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Revealing the neural 
representations underlying 
other-race face perception
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Adrian Nestor *
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The other-race effect (ORE) refers to poorer recognition for faces of other 
races than one’s own. This study investigates the neural and representational 
basis of ORE in East Asian and White participants using behavioral measures, 
neural decoding, and image reconstruction based on electroencephalography 
(EEG) data. Our investigation identifies a reliable neural counterpart of ORE, with 
reduced decoding accuracy for other-race faces, and it relates this result to higher 
density of other-race face representations in face space. Then, we characterize 
the temporal dynamics and the prominence of ORE for individual variability at the 
neural level. Importantly, we use a data-driven image reconstruction approach to 
reveal visual biases underlying other-race face perception, including a tendency to 
perceive other-race faces as more typical, younger, and more expressive. These 
findings provide neural evidence for a classical account of ORE invoking face 
space compression for other-race faces. Further, they indicate that ORE involves 
not only reduced identity information but also broader, systematic distortions in 
visual representation with considerable cognitive and social implications.
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Introduction

The other-race effect (ORE), poorer recognition for faces of a different race than one’s own, 
has been consistently observed across an array of cultures and races (Hugenberg et al., 2010; 
Malpass and Kravitz, 1969). Given the scope of its real-world impact, ranging from failures of 
eye-witness testimony (Wells and Olson, 2001) and identity verification (Sporer et al., 2022) 
to difficulties with social interactions (McKone et al., 2023), ORE features prominently in the 
study of visual cognition (for reviews see Ficco et al., 2023; Kubota et al., 2012; Rossion and 
Michel, 2011). Hence, much has been learned about the relative contribution of perceptual, 
memory and social factors to its emergence as well as about the neural systems which they 
engage (Herzmann et al., 2018; Hughes et al., 2019; Natu et al., 2011; Wang et al., 2023; Zhou 
et al., 2020). Yet, much less is known about the neural representations underlying ORE, their 
visual content and intrinsic biases.

Accordingly, here, we aim to uncover visual representations involved in other-race (OR) 
versus same-race (SR) face perception with the aid of neural decoding and image 
reconstruction applied to electroencephalography (EEG) data (Nemrodov et al., 2018; Nestor 
et al., 2020). Specifically, we investigate the representational structure and the visual content 
responsible for ORE in East Asian and White participants. Further, we examine the prominence 
of ORE in neural face processing and its dynamics.

A seminal framework in the study of ORE is that of psychological face space, a 
multidimensional construct in which faces are represented as points and their pairwise 
distances correspond to their perceived similarity (Valentine, 1991). In this space, OR faces 
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are often described as separate from SR ones (Jaquet et al., 2008) and 
more densely clustered (Byatt and Rhodes, 2004; Papesh and 
Goldinger, 2010). Such clustering accounts for the diminished 
discriminability of OR faces in experimental settings as well as for the 
real-world visual phenomenology (e.g., “to the uninitiated American, 
all Asiatics look alike, while to the Asiatic all white men look alike”; 
Feingold, 1914). The representational homogeneity of OR faces also 
finds ground at the neural level, where it elicits repetition suppression, 
as reported across multiple neuroimaging modalities (Hughes et al., 
2019; Zhou et al., 2020). Specifically, viewing pairs of different-identity 
OR faces may elicit a reduction in neural response comparable to that 
induced by same-identity face pairs, suggesting that OR faces look 
alike even to the relevant neural population (Reggev et  al., 2020; 
Vizioli et al., 2010).

The density of OR clusters highlights a reduction in facial identity 
information for OR representations and a tendency to collapse them 
to a prototypical face. However, the optimization of face space 
dimensions for SR representations (Valentine, 1991) also suggests that 
OR faces are encoded by suboptimal visual features corresponding to 
these dimensions (Dahl et al., 2014; O’Toole et al., 1991). Accordingly, 
a search for ORE-relevant features has led to extensive debates 
regarding the mis/use of facial shape and surface information (Balas 
et al., 2011; Balas and Nelson, 2010; Michel et al., 2013; Zhou et al., 
2021), and the differential reliance on holistic/featural information 
(Harrison et al., 2014; Michel et al., 2006; Tanaka et al., 2004; Zhao 
et  al., 2014). Yet, the misrepresentation of OR faces, beyond a 
reduction in identity information, remains to be  elucidated. The 
present work addresses this challenge by investigating and leveraging 
the neural counterpart of ORE.

Neural sensitivity to ORE has previously been captured by event-
related potentials (ERPs; Tüttenberg and Wiese, 2023), such as 
enhanced amplitude of the N170 component for OR faces (Senholzi 
and Ito, 2013; Walker et al., 2008; Wiese and Schweinberger, 2018); 
however, other studies reported no difference (Caldara et al., 2004; 
Tanaka and Pierce, 2009). Further, functional magnetic resonance 
imaging (fMRI) studies have reported higher activity in the fusiform 
face area (FFA) for SR than OR faces (Feng et al., 2011; Golby et al., 
2001), though this difference may be more prominent for unfamiliar 
faces (Kim et al., 2006) and/or reflect a more general benefit for peer 
perception (Dai and Scherf, 2023). Relevantly here, multivariate fMRI 
analyses have revealed different spatial activation patterns in the 
ventral cortex for OR versus SR faces (Contreras et al., 2013; Natu 
et al., 2011; Wang et al., 2023) and have suggested different dynamics 
(Zhou et al., 2020).

Thus, while prior work highlights important aspects of OR 
perception, such as face-space clustering (Byatt and Rhodes, 2004; 
Papesh and Goldinger, 2010) and misrepresentation (Balas and 
Nelson, 2010; Zhou et al., 2021), their neural basis remains largely 
unexplored. Similarly, the full extent and the nature of OR face 
representations require broader investigation. Here, we attempt to 
shed light on these topics by: (i) relating neural decoding to behavioral 
ORE estimates; (ii) characterizing the temporal dynamics of OR 
versus SR perception, and (iii) retrieving the neural representations 
underlying ORE. To anticipate, our results show that: (i) ORE can 
be reliably related to differences in the neural decoding of OR versus 
SR faces; (ii) the neural dynamics of ORE evince an extensive time 
course, and (iii) OR face representations exhibit a typicality bias as 
well as age and expressiveness biases.

Materials and methods

Participants

A total of 43 adults (age range: 18–30 years; 28 females) from the 
University of Toronto community volunteered for the EEG 
experiment. After excluding three participants (2 East Asian, 1 White) 
due to technical difficulties with the EEG recordings, 20 identified 
themselves as East Asian and 20 as White. A majority (60%) of the 
remaining East Asian participants were international students from a 
Han Chinese background; in contrast, all White participants were 
locals (from Toronto, Ontario). All participants were right-handed, 
with normal or corrected-to-normal vision, and no history of 
neurocognitive disorders.

Prior work (Estudillo, 2021; McKone et al., 2012) on ORE with 
East Asian and White participants has estimated a medium effect size 
in both populations (Cohen’s d ≥ 0.62). A power analysis (JASP 0.17.1; 
jasp-stats.org) for an effect size of 0.60 (80% power; 5% Type I error 
rate) indicated that a sample size of 19 participants per group is 
needed. Thus, our final sample size should allow detecting 
ORE reliably.

Further, to validate behaviorally our EEG-based reconstruction 
results, we recruited online (Prolific; www.prolific.co) 50 additional 
adults (18–35 years; 23 female), referred to below as validators. Two 
were removed because of face recognition scores below the 
normative range (see below) and two due to failing reliability 
checks (i.e., negative correlation with themselves across repeated 
trials). Of the remaining validators, 23 were East Asian, born in 
East Asian countries, and 23 White, born in North America 
or Europe.

All participants/validators provided informed consent and 
received monetary compensation. All procedures were approved by 
the Research Ethics Board at the University of Toronto.

Stimuli

For the EEG experiment we  selected 30 images of East Asian 
males and 30 of White males of similar age, with frontal view, frontal 
gaze and neutral expression, from the Chicago Face Database (Ma 
et al., 2015). Images were standardized by: (1) aligning the position of 
the eyes and nose; (2) cropping to display only internal facial features; 
(3) normalizing with the same mean/contrast values in each 
CIEL*a*b* channel; and (4) resizing to 98 × 75 pixels. Resulting 
stimuli subtended a visual angle of 4° × 2.6°.

Experimental procedures

First, participants completed two versions of the Cambridge Face 
Memory Test (CFMT) with Chinese (McKone et al., 2012) and White 
(Duchaine and Nakayama, 2006) face stimuli. This served to assess 
their face processing proficiency relative to the normative range (i.e., 
mean ± 2SD, as determined by prior work; Bowles et  al., 2009; 
McKone et al., 2012) and, also, to behaviorally quantify ORE. Both 
tests have excellent psychometric properties (e.g., Cronbach’s α of 
0.89–0.90; McKone et al., 2012; Wilmer et al., 2010) and can be used 
to estimate individual ORE via the traditional subtraction method 
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(i.e., CFMT score for SR minus that for OR faces; Estudillo, 2021; Wan 
et al., 2015).

EEG testing was conducted across two 2.5-h sessions on different 
days. Participants performed a go/no-go task by pressing a key upon 
the repetition of the same image on two consecutive trials. Data 
collection was divided across 32 blocks spanning the two sessions. 
Within any block, each stimulus was displayed four times, and a 

random 10% of trials featured a repetition (for a total of 264 trials/
block). Stimuli were presented in pseudorandom order (e.g., to avoid 
repeated “go” trials). Each stimulus was displayed for 300 ms, followed 
by a variable 600–700 ms inter-stimulus interval during which a 
center fixation cross replaced the stimulus (see Figure  1A). Each 
session began with a practice block. Stimulus presentation and data 
collection relied on MATLAB and Psychtoolbox 3.0.8 (Brainard, 1997; 

FIGURE 1

Schematic illustration of an experimental trial and of data analysis. (A) Participants performed a one-back go/no-go task in response to brief 
presentations of face stimuli. (B) Spatiotemporal electroencephalography patterns (EEG) elicited by viewing own- and other-race face stimuli (top left) 
are linearly decoded and converted into a representational similarity matrix (top right). Pairwise similarity ratings are then converted into EEG-based 
face space and participant space constructs (bottom right), through multidimensional scaling and principal component analysis, respectively. Facial 
features are derived directly from the structure of face space and combined into an image reconstruction aiming to recover the neural representation 
of the corresponding stimulus. The reconstruction is assessed in terms of image accuracy, with respect to its corresponding stimulus, and in terms of 
potential biases by human observers (bottom left). Facial images adapted from Ma et al. (2015).
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Pelli, 1997). Both sessions were identical in structure, with stimuli 
presented on a 60 Hz, 1920 × 1080p display, from a distance of 80 cm.

Analyses

Behavioral data analysis
Own-race CFMT scores were inspected to confirm that 

participants exhibit normal face recognition abilities. A two-way 
ANOVA (2 CFMT versions: East Asian, White; 2 participant groups: 
East Asian, White) was followed by within-group comparisons (paired 
t-tests) to confirm and compare ORE size.

To add confidence in significant findings and to aid the 
interpretation of statistically nonsignificant results, we  employed 
Bayesian hypothesis testing (JASP  0.17.1) to report BF10 values, 
providing weight in favor of the alternative (BF10 > 1) or null (BF10 < 1) 
hypotheses. The analysis relied on standard default distributions for 
unspecified priors (e.g., uniform distribution for ANOVA analogs and 
Cauchy’s distribution for t-test analogs). We interpret results using 
established benchmarks (BF values in favor of alternative hypotheses: 
1–3 anecdotal, 3–10 substantial, 10–30 strong, 30–100 very strong, > 
100 extreme; and in favor of null hypothesis: 0.33–1 anecdotal, 0.10–
0.33 substantial, 0.01–0.03 very strong, < 0.01 extreme; Wagenmakers 
et al., 2011).

EEG acquisition and preprocessing
EEG signals were recorded with a 64-channel Biosemi ActiveTwo 

system (Biosemi B.V.). Electrodes were configured according to the 
international 10/20 system. Offsets were maintained under a threshold 
of 40 mV. The signal was low-pass filtered using a fifth order sinc filter 
with a half-power cutoff at 204.8 Hz and, then, digitized at 512 Hz 
with 24 bits of resolution. All data were digitally filtered offline (zero-
phase 24 dB/octave Butterworth filter) with a bandpass of 0.1–40 Hz 
and segmented into epochs extending from −100 to 900 ms. Epochs 
underwent direct current (DC) removal, linear detrending and 
baseline correction. Noisy electrodes were interpolated if necessary 
(no more than two electrodes per participant) and epochs were 
re-referenced to the average reference. Preprocessing relied on 
Letswave 6 (Mouraux and Iannetti, 2008) and Infomax ICA (Delorme 
et al., 2007) for artifact removal.

Relatively few trials contained false alarms as participants 
performed the task at ceiling (mean sensitivity d’ = 2.73). “Go” trials 
and those containing artifacts or false alarms were excluded, resulting 
in an average of 98.1% remaining trials across participants for 
further analysis.

Pattern classification analyses
We selected 12 electrodes positioned over occipitotemporal (OT) 

regions (P5, P7, P9, PO3, PO7, O1 on the left, and P6, P8, P10, PO4, 
PO8, O2 on the right). Their choice was based on their value in 
decoding facial information in the temporal domain (e.g., as 
previously determined by multivariate channel selection; Nemrodov 
et al., 2020) – for univariate results, see Supplementary materials and 
Supplementary Figure S1.

Consistent with this choice, decoding analyses relying on all 
electrodes yielded lower, though still significant, levels of classification 
accuracy compared to those relying on all electrodes (see 
Supplementary Figure S2).

With respect to the temporal information included in the analysis, 
two different approaches were employed. First, for temporally-
cumulative analyses (Nemrodov et al., 2018; Roberts et al., 2019), 
we selected a large 50–650 ms time window and, then, concatenated 
ERP amplitude values across electrodes and time points resulting in 
3684-feature patterns (i.e., 12 OT electrodes by 307 time points) for 
each trial. The length of this windows aimed to capture both early and 
late stages of face processing (Ghuman et al., 2014; Nemrodov et al., 
2016; Roberts et al., 2019). Patterns corresponding to repetitions of 
the same stimulus within a block were averaged and normalized via 
z-scoring separately for each feature (i.e., for each combination of time 
point and OT channel). This yielded, for each participant, a total of 32 
observations, one per block, for each stimulus.

Second, for time-resolved analyses (Dobs et al., 2019; Nemrodov 
et  al., 2016), we  considered smaller ~10 ms windows (i.e., five 
~1.95 ms adjacent time bins). Decoding performance was estimated 
at each position, for a total of 508 intervals, by sliding this window one 
bin at a time between −100 and 700 ms.

Pairwise classification was then computed for each participant 
and stimulus pair, for a total of 1770 pairs across face identity and race. 
To this end, we used linear SVM (c = 1) with leave-one-block-out 
cross-validation (across 32 blocks from both experimental sessions). 
The procedure yielded decoding estimates (i.e., classification accuracy) 
for each pair of faces. These estimates were then separately assessed 
for: (1) SR faces (e.g., White faces for White participants), (2) OR faces 
(e.g., White faces for East Asian participants), and (3) between-race 
faces (i.e., White versus East Asian faces for both participant groups). 
Chance-level accuracy was derived by randomly shuffling stimulus 
labels 1,000 times and recomputing classification estimates. Average 
accuracy across participants was compared to permutation-based 
chance both for temporally-cumulative analyses (one-sample 
two-tailed t-tests, Bonferroni-corrected across comparisons) and 
time-resolved analyses (Wilcoxon signed-rank test, FDR-corrected 
across time points).

EEG-based face space and participant space
To visualize the representational space underlying race perception, 

we derived an EEG-based face space for each group of participants. To 
this end, decoding estimates derived from temporally-cumulative 
analyses for all pairs of faces were averaged across participants in each 
group and organized into a dissimilarity matrix. Then, metric 
multidimensional scaling (MDS) was applied to each matrix to derive 
a face space construct for each participant group (i.e., 40-dimension 
spaces accounting for at least 90% variance). We anticipated that faces 
in this space would be clearly separated by race and, also, that OR 
faces would cluster more tightly than SR ones. To this aim, 
we computed and compared average pairwise Euclidean distances 
between each pair of SR faces, each pair of OR faces and each pair of 
between-race faces separately for each participant group and 
corresponding space.

A complementary analysis sought to estimate a participant space 
and account for its structure. To this end, principal component 
analysis (PCA) was applied to EEG-based decoding accuracy vectors 
across all participants. Specifically, for each participant we considered 
a decoding performance vector consisting of the pairwise 
classification accuracies across all stimuli (i.e., a 1770-element vector 
yielded by all pairs of 60 stimuli). These vectors were then 
concatenated across all participants (i.e., into a 1770 × 40 matrix). 
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Following the application of PCA to this matrix, the first two 
components of the resulting space were probed for their relationship 
with behavioral metrics: we assessed the contribution of participant 
race, facial recognition ability (as captured by SR CFMT scores) and 
ORE (captured by the difference between SR and OR CFMT scores; 
Estudillo, 2021; Wan et al., 2015) to these components. To this end, 
behaviorally derived scores were correlated with PC scores for 
each dimension.

Image reconstruction procedure
The reconstruction procedure was applied to neural data to 

recover and to visualize internal representation associated with each 
face, as well as to probe for potential visual misrepresentations 
associated with ORE. Our reconstruction approach follows earlier 
efforts (Nemrodov et al., 2018; Roberts et al., 2019), which leverage 
the face space framework to extract visual features and recover neural 
representations by harnessing the rich spatiotemporal information of 
EEG patterns (see Figure 1B). This approach involves a sequence of 
steps, adapted from prior work (for review see Nestor et al., 2020).

First, estimates of pairwise decoding accuracy for all faces of the 
same race were placed into a dissimilarity matrix and averaged across 
participants, separately for each group. To reconstruct a target face, 
this was removed from the data and the structure of the resulting 
matrix was used to estimate the representation of the target while 
avoiding dependency.

Second, metric multidimensional scaling (MDS) was applied to 
the dissimilarity matrix to derive a face space. A total of 20 dimensions 
were retained (accounting for over 90% variance separately for each 
group and stimulus race).

Third, for each dimension of face space, corresponding coefficients 
were normalized via z-scoring and a classification image (CI) was 
computed through reverse correlation (see Murray, 2011, for review). 
Specifically, we  computed the average of all non-target images 
weighted by their coefficients on the dimension considered.

Fourth, significant CI information was assessed using a pixelwise 
test. To this end, images were shuffled relative to their coefficients on 
a given dimension and a new CI was derived (for a total of 1,000 
permutations). Then, the value of each pixel in the original CI was 
compared to those at the same location in the permutation-based CIs. 
Significant pixels were identified, separately for each CIE L*a*b*color 
channel (permutation test, FDR-corrected across pixels, q < 0.1). 
Informative CIs/dimensions were determined based on the presence 
of at least 10 significant pixels in at least one color channel. All other 
CIs were eliminated from the procedure ensuring that only significant 
facial information was included in the reconstruction.

Fifth, the target face was projected into the existing face space. 
This was computed by Procrustes alignment of a space X containing 
all faces, including the target, to the space Y used for feature derivation 
(and not including the target). Then, the target was projected from X 
to Y using the alignment coefficients. This procedure ensures that the 
features of the target are not used in its reconstruction, thus 
avoiding dependency.

Finally, each significant CI was weighted by its coordinates in the 
corresponding dimension. Then, the resulting images were linearly 
combined across dimensions, effectively generating an image analog 
of a given location in face space.

The approach above was applied separately for each face (i.e., by 
treating each face as a reconstruction target). By considering decoding 

patterns for SR and OR faces, we aimed to recover both types of visual 
representations separately in East Asian and White participants.

Further, image reconstructions were also computed based on a 
theoretical observer. To this end, the approach above was applied to 
L2 pixelwise distances across stimuli (instead of neural-based 
dissimilarity estimates.) Since stimuli were matched in terms of 
contrast, pose, gaze, cropping, etc., this similarity space, though based 
on a low-level metric, should still reflect relative information about the 
visual appearance of different individuals. This analysis yielded 
comparable levels of reconstruction accuracy for the two races (90.57 
and 92.18% for East Asian and White faces, respectively; Mann–
Whitney U test across stimulus faces, p = 0.221, BF10 = 0.468). 
Importantly, this ensured that any potential differences in neural-
based reconstruction could not be  explained away by obvious 
differences in the image properties of the two stimulus races.

Image reconstruction evaluation
The accuracy of the image reconstruction for any particular face 

was assessed by determining the proportion of instances on which a 
reconstructed image was closer to its target stimulus than to any other 
face of the same race via a pixelwise L2 distance. To be clear, 100% 
reconstruction does not indicate a perfect replication of the 
corresponding stimulus, but only that the reconstruction was more 
similar to this stimulus than to any other stimulus of the same race. 
Then, accuracy was compared against chance (i.e., a one-sample test 
against 50%) and against each other for reconstructions of different 
stimulus races using a bootstrap test (10,000 iterations).

To rule out the possibility that any differences between OR and SR 
reconstructions simply reflect differences in image quality (e.g., due 
to image blur, pixel noise, spatial distortions) we computed estimates 
of each reconstructed image via two complementary metrics. 
Specifically, we appealed to a common reference-based metric, the 
structural similarity index (SSIM; Wang et al., 2004), as well as to a 
reference-free metric that approximates perceptual judgements, the 
blind/referenceless image spatial quality evaluator (BRISQUE; Mittal 
et al., 2012). OR and SR estimates were then compared to each other 
using a Wilcoxon signed-rank test separately for each metric and 
stimulus race.

Last, to assess local, low-level pictorial differences of SR versus OR 
face reconstructions, we subtracted corresponding images generated 
from the two groups (i.e., a reconstruction of a given face based on the 
data of White participants from a reconstruction of the same facial 
identity based on data from East Asian participants). Then, the 
outcomes were assessed with a pixelwise permutation-based test. 
Specifically, we randomly shuffled the labels of the participants across 
groups (i.e., East Asian, White), recomputed average dissimilarity 
matrices, reconstructed face images for each group and subtracted 
corresponding images generated from the two groups. The initial 
image differences were then compared with their permutation-based 
counterparts to identify pixels yielding values different from chance 
(two-tailed pixelwise permutation test, 1,000 permutations; 
FDR-corrected across pixels, separately for each color channel). This 
analysis was conducted for every facial identity as well as for the 
average of all facial identities of the same race.

Behavioral evaluation of reconstruction results
A different group of participants (validators) evaluated and 

compared the reconstruction results. First, validators completed the 
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two versions of CFMT, with East Asian (McKone et al., 2012) and 
White face stimuli (Duchaine and Nakayama, 2006), to assess face 
processing abilities and ORE.

Then, they viewed 120 image reconstructions (i.e., 30 East Asian 
faces, reconstructed twice, from each group of EEG participants, and 
30 White faces, also reconstructed twice). Since these stimuli are 
reconstructions of percepts elicited by stimuli in our EEG experiment, 
their appearance is standardized the same manner (e.g., with respect 
to size).

On each trial, validators viewed pairs of reconstructions of the 
same face identity (i.e., derived from East Asian versus White 
participant data) and selected the face which appeared younger, 
more expressive, or more typical of its race. Faces were displayed 
until a response was recorded, with self-paced breaks between 
blocks to minimize fatigue. Each pair of reconstructions was 
presented twice, by swapping the left/right position of the 
reconstructions on the screen. The experiment comprised 6 blocks 
(3 facial attributes × 2 stimulus races) of 60 trials (30 reconstructions 
of a given race presented twice). Block and trial order were 
randomized. Stimulus presentation and data collection relied on 
PsychoPy (Peirce et al., 2019). Validators completed testing during 
a 45-min online session.

After data collection, selection rates were averaged across trials 
separately by each stimulus race and facial trait for each validator. 
Selection rates were coded so that values above 50% indicate that 
reconstructions from OR participants (i.e., White face images 
reconstructed from East Asian participants, or vice versa) appear 
younger, more expressive, or more typical of their race. Conversely, a 
score below 50% indicate that validators judge reconstructions from 
their own racial group in this manner. Selection scores were then 
compared to chance (one-sample t-tests across validators against 50%, 
Bonferroni-corrected) and with each other (three-way mixed 
ANOVA; two validator groups: East Asian and White, two stimulus 
races, and three facial traits: age, expressiveness, typicality). Last, trait-
specific selection rates, averaged across validators, were correlated 
with each other across all facial identities of the same race (e.g., age 
and expressiveness rates for East Asian faces) to examine whether 
judgments capture same/different underlying bias(es) across traits.

Results

Behavioral performance

Face recognition abilities were assessed using the CFMT with 
Chinese (McKone et al., 2012) and White (Duchaine and Nakayama, 
2006) face stimuli across all participants. An analysis of recognition 
performance (two-way ANOVA; 2 test versions: Chinese, White × 2 
participant groups: East Asian, White) revealed an effect of test 
version (F(1,38) = 10.42, p = 0.003, 2

pη = 0.22, BF10 = 2.01) and 
participant race (F(1,38) = 10.90, p = 0.002, 2

pη = 0.22, BF10 = 17.85), 
along with an interaction (F(1,38) = 38.1, p < 0.001, 2

pη = 0.50, 
BF10 = 35.69). Post hoc tests revealed that, as expected, White 
participants outperformed East Asian participants on the CFMT-
White (t(38) = 5.43, p < 0.001, d = 1.72); however, the two participant 
groups performed comparably on the CFMT-Chinese (t(38) = 0.66, 
p > 0.999). The latter result may be due to participant background, as 
ORE tends to be diminished in cities with a diverse multicultural 

population (Zhou et al., 2022) –all White participants were locals from 
a highly diverse, multicultural city (see Participants).

More importantly, ORE was confirmed by comparing SR to OR 
CFMT scores both for East Asian (two-tailed paired t-test, t(19) = 5.78, 
p < 0.001, d = 1.29, BF10 = 3178.03) and White participants 
(t(19) = 2.53, p = 0.02, d = 0.57, BF10 = 5.60)—see Figure 2A. Overall, 
these results confirm the presence of ORE in both groups, provide 
evidence for the robustness of our behavioral measures and motivate 
our investigation into their relationship with neural-based 
effects below.

Neural decoding of SR and OR faces

Pairwise face decoding relying on temporally-cumulative 
decoding (Nemrodov et al., 2018; Roberts et al., 2019) revealed above-
chance classification accuracy within and across stimulus race for both 
participant groups (one-sample t-tests across participants against 
permutation-based chance, all p’s < 0.001, all ds > 2.21, all BF10 values 
>3.71 × 106) – see Figure 2B. An assessment of classification accuracy 
(two-way ANOVA; 2 stimulus races × 2 participant groups) revealed 
no main effects but a significant interaction (F(1,38) = 26.98, 
p < 0.001, ηp

2 = 0.42, BF10 = 36.1). Subsequent tests indicated that the 
decoding performance for East Asian faces was comparable in the two 
participant groups (t(38) = 0.22, p = 0.83). In contrast, White faces 
were marginally better decoded by White participants compared to 
East Asian participants (t(38) = 2.55, p = 0.058). We note that these 
results mirror the pattern of behavioral results described above, which 
we ascribe to participant background.

Importantly, a comparison of SR and OR face decoding revealed 
a significant advantage for the former both for East Asian (t(19) = 3.29, 
p = 0.004, d = 0.74, BF10 = 22.62) and White participants (t(19) = 4.51, 
p < 0.001, d = 1.0, BF10 = 245.31). Arguably, these results provide 
evidence for a neural-based ORE counterpart.

Further, between-race face decoding yielded higher decoding 
than within-race decoding both for East Asian participants (relative 
to White faces: t(19) = 8.41, p < 0.001, d = 1.88, BF10 = 3.71 × 105 and 
East Asian faces: t(19) = 3.58, p = 0.002, d = 0.8, BF10 = 40.62) and for 
White participants (relative to White faces t(19) = 5.36, p < 0.001, 
d = 1.2, BF10 = 1405.80 and East Asian faces: t(19) = 6.85, p < 0.001, 
d = 1.53, BF10 = 2.40 × 104).

We note that the present results are based on data from two 
experimental sessions for all participants. Separate session-specific 
analyses only yielded a significant SR advantage for the first but not 
the second session, potentially indicative of perceptual learning effects 
(see Supplementary Figure S3).

Neural dynamics

To evaluate the temporal profile of face processing, decoding was 
conducted similarly over successive ~10-ms intervals (instead of a 
large window spanning most of the trial). For both participant groups 
and stimulus races, we  note above-chance decoding (Wilcoxon 
signed-rank test against permutation-based chance; FDR-corrected, 
q < 0.05) starting around 130 ms, peaking between 300–350 ms and 
tapering off after 600 ms – see Figures 2D,E for East Asian and White 
participants, respectively.
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Interestingly, for both groups, SR faces supported higher decoding 
accuracy across most time points after 130 ms, though not significantly 
after multiple-comparison correction (Wilcoxon signed-rank tests 
across stimulus race, q < 0.05). This suggests that the SR decoding 
advantage found by temporally-cumulative analysis is not due to any 
specific, restricted time window. Rather, it likely relies on aggregating 
complementary information over an extended interval. Accordingly, 
our results below capitalize on temporally-cumulative results rather 
than on temporally-restricted ones (e.g., such as those corresponding 
to decoding peaks).

Neural-based face space

Accuracy estimates of pairwise face decoding, averaged across 
participants, were converted via multidimensional scaling (MDS) into 
a face space separately for each group (i.e., 40-dimension spaces 
accounting for at least 90% variance).

The results evince a clear separation of faces by race (see 
Figures 3A,B). Additionally, we note a higher density for OR than SR 
faces, consistent with face space theory (Valentine, 1991) – in two 
dimensions this latter result is more clearly apparent for East Asian 
participants (Figure 3A). To assess this difference more rigorously, 

we computed pairwise face distances, using a Euclidean metric, across 
all dimensions. A comparison of such distances indicate that SR 
distances are, on average, 2.78% larger than OR ones for East Asian 
participants and 1.44% larger for White participants (Mann–Whitney 
U test, both p’s < 0.001, BF10 values >42.76)  – see also 
Supplementary Figure S4 for heatmaps of all pairwise distances. 
Similarly, between-race distances are, on average, 2.36 and 4.34% 
larger than SR ones for East Asian and White participants (both 
p’s < 0.001, BF10 values >8303.45).

To confirm the robustness of the results above, we considered the 
potential impact of stimulus outliers. To this end, we identified stimuli 
whose distance from the center of their corresponding face group was 
larger than 2.5 SDs in face space, separately for each participant and 
stimulus race. This procedure identified one East Asian stimulus 
outlier for East Asian participants and one outlier per stimulus race 
for White participants. A comparison of SR, OR and between-race 
distances after outlier removal replicated the pattern of results above 
(all p’s < 0.001, all BF10 values >82.05).

These results reflect differences in decoding accuracy, as 
reported above, both within and across groups. Specifically, SR 
faces are better decoded than OR ones, leading to larger pairwise 
distances in face space for the former. At the same time, between-
race faces are better decoded than within-race faces leading to 

FIGURE 2

Performance associated with own- and other-race face perception for East Asian and White participants: (A) face recognition accuracy and other-race 
effects estimated with CFMT-Chinese and CFMT-White; (B) temporally-cumulative pairwise stimulus decoding by stimulus race (based on an 50-
650 ms interval × 12 electrode patterns); (C) accuracy of EEG-based image reconstructions; (D,E) time-resolved face decoding (based on a 10 ms 
sliding window × 12 electrode patterns) for East Asian and White participants, respectively. Participants exhibit a systematic own-race advantage, which 
reaches significance (two-tailed t-tests across stimulus race) for (A,B). The time course of face decoding shows extensive intervals of above-chance 
decoding (Wilcoxon signed-rank test against permutation-based chance; FDR-corrected across time points, q < 0.05; horizontal bars at the bottom of 
each plot) and higher estimates of own-race face decoding (though not significant after FRD correction). Diamonds mark the peaks of decoding 
accuracy in (D,E). Error bars for (A–C) and shaded areas for (D), (E) indicate ±1 SE († p < 0.10, *p < 0.05, ** p<. 01).
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even larger distances. Interestingly though, we  note the 
prominence of race-based separation (i.e., along the first 
dimension of face space). These results, based on neural data, 
complement face space accounts of race informed by behavioral 
(Byatt and Rhodes, 2004; Papesh and Goldinger, 2010) and 
computational work (O’Toole et al., 1991; Caldara and Abdi, 2006; 
Wang et al., 2023).

To be clear, not all dimensions are likely to be (equally) informative 
regarding visual face representations and, thus, the estimates above 
can only serve as a coarse indication of ORE. Hence, a more careful 
examination of representational content and its sensitivity to ORE has 
to consider dimension/feature selection (e.g., as implemented by 
image reconstruction below).

Relationship between neural decoding and 
behavioral performance

Behavioral and neural-based ORE estimates were computed for 
each participant via subtraction (i.e., SR-OR scores; Estudillo, 
2021; Wan et  al., 2015) from CFMT and decoding scores, 
respectively. These estimates were related to each other across 
participants from both groups (Pearson correlation, r(38) = 0.68, 
p < 0.001, BF10 = 1.30 × 104). To assess whether this correlation 
reflected within-group differences, and not just a categorical 
difference across participant race, we  conducted a partial 
correlation while controlling for participant race. This analysis 
yielded similar results (r(38) = 0.41, p = 0.009, BF10 = 5.53). The 

FIGURE 3

Representational spaces for face stimuli and participants. (A,B) Multidimensional face spaces for East Asian and White participants evince a clear 
separation of face representations by race and denser clusters for other-race faces (visible in two dimensions for A). (C) A participant space derived 
from EEG-based similarity vectors evinces some separation of participants by race (the dotted line marks a 65%-accurate hyperplane identified by 
logistic regression). Notably, participant scores across the first dimension are related to facial recognition ability (Pearson correlation with own-race 
CFMT across participants) while scores across the second dimension are related to other-race effect estimates (partial correlation with own-race 
minus other-race CFMT scores while controlling for participant race). PVE – percentage of variance explained (*p < 0.05).
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outcome highlights the relationship between behavioral and 
neural-based ORE.

Further, an exploratory analysis of EEG-based participant space, 
estimated via PCA from pairwise decoding results across participants, 
revealed some separation between the two participant groups, 
primarily along the second dimension. To visualize and quantify this 
separation, participant race was classified in PC space via logistic 
regression (i.e., across vectors of PCA coefficients corresponding to 
each participant). The classification reached an accuracy of 65% – see 
Figure 3C for the separating hyperplane.

To gain more insight into the structure of this space, as reflected 
by its first two dimensions, we assessed its relationship with estimates 
of facial recognition: own-race CFMT scores and ORE scores (i.e., 
SR – OR CFMT scores). We found that PC1 significantly correlated 
with SR CFMT scores (r(38) = 0.35, p = 0.029, BF10 = 1.98), while PC2 
evinced a significant correlation with ORE scores (r(38) = 0.37, 
p = 0.02, BF10 = 2.70). Given that the stimuli and procedures used in 
our EEG experiment are considerably different from those used by the 
CFMT, these results demonstrate how race-related effects in face 
perception generalize across different stimulus sets and experimental 
procedures as well as across different data types. At the same time 
though, we  acknowledge the need to confirm such correlational 
results using larger participant samples.

Thus, a neural-based participant space appears to be structured 
primarily by face recognition ability and ORE. Our present findings 
bolster the prominence of ORE at the neural level and provides 
ground for our investigation into the neural representations 
underlying ORE.

Image reconstruction of SR and OR faces

EEG-based image reconstruction (Nemrodov et al., 2018; Nestor 
et  al., 2020) recovered the visual content of SR and OR face 
representations. Above-chance reconstruction accuracy was found for 
both participant groups and stimulus races (two-tailed bootstrap test; 
all p’s < 0.001). Also, a trend for higher SR relative to OR accuracy 
(Figure 2C) was found for both East Asian (two-tailed bootstrap test; 
p = 0.062) and White participants (p = 0.065). We note that theoretical 
observer reconstructions supported equivalent levels of accuracy for 
the two races (see Image reconstruction procedure). Thus, any 
differences based on neural results are likely to stem from differences 
in the perceptual representations of our participants rather than, 
simply, from those in the low-level image properties of our stimuli.

Next, we considered that lower OR reconstruction accuracy may 
reflect poorer image quality relative to its SR counterpart (e.g., due to 
loss of high-frequency spatial information or to spatial distortions 
introduced by the reconstruction method). Accordingly, we evaluated 
image quality via a common reference-based metric (SSIM) of each 
reconstruction relative to its corresponding stimulus as well as via a 
reference-free metric (BRISQUE). A comparison of OR to SR 
reconstructions revealed no significant difference by either metric for 
faces of either race (Wilcoxon signed-rank test; all p’s > 0.42, all BF10 
values <0.329, except for East Asian face reconstructions assessed with 
BRISQUE, p = 0.073, BF10 = 1.73). Hence, we  conclude that any 
differences between OR and SR reconstructions do not reflect mere 
image quality differences (e.g., image blur).

Further, to assess local, low-level pictorial differences between SR 
and OR reconstructions, a pixelwise permutation test was conducted, 
separately for each facial identity and color channel (two-tailed test, 
FDR corrected across pixels, q < 0.05). This revealed differences for all 
channels (Figure 4A) across multiple facial areas (e.g., around the eyes, 
eyebrows, nose). The analysis was repeated for image reconstructions 
averaged across all facial identities of each race (e.g., all Asian face 
reconstructions based on data from East Asian participants vs. those 
based on data from White participants) – see Figure 4B. However, the 
results are not immediately interpretable in terms of a systematic bias 
and somewhat less informative for White face reconstructions.

These results suggest that any divergence between SR versus OR 
image reconstructions may not be fully captured by low-level visual 
estimates. Accordingly, next, we asked a separate group of participants 
to assess the degree of race typicality for each of four sets of 
reconstructions (i.e., East Asian and White facial image 
reconstructions recovered from both groups of participants). In 
addition, we evaluated the possibility that OR visual representations 
are biased with respect to other facial traits, such as age (Dehon and 
Brédart, 2001; Mousavi et al., 2018) and expressiveness (Jiang et al., 
2023; Yan et al., 2016), and asked validators to also judge these traits.

Behavioral evaluation of image 
reconstructions

For each facial identity, validators viewed and compared its 
corresponding reconstructions derived from East Asian and White 
participants. Specifically, on separate trials, they selected the image in 
a pair that appeared younger, more expressive and more typical for its 
own race.

Average scores above 50% were noted for all three traits and both 
stimulus races (one-sample two-tailed t-tests, all p’s < 0.001, all 
ds > 0.58, Bonferroni-corrected, all BF10 values >109). These results 
indicate that, overall, OR faces are perceived as younger, more 
expressive, and more typical of their race (Figure 4C).

An assessment of selection scores (three-way mixed ANOVA; two 
validator groups: East Asian and White, two stimulus races, three 
facial traits) found no main effect of group (F(1,44) = 0.46, p = 0.50, 
BF10 = 0.232) or trait (F(2,88) = 1.84, p = 0.17, BF10 = 0.178) but a 
main effect of stimulus race (higher scores for East Asian than White 
faces: F(1,44) = 43.23, p < 0.001, ηp

2 = 0.50, BF10 = 3.54 × 105) as well 
as an interaction between stimulus race and trait (F(2,88) = 7.39, 
p = 0.001, ηp

2 = 0.14, BF10 = 6.21 × 104). Subsequent tests indicated 
that age and typicality scores were significantly more pronounced for 
East Asian than White face stimuli (t(44) = 6.13, p < 0.001, d = 1.30 
and t(44) = 5.87, p < 0.001, d = 1.25, respectively) but not 
expressiveness (t(44) = 1.92, p = 0.23).

Next, trait-specific selection rates, averaged across participants, 
were correlated with each other across all facial identities of the same 
race (i.e., six correlations for each pair of traits and each stimulus 
race). All correlations were significant (all p’s < 0.001, all BF10 values 
>28.36, except for the correlation between expression and typicality of 
East Asian stimuli, p = 0.004, BF10 = 12.91; Bonferroni-corrected). To 
assess whether results were entirely driven by typicality, next, 
we computed partial correlations across age and expressiveness while 
controlling for typicality. Again, correlations reached significance for 
both stimulus races (both p’s < 0.001). Last, for completeness, these 
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FIGURE 4

Own-race and other-race facial image reconstructions – examples and assessment. (A) Examples of individual face image reconstructions are shown for East 
Asian and White participants along with significance maps of the difference between own- versus other-race reconstructions (permutation-based pixelwise 
test, FDR-corrected, q < 0.05; dark/red/blue pixels mark areas yielding significantly different values in the luminance, red-green and yellow-blue CIEL*a*b* 
color channels). Numbers in the bottom left corner of each reconstruction indicate accuracy relative to the stimuli in the left column. (B) Averages of all 
reconstructions of the same race along with corresponding accuracy estimates and significance maps. (C) Other-race reconstructions are judged as younger, 
more expressive and more typical for their own race relative to own-race reconstructions of the same facial identities. Selection biases are significantly above 

(Continued)
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results were replicated after conducting the analysis separately for each 
group of validators, East Asian and White (both p’s < 0.001).

Overall, these results indicate that OR faces, regardless of 
participant race, are perceived as younger, more expressive, and more 
typical of their race. Last, these biases appear to reflect overlapping but 
not identical visual sources.

Discussion

The present work investigates OR face perception with respect to 
its neural basis, its processing dynamics and its representational 
content. By relating neural decoding and image reconstruction results 
to behavioral performance in East Asian and White participants this 
investigation leads to several notable findings.

First, neural decoding, relying on temporally-cumulative 
occipitotemporal signals, mirrors the ORE evinced by behavioral 
performance. Specifically, between-race face decoding is more 
accurate than within-race decoding, consistent with the separability 
of neural patterns for OR from SR faces (Natu et al., 2011; Wang et al., 
2023). More importantly, within-race face decoding is more accurate 
for SR than OR faces in both East Asian and White participants. This 
provides a decoding-based neural counterpart of ORE at the group 
level (i.e., across participant race), complementing results based on 
repetition suppression (Hughes et al., 2019; Vizioli et al., 2010; Zhou 
et al., 2020). Yet, behaviorally, ORE is also known to exhibit a gradient 
across individuals from the same group (e.g., Megreya et al., 2011). 
Hence, here, we also examine ORE’s prominence in neural processing 
at the individual level. This investigation points to ORE and face 
recognition ability as main components of variability in 
representational similarity across participants. Thus, our findings 
speak to the neural basis of ORE, both across and within groups, while 
also serving as a platform for the rest of our investigation.

Second, the temporal profile of decoding exhibits an extensive 
window of significance, between around 130–600 ms, consistent 
with prior work on the neural dynamics of facial identity 
perception (Ambrus et al., 2019; Dobs et al., 2019; Kovács et al., 
2023; Nemrodov et al., 2018). Overall, this profile is similar for SR 
and OR faces as no specific time points, in isolation, yield a 
significant difference. However, an SR decoding advantage is, at 
least, numerically apparent during most of the 130–600 ms 
interval (Figures  2D,E). This suggests the presence of 
complementary information over time, which accrues into an 
overall SR advantage, captured by temporally-cumulative 
analysis – to be clear, the latter analysis concatenates, rather than 
averages, temporal information, thus allowing decoding to exploit 
temporal patterns over this extended window. While an ORE 
univariate effect for the N170 component was apparent for East 
Asian participants (see Supplementary materials and 
Supplementary Figure S1), our decoding results indicate that ORE 
is unlikely to be solely linked to a restricted temporal window. The 
interpretation above, of complementary information over time, 

also agrees with evidence for multiple stages of neural processing 
associated with ORE across an extensive cortical network (Natu 
et al., 2011; Zhou et al., 2020).

Third, face spaces derived from EEG data evince meaningful, 
informative structure. Previous fMRI (Loffler et al., 2005; Nestor et al., 
2016; Carlin and Kriegeskorte, 2017) and neurophysiology (Chang 
et al., 2017) studies have yielded evidence for a neural-based face 
space whose dimensions encode visual features relevant for identity 
recognition. Our results agree with this prior work, though important 
aspects of these spaces, such as specific nonlinearities (Carlin and 
Kriegeskorte, 2017; Yang et al., 2023), remain to be examined for their 
EEG-derived counterparts here. Our investigation goes, however, 
beyond the ability of such spaces to encode individual appearance. 
Specifically, we  focus on the separability of faces by race and the 
higher representational density of OR versus SR.

Relevantly here, prior behavioral (Tanaka et al., 2013; Papesh and 
Goldinger, 2010) and computational work (O’Toole et al., 1991) has 
pointed to OR compression in face space. For instance, Caldara and 
Abdi (2006) trained an autoassociative network only with White or 
only with Asian face images. In both cases, the authors found higher 
density for the left-out race in the face space projections of the 
network. Namely, they found larger pairwise distances, on average, for 
SR faces. Our results provide a neural counterpart of these simulations 
based on pairwise face discriminability. Overall, such findings suggest 
that visual experience with one race amplifies SR face dissimilarity by 
optimizing face space structure for SR face encoding and recognition 
(Valentine, 1991).

Fourth, we demonstrate the richness of visual information present 
in face space by successfully deploying its dimensions and associated 
features in image reconstruction. Accordingly, face representations, 
recovered through reconstruction, reveal visual differences between 
SR and OR faces which do not reflect mere differences in image 
quality. Specifically, image reconstructions assessed by a separate 
group of validators, revealed that OR faces are represented as more 
typical for their race. This agrees with OR compression in face space, 
as noted above, as well as with ORE phenomenology (i.e., “they all 
look the same”; Ackerman et al., 2006; Feingold, 1914; Laurence et al., 
2016). Notably though, we also find largely separate biases in the 
perception of age and expressiveness, which we address next.

Little is known about OR biases in age perception, with a handful 
of prior studies yielding conflicting results (Dehon and Brédart, 2001; 
Mousavi et al., 2018; Zhao and Bentin, 2008). Recent behavioral work 
suggests that OR faces are represented as younger in both East Asian 
and White participants (Shoura et al., 2024). Further, an illusion of 
Asian youthfulness is suggested by inter-ethnic differences in both 
skin physiology (e.g., more collagen) and skeletal structure (Shirakabe 
et  al., 2003; Vashi et  al., 2016) relative to White faces. Therefore, 
we reasoned that OR faces may be perceived as younger than SR ones, 
at least by White participants. Our results support the hypothesis 
above as well as a reciprocal bias, with Asians also perceiving White 
faces as younger. Thus, the present findings speak to a general OR bias 
in age estimation and, critically, they reveal the visual representations 

chance (two-tailed t-tests against 50% chance in a 2-alternative forced choice task) and more pronounced for East Asian stimuli (paired t-tests for each facial 
trait). Error bars indicate ±1 SE (*p < 0.05, ***p < 0.001). Facial images adapted from Ma et al. (2015).

FIGURE 4 (Continued)
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supporting prior reports of such biases (Dehon and Brédart, 2001; 
Mousavi et al., 2018).

Regarding expressiveness, recent work has found poorer 
performance in OR expression recognition (Jiang et al., 2023; Yan 
et al., 2016), possibly due to cultural differences in the representation 
of emotional expressions (Chen et al., 2024; Jack et al., 2012). While 
our stimuli display neutral expressions, emotion can be perceived even 
in neutral faces as a function of facial structure (Neth and Martinez, 
2009; Said et al., 2009) and person knowledge (Suess et al., 2015). 
Hence, we reasoned that biases in expression recognition may also 
extend to the degree of expressiveness perceived in OR neutral faces. 
The results bore out this hypothesis and, again, they revealed the 
representations underlying this bias. Further work though will 
be needed to uncover the precise nature of this bias (e.g., as driven by 
valence, arousal).

From a practical standpoint, we note that perceptual biases have 
critical implications for eyewitness testimony. For instance, a typicality 
bias, whereby OR faces are perceived as less distinctive, may exacerbate 
misidentifications in legal settings (Wells and Olson, 2001; Meissner 
and Brigham, 2001), even when confidence is high (Dodson and 
Dobolyi, 2016). Additionally, biases in expressiveness can influence 
judgments about emotional intent, introducing another layer of 
distortion in face recognition (Jiang et al., 2023). Prior research has 
evaluated training programs emphasizing individuation strategies, 
which may help mitigate such perceptual biases, enhance cross-racial 
identification and improve the reliability of eyewitness testimony 
(Young et al., 2012; Lebrecht et al., 2009).

While our examination of potential biases was driven by specific 
hypotheses, current results may be further queried for other facial trait 
biases (e.g., in attractiveness, competence). Methodologically, this 
opportunity illustrates the benefit of data-driven approaches aimed at 
recovering internal representations (Chen et al., 2024; Nestor et al., 
2016, 2020; Zhan et al., 2019), including their ability to uncover new 
perceptual biases. Further, theoretically, it showcases how encoding 
OR faces in a suboptimal face space (Dahl et al., 2014; O’Toole et al., 
1991), crafted for SR recognition, may lead to an array of 
representational distortions impacting multiple facial traits. In turn, 
practically, such an array of biases can shed new light on an 
ORE-induced decrement in the quality of social interactions (McKone 
et al., 2023), beyond difficulties with person identification.

Regarding the nature of the information underlying ORE, a 
qualitative advantage for SR versus OR emerged early, around 130 ms, 
consistent with the grounding of ORE in perception (Megreya et al., 
2011). However, this advantage, exploited by our temporally-
cumulative analyses, extended up to ~600 ms. Thus, these results do 
not allow linking ORE solely to an early, restricted temporal window 
associated with automatic perceptual processing. Prior work has argued 
for the contribution of memory (Herzmann et al., 2022; Tanaka et al., 
2004; Yaros et al., 2019; Zhao et al., 2014) and socio-cognitive factors 
(Hugenberg et al., 2010; Schwartz et al., 2023) to ORE. Accordingly, 
we cannot rule out that such factors may have contributed, in addition 
to perceptual ones, to the visual representations assessed here.

Furthermore, we note that the main source of ORE may well vary 
across different groups. For instance, it may be driven by perceptual 
experience for Asian-White groups but by social-motivational factors 
across Black-White groups (Wan et  al., 2015). Accordingly, 
investigating the nature and extent of visual biases across other groups 
(e.g., Black-White) could be very informative in this respect. Further, 

evaluating memory-based representations (Chang et al., 2017; Zhan 
et al., 2019) and their ORE biases could help clarify the interplay 
between perception and memory.

To conclude, the present work integrates measures of behavioral 
performance, neural decoding and image reconstruction to yield new 
insights into the representational basis of ORE and its dynamics. Our 
findings reveal multiple biases in OR face perception with significant 
theoretical, methodological and practical implications. More generally, 
they open new avenues for exploring racial biases in face recognition 
and pave the way to studying visual misrepresentations via 
image reconstruction.
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