s. The spike raster plot shows a few episodes

of coordinated cross-channel firing occurring around hand closing

events shown in Figure 4A. The R1 array did not collect spikes

which is evident in the raster plot. In the L2 array, shown in

Figure 4E, no low frequency rhythmic activity was observed, but

strong high frequency activity was observed corresponding to the

hand closing events. The raster plot shows coordinated cross-

channel firing happening at those times as well. Finally, Figure 4F

shows the average frequency domain activities and spike raster plot

of the L1 array, the farthest from the stroke. It demonstrates that

there were strong high frequency activities and some non-rhythmic

low frequency activities when the hand stayed open between 5–

55 and 90–115 s. The raster plot shows more activity in L1 than

in all other arrays, as well as coordinated cross-channel firing that

aligned with the hand closing events and the high frequency activity

in the periodogram.
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FIGURE 4

Neural activity recorded by arrays during the iBCI ARAT session. (A) Kinematics of hand closing events during iBCI control of orthosis (hand was fully

open at 100% and fully closed at 0%). (B) Array positions with respect to the stroke location. (C) R2, closest to stroke region, did not have strong high

frequency activity; but some rhythmic activity in the low frequency region when the hand remained open, and a high frequency burst. The spike

raster plot shows some coordinated cross-channel firings lasting for less than a second which coincident with the hand closing events shown in (A).

(D) R1 was incorrectly implanted but shows similar high and low frequency activity as R2 in the periodogram. Despite not collecting enough spikes, it

did show brief, coordinated cross-channel firings aligned with those of R1. (E) L2 had strong high frequency and coordinated cross-channel firings

coincident with closing events, and no low frequency rhythmic activity. (F) L1, farthest from stroke region, showed strong high frequency activities

coincident with closing activities and some low non-rhythmic frequency activities while the hand remained open. The raster plot shows activity

corresponding to the closing events.

3.1.2 Oscillatory activity
Figure 5 displays the oscillatory activity in the 0.5–30 Hz range

associated with the full iBCI ARAT session. The highest peak of

average oscillatory activity for all arrays was at 0.73 Hz. They also

show some activity in the 17–28 Hz range. Starting with the closest

array to the stroke site, R2, on the lower left corner, the average

peak at 0.73 Hz is strongest in this array at 6.79 ± 4.70 × 10−3

a.u. (arbitrary unit) among all the correctly implanted arrays. A

narrow peak at 9–14Hz range is visible as well that can be a result

of the rhythmic activity shown in PSD in Figure 4C occurring all

throughout the session. In the lower-right corner of the Figure 5,

one can see that R1’s average peak at 0.73 Hz (10.10± 10.86× 10−3
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FIGURE 5

Oscillatory activity during the full iBCI ARAT session, extracted using the IRASA method for each individual array. The oscillatory activities show a peak

at 0.73 Hz that is common across all arrays. in the lower-left corner, R2 is the closest array to the stroke region and displays the strongest peak at

0.73 Hz among all the correctly implanted arrays. The peak at 9–14 Hz range can be a result of the rhythmic activity in this array as shown in the

periodogram data. Next, in the lower-right corner, R2’s average peak at 0.73 Hz is stronger than R1, but, since it was not correctly implanted, it might

be due to high impedance. The latter peak at 9–14 Hz is weaker than that of R1. In the upper-left corner, L2’s peak at 0.73 Hz is slightly weaker than

that of R1. It does not have any activities like R1 or R2 but has some activities in 3–9 and 16–27 Hz bands. Lastly, upper-left corner shows the

oscillatory activity of L1 where the average peak at 0.73 is weaker than R1 and R2 as well. There are some activities in 8–27 Hz band.

a.u.) is stronger than R2, but, since it was not correctly implanted,

this power can be due to higher impedance. The latter peak at 9–

14 Hz is weaker than that of R1. On the upper-left corner, L2’s

0.73 peak has a power of 6.38 ± 8.24 × 10−3 a.u. along with some

activity in 3–9 Hz band. Lastly, the farthest array from the stroke

region, L1, shows the weakest peak at 0.73 Hz with a power of

5.72± 8.63× 10−3 a.u. the oscillatory activity also displays activity

in the 9–27 Hz range.

3.1.3 O	ine features
Using the responsive channel characterization technique

described in Section 2.3.4, we identified 73 responsive channels for

the LP (L1 + L2) and 1 for the RP (R2) as shown in Figure 6A.

Using these channels, we calculated the average firing rates, average

PSD, and average MI values associated with all closing hand

events. Figure 6B displays the average firing rates for LP and RP

channels, calculated with a 1-s sliding window with a 200 ms

increment (80% overlap). The LP channels’ firing rates increased

before the closing events initiated and fell once the hand started

to close; the RP channel firing rates did not exhibit any pattern

associated with the events. Additionally, PSDs were computed with

the periodogram method on MATLAB from the identified RCs

using a 1-s sliding window with an 80% overlap, 70–450 Hz band

with 0.5 Hz increment. As shown in Figure 6C, in the average

periodogram of the LP channels, the PSD values became stronger

before the closing event initiated and weakened once themovement

happened; however, R2 showed weak activity in this high frequency

band, suggesting that neural activity recorded in that area of the

brain was not coupled to intended hand movement. Figure 6D

displays the MI, calculated using a 1-s sliding window with an

80% overlap. The average MI in LP channels increased before the

closing event was initiated and decreased when movement started

happening, suggesting a correlation with motion planning.
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FIGURE 6

O	ine features extracted from responsive channels correlated with

closing events for the iBCI ARAT session. (A) The maximum number

of responsive channels in this 2-s range at 0.24 s before the closing

event. Out of 128 channels of the left pedestal (LP, L1 + L2), 57.00%

or 73 channels were responsive, (i.e., the firing rates were

significantly di�erent (KW, p <0.01) during closing compared to

opening) were responsive. On the other hand, only 1/64 channels

from the right pedestal (RP, R2) was responsive. R1 was not included

in this analysis as it was not implanted correctly. (B) The average

firing rate during closing events for all responsive channels. (C) the

average PSD features of the responsive channels in the 70–450 Hz

region with 10 Hz increment, averaged for all closing events. (D) the

phase-amplitude coupling (PAC) features between the phase of 1–5

Hz and amplitudes of 70–450 Hz band, calculated and averaged for

all closing events using modulation index (MI) method across all

responsive channels.

3.2 The isometric wrist flexion and
extension task

3.2.1 Frequency domain analysis
We chose three WEM tasks for further analysis in the open-

loop iBCI isometric Wrist Extension and Flexion session. Along

FIGURE 7

Frequency Domain Analysis and spike raster plots during a WEM

task. (A) Wrist torque during the task. (B) RMS EMG envelopes of

wrist extensors and flexors, indicating co-activation. (C) Individual

and cumulative spike trains of seven motor units from the HD-sEMG

data of the wrist extensors. (D) Individual and cumulative spike trains

of five motor units extracted from the HD-sEMG data of the wrist

flexors. (E) The periodogram and raster plot corresponding to the

WEM task in R2. The periodogram shows high-frequency activity

before and after the task, which disappears when the task begins at

the 9th s. During the task, high-frequency activities are visible at

15–18 s. The raster plot does not show any visible patterns

corresponding to the task. (F) R1 shows behavior similar to R2 in

both the periodogram and raster plots. (G) L2 shows low-frequency

activity only before the task starts. During the task, high-frequency

activity is seen throughout the entire duration, with no visible

activities after the task. The raster plot shows coordinated

cross-channel firings during the task. (H) L1 shows low-frequency

activity both before and after the task, as well as high-frequency

activity during the task. The raster plot is more active for this array,

also showing coordinated cross-channel firing during the task.

with the neural data, muscle activity from the wrist extensors

(WE) and flexors (WF) were calculated using HD-sEMG sensors.

Figure 7A displays the torque of the paretic wrist during the
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extensionmovement. Figure 7B shows the RMS EMG envelopes for

the wrist flexor and extensor muscles during the task, indicating

that while the wrist extensors were stronger than the flexors,

there was co-activation. Figures 7C, D display the motor units and

cumulative pulse trains of wrist extensors and flexors respectively,

which also indicate co-activation. The periodograms and spike

raster plots shown in Figures 7E–H display the neural activities in

the arrays, in order of closest to farthest distance from the stroke

location. In R2, Figure 7E, some activity in the low frequency range

(9–16 Hz) was observed before and after the task, but visible high

frequency activity can only be seen in 15–18 s. The absence of

low frequency activity is similar to µ-suppression. The raster plot

does not show any distinctive spiking activity correlated with the

WEM task. R1’s neural activity, shown in Figure 7F, is like that

of R2. In L2, Figure 7G, shows activities in both low and high

frequency ranges. However, the elevated low frequency activity can

only be seen before the task starts. The activities associated with

the movement can be seen from 15–100 Hz range in 9–18 s time

period. The raster plot shows associated coordinated cross-channel

firing in this time period as well. Lastly, in Figure 7H, L1 shows low

frequency activity both before and after the task takes place. The

strong high frequency activity takes place from 35–100 Hz in 9–

18 s time period. The raster plot for L1 shows more activity than

any other array and displays the bursts of activity when the task

takes place.

3.2.2 Oscillatory activity
The average oscillatory activity of all arrays corresponding to

pre- and during- the WEM task is shown in Figure 8 (post-task

was equivalent to pre-task so it was not included in the figure).

The figure displays power spectrums of the oscillatory activity in

low frequency (0.5–30 Hz) and high frequency (65–100 Hz) zones,

to observe the frequency domain activity in each zone with the

externally cued task, and how the activity differed based on the task

state. Starting from closest array to the stroke, R2, in the lower left

corner, both before and during the task there are strong peaks in

1.46Hz. Before the task, the average power was 3.54± 2.19× 10−3

a.u. and, during the task, the average power decreased to 2.96 ±

3.36 × 10−3 a.u. Before the task, strong activity can be seen in

7–16 Hz range along with 16–18 Hz and 18–17 range. However,

during the task, there was no more strong activity in R2 in the low

frequency range. During the WEM tasks, the average oscillatory

activity in the pre-task state is weaker than during-task state which

is expected. In R1, (lower right of Figure 8), strong low frequency

peaks can be seen at 1.46 both before (4.21± 2.74× 10−3 a.u) and

during (5.21 ± 8.39 × 10−3 a.u) the task. Like R2, other strong

activity can be seen in 7–15 Hz range. However, unlike R2, there is

a peak in the 10–13 Hz range during the task. In the high frequency

range, the activity is much stronger during the task than before the

task. In L2 (upper-left of Figure 8), the peaks in the low frequency

still happen at 1.46 Hz with 2.00 ± 1.41 × 10−3 a.u. before and

2.69±2.49×10−3 a.u. during the task. The rest of the activity in 0.5–

30 Hz range shows strong peaks in 3–9, 9–15, and 15–27Hz ranges.

During the task, there are some peaks in 3–6 and 9–14 Hz range. In

the high frequency zone, the power is stronger during the task than

before the task. The power during the task is comparatively stronger

than those seen R1, R2, and L1. There is also a visible peak at 80

Hz. In L1 (upper-left Figure 8), which is the farthest array from the

stroke, the low frequency peak before the task happens at 2.20Hz

with 1.16± 0.74× 10−3 a.u. instead of 1.46 Hz unlike all the other

arrays. However, the low frequency peak during the task happens

at 1.46 Hz with 1.15 ± 0.75× 10−3 a.u. There is also a strong peak

in 9–15 Hz range along with some activities in 15–27 Hz range. In

the high frequency zone, the power during the task is stronger than

before the task as expected. There is also a peak at 80Hz which is,

however, not as strong as the one seen in L2. Among all the correctly

implanted arrays, the strongest low frequency peak was seen in R1

and lowest low frequency peak was seen in L1 and both happened

before the task.

3.2.3 Oscillatory activity of the entire isometric
wrist flexion and extension session

The oscillatory activity during the full session was also

computed for each array, and are presented in Figure 9. The low

frequency peaks in all the arrays happen at 0.73 Hz. R2’s power at

this frequency is 5.63±3.74×10−3 a.u., R1’s 8.09±8.84×10−3 a.u.,

L2’s 3.08± 2.12× 10−3 a.u., and L1’s 2.39± 2.14× 10−3 a.u. Both

R1 and R2 show strong peak in 8–15 Hz range with some activity

in 16–27 Hz range. L2 shows some activities in 3–8 Hz and 16–27

Hz ranges which are consistent with the WEM activity. Lastly, L1

shows some activities in 9–27 Hz range.

3.3 Analysis of planar reach task data

3.3.1 Population decoding
Table 2 shows the results of population decoding the activity of

classified single-unit ensembles relative to the eight cued directions.

With the original labels, the Linear SVM scored better than the

k-NN model across all metrics and for both arms. The best

performance was achieved for the paretic arm—with a 0.4650

accuracy score and 0.3789 F1 score. When the labels were shuffled,

the results were not better than chance (12.5%) proving the

relationship between the original labels and the neural features.

With the randomly selected 100 sets of 20 channels, the overall

results were inferior to those obtained with the responsive channels.

The results with all 128 channels also show subpar results compared

to only using the responsive channels’ performance.

3.3.2 Oscillatory activity of the entire session
The oscillatory activity during the full Kinarm session was

computed for the individual arrays as shown in Figure 10. The low

frequency peak in all the arrays happens at 0.73 Hz. R2’s power at

this frequency is 14.17 ± 16.63 × 10−3 a.u., R1’s 17.72 ± 20.17 ×

10−3a.u., L2’s 5.57± 8.37× 10−3 a.u., and L1’s 4.72± 5.97× 10−3

a.u. Both R1 and R2 show strong peak in 7–17 Hz range with some

activity in 16–27 Hz range which was also seen in the Isometric

task session. L2 shows some activities in 2–8 Hz and L1 in 2–27

Hz range.
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FIGURE 8

The average oscillatory activities in 0.5–30 and 65–100 Hz bands during the three WEM task divided into pre and during the task. In R2, the low

frequency peaks of both pre and during the WEM task are closer in power. Before the task, R2 shows some activities throughout the 0.5–30 Hz band

but, during the task, no such activities are observed. In the 65–100 Hz band, average power is higher during the task than before the task. R1 shows

activities like R2 before the task in 0.5–30 Hz band. However, during the task, the 1.46 Hz peak has more power than before the task along with a

10–13 Hz peak. In the 65–100 Hz band, the activity is similar to R2. Farther from the stroke, L2 shows stronger activities in 0.5–30 Hz band for

pre-task than during the task. On the other hand, the activities in 65–100 Hz band show stronger activity during the task which is expected. L1 shows

similar behavior to L2 for across the bands and both conditions except for a peak in 9–15 Hz band before the task in low frequency zone.

3.3.3 Oscillatory activity of the Kinarm
center-out tasks for both arms

Supplementary Figures S3, S4 show the periodogram,

raster plots, and oscillatory activity for unimpaired and

paretic arms respectively. In both figures, there are strong

low frequency activities in R1 and R2 compared to L1 and

L2 with visible peaks in 8–14 Hz range. There were no long

coordinated cross-channel firing bursts in these center-out

tasks’ raster plots as seen in the data from other sessions.

Unlike other sessions, where he was primarily performing

tasks with his wrist, in this session, he was moving his

whole arm.
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FIGURE 9

The oscillatory power spectrums of all the arrays during the isometric wrist flexion and extension session. Common low frequency peaks at 0.73Hz

are visible in all the arrays. The peaks at R2 and R1 have more power than the ones seen in L2 and L1. Both R2 and R1 have peaks at 8–14 Hz band

with some activities in 16–27 Hz. L2 shows activity in 3–8 Hz and 16–27 Hz and L1 shows some activities in 9–28 Hz range.

4 Discussion

In this paper we presented an analysis of the intracortical

recordings collected from the cerebral cortex in the precentral

gyrus overlying a subcortical stroke. Various studies using EEG

and magnetoencephalography (MEG) in stroke patients have

found the classical delta band (1–4 Hz) increases while alpha,

beta, and gamma decrease (Sutcliffe et al., 2022). In our study,

among the three correctly implanted arrays, R1 was the closest

to the stroke site. This array’s power spectrum showed increased

power in the low frequency bands, 0.5–4 and 8–30 Hz for

all sessions.

It was observed that as the distance between an array and the

stroke site increased, the low frequency power decreased, and high

frequency power increased. In all sessions, increased low frequency

power was evident in R2 (closest to stroke) and attenuated low

frequency power evident in L1, the array furthest from the stroke.

Elevated high frequency power was observed in the arrays L1 and

L2 but attenuated in R2; periodograms of the sessions suggest that

high frequency activities correlated with motor movements.

Frequent coordinated cross-channel firing (time-aligned bursts

of classified action potentials) was evident during the sessions as

shown in Figures 4, 7. Along with these sessions reported in this

paper, an additional session’s raster plots and the corresponding

firing rates shows the same activity in Supplementary Figure S5

along with the MyoPro hand and elbow trajectory. In this case,

the data was collected in open-loop while the MyoPro was being

operated externally by an investigator. To our knowledge, these

coordinated cross-channel firing of action potentials have not

been reported before in healthy brain iBCI trials. Interestingly,

when the participant moved his whole arm as evident in

Supplementary Figures S3, S4 (kinarm center-out for both arms)

rather than isolating his wrist, such coordinated cross-channel

firing for long duration is not seen.

The cross-channel simultaneous low frequency bursts

could reflect a pathologically synchronized network, increased
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TABLE 2 Population decoding of the Kinarm center-out tasks.

Labels Arm Channels Model Training
iterations

Average
accuracy

Average
precision

Average
recall

Average
specificity

Average
F1 score

Original

Unimpaired 19 RC k-NN 50 0.3740 0.3211 0.3413 0.9106 0.3052

Paretic 12 RC k-NN 50 0.3025 0.1941 0.3025 0.9004 0.2254

Unimpaired 19 RC Linear SVM 50 0.3820 0.3419 0.3688 0.9120 0.3304

Paretic 12 RC Linear SVM 50 0.4650 0.3415 0.4650 0.9236 0.3789

Shuffled

Unimpaired 19 RC k-NN 500 0.1238 0.0810 0.1245 0.8746 0.0902

Paretic 12 RC k-NN 500 0.1253 0.0738 0.1253 0.8750 0.4804

Unimpaired 19 RC Linear SVM 500 0.1262 0.0818 0.1258 0.8750 0.0909

Paretic 12 RC Linear SVM 500 0.1217 0.0716 0.1217 0.8745 0.0848

Original

Unimpaired
20 random

(100 sets) k-NN 50× 100 0.2432 0.1650 0.2493 0.8918 0.1824

Paretic
20 random

(100 sets) k-NN 50× 100 0.2932 0.1797 0.2932 0.8990 0.2100

Unimpaired
20 random

(100 sets) Linear SVM 50× 100 0.2670 0.1858 0.2735 0.8952 0.2037

Paretic
20 random

(100 sets) Linear SVM 50× 100 0.3238 0.2132 0.3238 0.9034 0.2439

Original

Unimpaired 128 k-NN 50 0.2737 0.2206 0.2738 0.6594 0.2293

Paretic 128 k-NN 50 0.3382 0.2275 0.3382 0.6435 0.2576

Unimpaired 128 Linear SVM 50 0.3084 0.2520 0.3260 0.6649 0.2698

Paretic 128 Linear SVM 50 0.3495 0.2449 0.3495 0.6452 0.2754

The best performances for both the unimpaired and paretic arms are indicated in bold font.

excitability, or disinhibition following stroke. While spectral

slowing is ubiquitous in post-stroke EEG (Johnston et al., 2023),

in particular overlying the lesion, bursting activity typically is only

manifest at the scalp EEG in the context of post-stroke seizures,

either as part of an ictal phenomenon or as intermittent interictal

aperiodic process (Verma and Kooi, 1986; Saitoh et al., 1992).

Aperiodic bursts of epileptiform transients are distinct from

periodic lateralized discharges, the latter of which are invariably

associated with altered consciousness (Niedzielska et al., 2000).

Term neonates with perinatal arterial ischemic stroke who develop

seizures exhibit interictal unilateral bursts of theta activity with

sharp or spike waves intermixed, and these bursts are distinct

from 1–2 Hz seizures (Low et al., 2014). Decreased excitation or

enhanced subcortical inhibition has been shown to disrupt the

thalamocortical system toward aberrant entrainment manifest as

low-frequency bursts (van Wijngaarden et al., 2016). The power

spectra of scalp EEG of people with stroke (and without clinical

epilepsy) may show a broad reduction in β-band activity, a

downward shift of dominant α-peaks, and increased power over

the lower frequencies (δ and θ-range). Computational modeling

implies that a lesion extending to cortex could lead to sustained

cell membrane hyperpolarization in corresponding thalamic

relay neurons, leading to de-inactivation of voltage-gated T-type

Ca2+-channels, the net effect being transition of neurons from

tonic spiking to a pathological bursting regime (van Wijngaarden

et al., 2016). Once initiated, this thalamic bursting becomes

synchronized at a population level via divergent intrathalamic

circuits and entrainment of thalamocortical pathways that

propagate the low frequency bursts beyond the lesion location. A

resting state magnetoencephalography study with chronic stroke

patients found that abnormally elevated low frequency power was

best explained by a steepening of the aperiodic component of the

power spectrum, rather than an enhancement of low frequency

oscillations (Johnston et al., 2023). A large-scale model of the

neocortex implied that post-stroke changes in excitatory-inhibitory

homeostasis drove widespread increases in excitability (dos Santos

et al., 2023). EEG spectral slowing, and changes in the power-law

decay, when quantified as a spectral exponent metric, reliably

correlates with clinical recovery (Lanzone et al., 2022).

Our results confirm the widely observed spectral slowing

seen in scalp EEG (increased low frequency and attenuated

high frequency spectral power) at a higher spatial resolution

in an intracortical ipsilesional location, and reveal cross-channel

bursts of action potentials. In the context of prior literature and

modeling, the spectral slowing may result from the disrupted

linkage between the recorded cortex and the thalamus disrupting

excitation-inhibition homeostasis and unmasking an aberrant

entrainment and pathological bursting arising from spared

thalamus propagating into ipsilesional cortex. Computational

modeling might help clarify if the cross-channel bursts of

action potentials that we observe are more consistent with

increased low frequency oscillations, or if instead they represent

single unit ensemble autocorrelations in the time domain that

are steepening the aperiodic components independently of low

frequency oscillations. These findings bear upon future neuro

restorative strategies: first, our results suggest that usable voluntary
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FIGURE 10

The oscillatory power spectrums of all the arrays during the Kinarm session. Common low frequency peaks at 0.73Hz are visible in all the arrays. The

peaks at R2 and R1 have more power than the ones seen in L2 and L1. Additionally, both R2 and R1 have peaks at 7–17 and 16–27Hz bands. L2

shows activity in 2–8 and 16–27 Hz and L1 shows some activity in 8–15 Hz range.

motor control signals can be derived in spite of the evident

post-stroke excitation-inhibition homeostasis and thalamocortical

activity disruptions; second, neuromodulation strategies (vagus

nerve stimulation, spinal cord stimulation, non-ablative functional

ultrasound, cortical stimulation) that normalize the spectral

slowing and action potential hypersynchrony, could improve the

yield of BCI decoders recording cortical activity.

This study presented three offline features: average firing

rates, average power spectral density (PSD), and average phase-

amplitude coupling (PAC), which displayed modulation with the

closing movements initiated by the participant. The extraction

of PAC using the modulation index (MI) (Tort et al., 2010) is

a computationally demanding process and may not be trivially

implemented for real-time applications. However, real-time

implementations of PAC and the estimation of phase and amplitude

have been proposed, which can be adapted for online PAC feature

extraction (Dellavale et al., 2013; Lu et al., 2018; Rosenblum

et al., 2021; Salimpour et al., 2022). Lu et al. (2018) introduced

MSPACMan (Multirate Sub-banded Phase-Amplitude Coupling

for Microelectrode Acquisitions with Noise), a Python library

that computes MI using vectorized calculations with popular

Python libraries such as NumPy and SciPy. Their optimization

methodology introduced filtering in the frequency domain rather

than the time domain, which allowed them to apply FFT only

once per data segment. The vectorization process, combined with

parallel processing, significantly reduced the runtime. MSPACMan

required only 0.1 s to calculate 225 PAC values compared to 33.8

s with the traditional implementation. The results demonstrated

that this method yielded PAC values similar to the traditional

implementation, even with a low signal-to-noise ratio, where the

PAC value increased as the noise decreased, and vice versa. Due

to its faster computation time and robustness to noise levels,

MSPACMan can be considered for real-time PAC computation in

future work.

The population decoding performance of the planar reach task

was not as high as that of similar studies. Using 12 responsive

channels’ leaky integrated firing rate features, we achieved 46.5%

accuracy for the paretic arm. In a study establishing an animal

model for iBCI, a monkey implanted with a 10× 10microelectrode

array performed a four-directional center-out task using its wrist.
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The firing rates showed highly discriminatory properties (105/149

neurons), and the four directions were classified with a 96%

accuracy using an SVM (Zhang et al., 2012). In a human study

evaluating intra-day signal stabilities, two participants with ALS

achieved 56±22% in a four-directional and 70±22% in an eight-

directional center-out task (Perge et al., 2014). A more recent

human study implemented a decoder based on a recurrent

neural network for eight-directional center-out cursor control

and tested it in real-time where the decoder performed with

an average of 93.8% accuracy in this time over 3 months

(Hosman et al., 2023). Since the participants of these two

studies were tetraplegic with intact cerebrums, the tasks were

imagined rather than physically performed, as in the Cortimo trial.

Nevertheless, despite the Cortimo participant being stroke-affected,

we successfully identified discriminatory features and performed

population decoding.

This study is limited by several factors. First, the data was

collected from a single participant, rendering it impossible

to determine which neurophysiological patterns might be

representative of the stroke-affected cerebral cortex rather than

idiosyncratic features of this one individual. For example, the

participant had fluctuating arousal: sometimes he was alert and

intensely engaged, and other times he would become distracted

and fall asleep. Second, HD-sEMG and Kinarm data were only

recorded on a single day, precluding inference of longitudinal

patterns. Third, the participant was ambulatory and could move

the unimpaired limbs of his body as he wished, which could have

added noise to the neural data collected.

In most previously published results of iBCI trials, the neural

machinery of motor control in the brain was intact up until

the area of injury (e.g., infarction of the pyramidal tracts due

to basilar artery occlusion, or traumatic injury of the cervical

spinal cord). When stroke affects one or more other regions of

the brain beyond the brainstem, more aspects of motor control

and other systems can be disrupted. Our experience of the n-of-1

trial highlighted several challenges that may need to be considered

when developing iBCIs for people with cerebral stroke. While we

do not propose that the deficits seen in our one participant are

necessarily generalizable across all individuals with cerebral stroke,

we anticipate that some of these challenges would occur in other

individuals. These challenges included:

Inconsistent task performance. Our participant exhibited

behavioral processing delays in performing tasks with his

unimpaired upper extremity, suggesting a central cognitive deficit.

Such processing delays could arise from disruptions in mood,

memory, cognition, visual perception, processing speed, executive

control, and proprioception due to direct damage to corticofugal

fibers. It is possible that repeatable patterns of activity could be

present in the cortical areas overlying chronic stroke, yet the

consistency of their timing could be altered. If repeatable patterns

of activity were present, conceivably they could be modeled on a

per patient basis to optimize the decoder performance. A sliding

window search algorithm and time-warping techniques (Willett

et al., 2021) could be beneficial in iBCI users with history of

intracerebral stroke.

Gradient of intact and impaired function and unintended

motor activation. Our participant exhibited major impairments

in finger and wrist extension but retained some degree of finger

and wrist flexion. If asked to imagine hand-open-and-close, the

participant would have to suppress actually opening the hand.

When instructed to extend the fingers and wrist, for example,

he would inadvertently activate finger and wrist flexors. Hence,

instructions to imagine or attempt to perform a hand opening-and-

closing sequence are inherently more confusing than for a person

who has no impairment or has complete motor disconnection.

Even if these unintended movements arose subcortically (e.g.,

unopposed reticulospinal or rubrospinal output), once engaged,

they would mechanically interfere with the resulting movement

and cause proprioceptive feedback that could in turn manifest in

the cerebral cortex, contaminating the neural features used for an

iBCI decoder.

Mechanical and spasticity effects on motor decoding. Our

participant exhibited a combination of spasticity (velocity-

dependent mechanical resistance) and mechanical changes

(shortening of flexor tendons) in his upper extremity, which caused

mechanical opposition to the intended, triggered orthosis motion.

This mechanical opposition provided sensory feedback that may

have in turn triggered further aberrant motor instructions in an

attempt to overcome the opposition.

5 Conclusion

Intracortical brain-computer interfaces comprise a class of

medical devices intended to restore function in people with

neurological disease and injury.While these technologies have been

evaluated in individuals with locked-in syndrome due to brainstem

stroke, that type of stroke syndrome fortunately is rare. Most

strokes are not confined to focal lesions of the brainstem, and

often involve the cerebral hemispheres. Strokes can be classified

by the areas injured (e.g., cortical or subcortical, basal ganglia,

thalamus, etc.), the mechanism (ischemic or hemorrhagic), and

etiology (e.g., cardioembolic, AVM rupture, large vessel disease,

etc.). Given that stroke is a common etiology of chronic disability,

understanding how iBCIs perform in more common types of

stroke is important to ensure such devices benefit that larger

population. By analyzing data recorded from one individual with

chronic subcortical stroke (embolic stroke of unknown source),

we discovered activity patterns that had not been reported in

other iBCI trials. Although one cannot disambiguate whether

these patterns are generalizable across other types of cerebral

stroke, the power spectral features observed mirror EEG and MEG

findings in the stroke population and highlight the possibility

that the feature selection and decoder approach used may require

unique considerations to build iBCI devices that can help this

population. Our findings suggest that it may be advantageous

to consider the anatomical location of implanted sensors relative

to the stroke: iBCI technologies that either cover a large surface

area or are purposefully positioned far enough away from the

center of the stroke, yet still within areas known to be easily

brought under voluntary modulation, could spell the difference

between the device being effective or not. In our n-of-1 trial,

the high gamma spectral power recorded by intracortical arrays

was used to drive real-time control of a powered upper extremity
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orthosis. The results suggest that various features of the neural

activity recorded from the ipsilesional precentral gyrus can be

used to decode intended hand aperture and overall hand direction.

Our offline analyses presented in this paper imply that useful

input features for future iBCIs may include phase-amplitude

coupling and the firing rates of single units found to have a high

modulation index.
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