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Cognitive load recognition (CLR) utilizing EEG signals has experienced significant 
advancement in recent years. However, current load-eliciting paradigms often rely 
on simplistic cognitive tasks such as arithmetic calculations, failing to adequately 
replicate real-world scenarios and lacking applicability. This study explores 
simulated flight missions over time to better reflect operational environments 
and investigate temporal dynamics of multiple load states. Thirty-six participants 
were recruited to perform simulated flight tasks with varying cognitive load levels 
of low, medium, and high. Throughout the experiments, we collected EEG load 
data from three sessions, pre- and post-task resting-state EEG data, subjective 
ratings, and objective performance metrics. Then, we employed several deep 
convolutional neural network (CNN) models, utilizing raw EEG data as model 
input, to assess cognitive load levels with six classification designs. Key findings 
from the study include (1) a notable distinction between resting-state and post-
fatigue EEG data; (2) superior performance of shallow CNN models compared to 
more complex ones; and (3) temporal dynamics decline in CLR as the missions 
progressed. This paper establishes a potential foundation for assessing cognitive 
states during intricate simulated tasks across different individuals.
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1 Introduction

Cognitive load recognition is a crucial paradigm and common application of passive 
brain-computer interfaces (BCI), as well as a significant aspect of intelligent human-computer 
interaction (Arico et al., 2017; Debie et al., 2021; Heard et al., 2018; Dimitrakopoulos et al., 
2017). It serves as the crucial link in cognitive state perception and forms the foundation for 
cognitive emotion monitoring, exploration, and passive cognitive adjustment. Cognitive load 
can be defined as the consumption of mental resources or the occupation of brain information 
processing during human-computer interaction tasks (Wickens, 2002; Zhou et al., 2022). The 
level of cognitive load directly affects the efficiency, accuracy, and safety of task execution. 
Prolonged exposure to excessive cognitive load can lead to a range of physical and mental 
health issues, posing significant hidden risks to the safety of human-computer interaction 
tasks, and potentially resulting in human factor accidents (Shao et al., 2024; Zhou et al., 2022; 
Yan et al., 2023; Wang et al., 2024). Hence, in highly secure and complex human-computer 
interaction systems that require high cognitive abilities from operators (such as simulated 
flight tasks and aviation control), it is essential to decipher and provide feedback on human 
cognitive load status (Zhou et al., 2023). This enables dynamic task allocation, issuance of 
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overload warnings, enhancement of emotional experiences, 
improvement of system usability, and operational efficiency and safety 
(Dell’Agnola et al., 2022; Appel et al., 2023).

Electroencephalogram (EEG) signals have gained widespread 
adoption in passive BCI research for decoding purposes due to their 
sensitive capacity to capture the brain’s original electrophysiological 
response, high temporal resolution, and relatively low acquisition and 
processing costs (Gong et al., 2024; Biasiucci et al., 2019). They are 
currently considered one of the most frequently utilized brain signals 
(Zhang et al., 2019).

The majority of current research for cognitive load recognition 
(CLR) revolves around simple cognitive tasks, such as n-back (Zanetti 
et  al., 2021), English letter memory (Zhou et  al., 2022), and 
mathematical computation (Kakkos et al., 2021). While these tasks 
demonstrate high repeatability and prompt cognitive state responses, 
they have less emphasis on recognizing cognitive load in complex and 
dynamic real-world task scenarios (Chen et al., 2023), thus limiting 
their practical applicability. Therefore, this study aims to explore the 
recognition of cognitive load under simulated flight missions to 
provide more effective strategies and tools for managing cognitive 
load in specific task environments.

To achieve this goal, we recruited a group of participants who 
underwent three sets of simulated flight tasks Multi-Attribute Task 
Battery (MATB) (Santiago-Espada et al., 2011; Cegarra et al., 2020), 
involving eliciting low, medium, and high levels of cognitive load. The 
overview of the MATB load recognition task is shown in Figure 1. The 
decoding process of cognitive load based on EEG involves several 
steps: (a) designing an experiment to induce cognitive load using 
EEG, (b) acquiring EEG data, (c) preprocessing the EEG signals, and 
(d) constructing decoding models utilizing machine learning 
techniques, and subsequently recognizing the cognitive load state of 
the brain.

By collecting resting-state EEG data from participants before and 
after the tasks, along with subjective evaluation ratings and objective 
task performance data, we conducted a comprehensive evaluation of 
operators’ cognitive load levels. Recently, convolutional neural 
networks (CNNs) have been specifically designed and extensively 

validated in the fields of active and passive EEG signal decoding tasks, 
and have demonstrated interpretable and satisfactory decoding 
performance (Zhou et al., 2022; Jiao et al., 2018; Qiao and Bi, 2020; 
Lin et al., 2024). For example, Jiao et al. (2018) introduced a combined 
model that integrates CNNs with the Restricted Boltzmann Machine 
to effectively utilize both spectral and temporal knowledge of EEG 
time series, where deep CNN architecture comprised four 
convolutional layers and two fully connected layers. Qiao and Bi 
(2020) proposed a deep hybrid network that integrates a CNN and a 
Bidirectional Neural Turing Machine for cognitive state evaluation. 
The CNN focuses on maintaining spatial-spectral characteristics of 
EEG signals. Meanwhile, the Bidirectional Neural Turing Machine is 
intended to capture temporal representations from the features 
provided by the CNN. Lin et al. (2024) developed a transfer CNN with 
depthwise separable convolution to mine the EEG pattern consisting 
of rhythmic energies over time.

Besides, some compact and reproducible CNN models have been 
optimized for considering the spatiotemporal characteristics of EEG 
signals, such as shallow CNN (Schirrmeister et al., 2017), EEGNet 
(Lawhern et al., 2018), EEGNex (Chen et al., 2024), and EEGTCN 
(Ingolfsson et al., 2020). Specifically, EEGNet (Lawhern et al., 2018) 
utilizes a convolutional structure tailored for processing temporal 
EEG data, whereas EEGNex (Chen et al., 2024) improves its sensitivity 
towards EEG events by effectively extracting spatial representations. 
EEGTCN (Ingolfsson et al., 2020), on the other hand, merges temporal 
convolutions with conventional CNN structures to efficiently capture 
temporal features in EEG signals. These specialized CNN models for 
EEG data offer robust tools for EEG classification and decoding tasks. 
Inspired by the above research, we employed several end-to-end deep 
CNN models based on raw EEG data to classify the six cognitive load 
tasks and explore the EEG signal features under different cognitive 
load states.

During the analysis of the experimental results, several notable 
findings emerged. Firstly, there was a clear differentiation between 
resting-state data and fatigued resting-state data, indicating distinct 
EEG signal patterns across different cognitive load states. Secondly, 
shallow CNN model exhibited better performance in task 

FIGURE 1

Overview of the MATB load recognition task, including (a) preparation, (b) EEG collection, (c) EEG preprocessing, and (d) load states recognition.
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classification, offering new insights into processing complex EEG 
data. Finally, as the tasks progressed, the accuracy of classifying the 
three sets of simulated flight tasks showed a decreasing trend, likely 
reflecting cognitive fatigue among operators during prolonged high 
cognitive load tasks. These findings have practical implications for 
recognizing cognitive load in specific operators and designing 
relevant cognitive tasks. They also provide new research perspectives 
and methods for EEG-based CLR. The contributions of this 
study include:

 1 Delving deeply into more complex cognitive tasks fills a gap in 
the design of existing simple numerical tasks.

 2 Collecting load task EEG data, resting-state EEG data, 
subjective self-rating scales, and objective task data through 
experiments provides a multi-faceted source of information for 
MATB task research.

 3 Employing the end-to-end deep CNN models derived from 
raw EEG data to categorize cognitive load, which broadens the 
scope of methods for identifying operators’ cognitive load.

 4 Identifying distinct characteristics between resting-state data 
and fatigue-induced resting-state data during task performance, 
as well as performance disparities among various deep 
CNN models.

The remainder of the paper is structured as follows. Section 2 
details materials and methods, encompassing load-elicitation 
paradigm, EEG collection, and the design of recognizing load across 
time. Section 3 presents the experimental results, including subjective 
scale results, objective behavior analysis, and CLR outcomes. Section 
4 delves into brain activation patterns and data visualization, and gives 
the limitations and future outlook. Lastly, we  conclude the 
whole paper.

2 Materials and methods

This section presents information on recruited subjects, the load-
evoked experimental paradigm, EEG data acquisition and 
preprocessing, and the approaches adopted for identifying cognitive 
load, using both traditional classifiers and advanced 
CNN-based models.

2.1 Subjects

We have recruited a total of 36 college students with science 
majors (18 women, average age: 23.2 ± 1.7 years) from Nanjing 
University of Aeronautics and Astronautics. All participants were 
right-handed except for two participants. They had no prior 
experience in flight simulation. They had normal or corrected vision 
and reported no factors inducing anxiety or fatigue. Before the 
experiment commenced, participants were asked to abstain from 
alcohol consumption and caffeine and to ensure 8 h of sleep. Also, 
we explained the specific experimental process to all subjects and 
obtained the informed consent of each subject. The study was 
approved by the Ethics Committee of Affiliated Nanjing Brain 
Hospital, Nanjing Medical University. To mitigate fatigue, subjects 
were provided rest periods following each task.

2.2 Load-elicited paradigm

2.2.1 MATB task
We have used the OpenMATB software (Cegarra et al., 2020), an 

open-source adaptation of the original MATB task, to perform the 
MATB II task. The task requires participants to engage in multiple 
concurrent activities displayed on the screen. The task used in this 
study consists of three primary components: system monitoring task, 
target tracking, and fuel resource management, each simulating 
different operations performed by pilots during aircraft flight. The 
paradigm design is shown in Figure 2.

In Figure 2, the system monitoring task is situated in the upper 
left. It simulates the monitoring of instrument indications during a 
flight mission. It requires participants to oversee six visual indicators 
(including two warning lights and four cursor pointers) and correct 
any abnormal behavior. The target tracking task is located at the upper 
center of Figure  2. In this task, participants engage in a manual 
simulation where they are required to maintain the target within the 
aircraft’s tracking range to the best of their ability. The resource 
management task is positioned in the lower central portion of 
Figure 2, consisting of six fuel tanks and eight valves. Participants are 
required to develop a reasonable fuel management strategy to keep the 
fuel volume of two main fuel tanks A and B at 2,500 gallons.

Before the experiment started, participants were informed of the 
specific procedures and details of the experiment, and participants 
were asked to conduct a pre-experiment until they were familiar with 
the experimental procedures. The procedure for executing the entire 
task is illustrated in Figure 3. In the formal experiment, each subject 
completes two types of tasks. The first was the resting state task, 
including a pre-task of 5 min and a post-task of 5 min. The second was 
the task that induced cognitive load data with three groups.

During the resting states task, participants are required to watch 
the computer screen with a MATB screen capture (static image) for 
5 min. For three groups of MATB tasks, each group of load-inducing 
tasks includes three difficulty levels of eliciting low, medium, and high 
loads (depicted in Figure 3 with different shades of orange), with each 
level lasting for 5.5 min, and the order within each group is different. 
The difficulty of a task is contingent upon the inherent difficulty of the 
task itself and the number of concurrent tasks that are being processed.

2.2.2 Task design
The task parameter settings of MATB II under different difficulty 

conditions are shown in Table 1. The overall difficulty is modulated by 
adjusting the difficulty levels of individual subtasks. System 
monitoring and resource management tasks can be interacted with 
using the keyboard and mouse. They can regulate mental load by 
adjusting the frequency of abnormal events. The tracking task is 
controlled with a flight joystick and regulates load by adjusting the 
tracking trajectory of the center rectangle. We use the PXN-2113PRO 
flight joystick (Shenzhen PXN Electronics Technology Co., Ltd.) in 
our experiment, which can be seen in Figure 1a.

As shown in Table  1, for the low-load-elicitation design, 
we interact with system monitoring with 10 times abnormal events 
lasting with 27–40 s, tracking trajectory range with 2 cm, and 
resource management task with 10 times abnormal events lasting 
with 24–40 s. For the medium-load-elicitation design, we interact 
system monitoring with 30 times abnormal events lasting 8–13 s, 
tracking trajectory range with 1.5 cm, and resource management task 
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with 20 times abnormal events lasting 14–20 s. For the high-load-
elicitation design, we  interact system monitoring with 50 times 
abnormal events lasting 4–7 s, tracking trajectory range with 1 cm, 
and resource management task with 30 times abnormal events 
lasting 7–13 s.

During the experiment, subjects are requested to complete the 
subjective NASA-TLX scale (Hart, 1988) promptly. Data pertaining to 
task performance are simultaneously recorded, including the reaction 
time for system monitoring task, the standard deviation of fuel level 
for resource management task, and the tracking error for tracking task.

2.3 EEG collection and preprocessing

During the EEG acquisition, Neuroscan (Compumedics, 
Australia), a high-precision wired EEG acquisition and analysis 
system, was used to collect 64 channels of EEG data of subjects. It 
includes the Neuroscan SynAmps2 amplifier and CURRY8 acquisition 
software. The electrode distribution follows the 10–20 international 
standard. The grounding electrode is positioned between the FPz and 
Fz electrodes on the EEG cap, with the reference electrode situated at 
the M2 point on the right mastoid. The acquisition frequency was 

FIGURE 2

Screenshot of the OpenMATB.

FIGURE 3

The execution process of the MATB task.

TABLE 1 Load-elicited task design.

Subtask Low Medium High

System monitoring 27–40 s/time, 10 times 8–13 s/times, 30 times 4–7 s/times, 50 times

Tracking Trajectory range 2 cm Trajectory range 1.5 cm Trajectory range 1 cm

Resource management 24–40 s/time, 10 times 14–20 s/time, 20 times 7–13 s/time, 30 times
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2,000 Hz and the impedance of all electrodes was maintained 
below 20 kΩ.

We apply a simple preprocessing pipeline to preprocess the raw 
EEG time series. First, we have used CURRY8 software to perform 
preliminary preprocess. To be specific, we use VEOG to remove the 
eye-blink artifacts and then average the data. Afterward, we used 
Matlab 2019a and EEGLAB plug-in (Delorme and Makeig, 2004) to 
further preprocess the data, including the following steps. VEO and 
trigger channels are removed, remaining 62 EEG channels. The 
remained EEG data are referenced to the average electrodes. Next, a 
band-pass filter is applied between 0.1 to 70 Hz, and a 50 Hz power 
line filter is also applied. These steps help maintain useful information 
and ease the power line noise. Subsequently, the EEG data are 
decimated to 250 Hz to decrease the model’s calculation cost. Then, 
the downsampled EEG data are segmented into nine 5.5 min 
subgroup data for task states (two 5 min for resting states) from −1 
to 330 s (−1 to 300 s for resting states) after the stimulus starts. 
Finally, the 2 s epoch is extracted from the corresponding subgroup 
data. As such, each subgroup of load task of each subject has 165 EEG 
trials, and each subgroup of resting states has 150 EEG trials. Thus, 
the model input has the array shape of 62 channels × 500 time points 
in 2 s. However, due to the operation error, we have removed the EEG 
data of Group 3 of subject # 13.

2.4 Load classification

We design six load recognition tasks, as shown in Figure 4.
Task #1: Binary classification of normal resting state (5 min) and 

fatigued resting state (5 min), where we treat the above two resting 
states as separated load states. We argue that after performing the 
three groups of MATB tasks, the normal and fatigued states might 
have significant differences that can be easily classified. We adopt a 
10-fold cross-validation (CV) to perform the CLR.

Task #2: Four-class classification of normal resting state with 
Group 1 data, in which we aim to recognize the normal, low, medium, 
and high loads. We use a 10-fold CV.

Tasks #3 to #5: Three-class classification of low, medium, and high 
load levels, corresponding with three groups. We aim to recognize the 
load state during the 5.5-min-long session and observe whether the 
classification results have a difference. We also use a 10-fold CV. In 
task #5, the EEG data of subject #13 is removed.

Task #6: Three-class classification to identify low, medium, and 
high load levels. The training dataset consists of the data of first two 
groups, while the third group is utilized for testing. We aim to perform 
cross-session load recognition to verify the time variability. We have 
removed the data of subject #13 in this task.

The design of the specific load identification task is illustrated in 
Figure 4. To sum up, tasks #1 to 5 are subject-dependent but have no 
consideration of time effects, and task #6 considers time variability.

2.4.1 Spectral features
As commonly used, we have adopted power spectrum density 

(PSD) feature combined with a supporting vector machines (SVM) 
classifier as a traditional machine learning method. To obtain the 
time-frequency PSD features of the time-varying EEG data, we have 
used the short-time Fourier transform (STFT). The concept of 
employing STFT for processing EEG signals revolves around 
segregating the signal into distinct frequency bands by adding window 
functions on the original non-stationary signal and capturing the 
energy within each band as representative features of the original EEG 
signals. The five frequency bands are followed with Zhou et al. (2022), 
by transferring the raw EEG data into delta band [δ  (1–4 Hz)], theta 
band [θ  (4–8 Hz)], alpha band [α  (8–13 Hz)], beta band [β  
(13–30 Hz)], and gamma band [γ  (30–80 Hz)]. Here, we have used 
the 1-s non-overlap Hanning window. For each sample, the PSD 
feature dimension across 62 channels is calculated as 62 channels × 2 
windows × 5 frequency bands = 620. We have averaged the windowed 
features to reduce the computing process, and finally use 310 features 
for each sample.

2.4.2 CNN models
Since CNN models perform better in passive BCI decoding tasks 

using EEG raw data, we then adopt the widely-used CNN models in 

FIGURE 4

Six CLR decoding tasks in this paper.
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the EEG classification domain and transfer them to the load 
recognition domain. We aim to validate the applicability of CNN 
models (Schirrmeister et al., 2017; Lawhern et al., 2018; Chen et al., 
2024; Ingolfsson et  al., 2020) and dig into the load recognition 
performance. The aim is to offer insights into selecting load-
monitoring models. Additionally, we also evaluate and compare the 

performance of different models, ultimately recommending the one 
with the highest effectiveness. Detailed structures of these models are 
presented in Table 2. The model input is shaped as C T× , where C is 
the number of EEG channels, and T  is the number of time points.

The shallow CNN (sCNN) (Schirrmeister et al., 2017) refers to the 
design of the filter-bank common spatial pattern process and is 

TABLE 2 The structures of CNN models used in this paper.

Network Block Layer Filter Kernel size Classifier

sCNN 1 Input ( )C T× Dense (N)

Conv2D-temporal 40 (1, 25)

Conv2D-spatial 40 (C, 1)

AvePooling (1, 75)

dCNN 1 Input ( )C T× Dense (N)

Conv2D-temporal 25 (1, 10)

Conv2D-spatial 25 (C, 1)

MaxPooling (1, 3)

2 Conv2D 50 (1, 10)

MaxPooling (1, 3)

Conv2D 100 (1, 10)

MaxPooling (1, 3)

Conv2D 200 (1, 10)

MaxPooling (1, 3)

EEGNet 1 Input ( )C T× Dense (N)

Conv2D 1F (1, 256)

DepthwiseConv2D 1F D∗ (C, 1)

AvePooling (1, 4)

2 SeparableConv2D 2F (1, 16)

AvePooling (1, 8)

EEGNex 1 Input ( )C T× Dense (N)

Conv2D 1F (1, 32)

Conv2D 41F ∗ (1, 32)

DepthwiseConv2D 41F D∗ ∗ (C, 1)

AvePooling (1, 4)

2 Conv2D 41F ∗ (1, 16)

Conv2D 1F (1, 16)

EEGTCN 1 Input ( )C T× Dense (N)

Conv2D 1F (1, 64)

DepthwiseConv2D 1F D∗ (C, 1)

AvePooling (1, 4)

SeparableConv2D 2F (1, 16)

AvePooling (1, 4)

2 Conv1D 10 10

Conv1D 10 10

The following are all numbers. C  = EEG channels (62), T  = time points (500), 1F  = temporal filters (8), D = depth multiplier in DepthwiseConv2D (2), 2F  = pointwise filters (16), and 
N = decoded classes, respectively.
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specially customized for decoding band power characteristics. 
Specifically, the first two layers of SCNN perform convolution and 
spatial filtering operations in the time dimension, allowing a wider 
range of feature extraction and conversion. It has a lighter structure, 
fewer parameters, and can learn the time structure of power change.

The deep CNN (dCNN) was initially developed to address EEG 
decoding tasks. It is a model adept at extracting a wide range of 
features and not confined to specific feature types. Due to its 
adaptability in the EEG domain, dCNN can effectively handle various 
EEG classifications, especially when the EEG data exhibits a 
dispersed distribution.

EEGNet (Lawhern et al., 2018) is a compact CNN that combines 
deep convolution with separable convolution. It consists of three 
convolutional layers and one fully connected layer. It aims to capture 
various EEG feature extraction techniques, such as filter bank 
construction and optimal spatial filtering. Studies have found that 
EEGNet exhibits excellent cross-paradigm generalization capabilities 
and effectively learns a diverse set of interpretable features across various 
tasks, achieving satisfactory results in EEG classification. The above 
codes are assessed at https://github.com/vlawhern/arl-eegmodels.

EEGNex (Chen et  al., 2024) epitomizes an advanced purely 
convolution-based neural network architecture derived from EEGNet. 
It notably enhances the extraction of spatial representations from raw 
EEG data when compared to the EEGNet. This improvement stems 
from integrating two 2D convolutions within its overarching structure, 
utilizing an inverse bottleneck architecture, and expanding the layer’s 
receptive field. The code can be  assessed at https://github.com/
chenxiachan/EEGNeX.

EEGTCN (Ingolfsson et al., 2020) effectively leverages temporal 
information inherent in features and combines EEGNet’s shallow layer 
as a feature extractor and temporal convolutional network (TCN) to 
further leverage temporal information. The feature extractor comprises 
2D-time convolution, deep convolution, and separable convolution for 
sequential feature learning and output. Then, TCN extracts temporal 
information through the integration of time convolution blocks and 
causal convolutions and a 1D fully convolutional network, ultimately 
feeding into the fully connected layer. The code can be assessed at 
https://github.com/iis-eth-zurich/eeg-tcnet.

We have adopted the widely used BCI methods for MATB task-
based load recognition. For tasks 1 to 5, we  use a 10-fold CV to 
evaluate the recognition performance. Task 6, can be seen as the fixed 
train-test design to evaluate the cross-time or cross-session 
generalization capability. Overall, all the tasks can be considered as 
subject-dependent strategies to validate findings and 
recognition performance.

The performance metrics are accuracy and F1 score. The 
traditional method that uses an SVM classifier combining PSD 
features is implemented in Matlab 2019a. The CNN-based models are 
implemented with the Tensorflow 2.5.0 library in PyCharm 2020.1.2 
and Python 3.7.0. The CNN-based models were trained for 50 epochs 
using a batch size of 32. The Adam optimizer was employed, and the 
learning rate was set to 0.0001.

3 Experimental results

This section includes the subjective analysis of the NASA TLX 
scale, the objective operate-related behavior data analysis, and the 

EEG load recognition results under different classifiers and six 
CLR tasks.

3.1 Subjective analysis

The NASA-TLX scale comprises six subscales: mental demand, 
temporal demand, physical demand, effort, performance, and 
frustration (Hart, 1988). Participants were instructed to rate each 
subscale on a scale from 0 to 100. The final results were derived as the 
weighted average of these subscales.

Figure  5 depicts the average NASA-TLX scores of all 
participants at different task difficulty levels during different 
periods, using paired t-tests for statistical analysis. The analysis of 
variance results reveals a significant increase in NASA-TLX scores 
among participants as task difficulty rises (p < 0.05). More 
specifically, in Figures 5a,b, a notable distinction (p < 0.05) can 
be observed in the subjective ratings across the three difficulty 
levels during the first and second sessions (Groups 1 and 2). 
However, in the third session (Group 3), the difference between 
the moderate and high difficulty levels was not significant 
(p > 0.05).

We also compared three load levels across different groups, as 
illustrated in Figures 5d–f. Though the presentation order of Groups 
2 and 3 is different from Group 1, the subjective scale comparison 
results indicate that the difference between the low and medium load 
levels among the three groups was not significant (p > 0.05). Similarly, 
there is no significant difference between the first and second groups 
under high load, but a significant difference was observed between the 
first two groups and the third group (p < 0.05). This suggests that the 
randomization of load levels within each group is justified.

3.2 Objective results

In the formal experiment, after each set of MATB tasks is 
completed by the participants, the MATB software automatically 
records the objective data for subsequent analysis. We then computed 
three objective metrics: response time for the system monitoring task, 
tracking error in the tracking task, and standard deviation of fuel level 
in the AB tanks in the resource management task.

Figure  6 presents the average objective task performance, 
including response time for the system monitoring task (the first row) 
and tracking error in the tracking task (the second row), for all 
participants across the three sessions. The operator’s response time in 
the system monitoring task is relatively insignificant. As seen in 
Figure 6a, the response time of low load state versus high, and medium 
versus high, are significantly different (p < 0.05). In Groups 2 and 3 
(Figures 6b,c), the operator’s response time in the system monitoring 
task remains insignificant (p > 0.05). The graph clearly illustrates that 
as task difficulty increases, there is a significant increase in tracking 
error (computed as abnormal STD) in the tracking task. For example, 
as shown in Figures 6d–f, the low load state has significantly lower 
error than the high load states, the low load state is significantly 
different from medium states in Groups 2 and 3, the medium load 
state is significantly different with high states in Groups 1 and 2 
(p < 0.05). These results indicate a decreasing trend in task 
performance as the difficulty level increases.

https://doi.org/10.3389/fnhum.2025.1542774
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://github.com/vlawhern/arl-eegmodels
https://github.com/chenxiachan/EEGNeX
https://github.com/chenxiachan/EEGNeX
https://github.com/iis-eth-zurich/eeg-tcnet


Zhou et al. 10.3389/fnhum.2025.1542774

Frontiers in Human Neuroscience 08 frontiersin.org

In Figures 7a,b,d,e, in Groups 1 and 2, the standard deviation of 
fuel level in the resource management task is not statistically 
significant (p > 0.05), while in Figures 7c,f, it is significant. Overall, 
these findings demonstrate that the designed tasks can effectively elicit 
varying levels of cognitive load among participants, as evidenced by 
both the subjective rating scale and the objective task 
performance data.

3.3 Classification results

The CLR results of six tasks are shown in Figure 8. In task 1, the 
CNN model outperforms the traditional PSD + SVM method (with 
an accuracy of 73%). Among them, the sCNN model exhibits the best 
performance (with an accuracy of 91.3%). Other models include 
dCNN (accuracy of 83.39%), EEGNet (81.81%), EEGNex (77.38%), 
and EEGTCN (74.78%).

In task 2, the CNN model outperformed the traditional PSD + SVM 
method (with an accuracy of 43.53%). Specifically, the dCNN model 
achieved the best accuracy of 73.64%, followed by the EEGNet (70.27%), 
sCNN (67.78%), EEGTCN (67.77%), and EEGNex (67.49%).

In task 3, the CNN model outperforms the PSD + SVM (with an 
accuracy of 55). Specifically, the shallow CNN model achieved the best 
accuracy of 83%. Additionally, the other models were the dCNN (with 
an accuracy of 80%), EEGNet (67.95%), EEGNex (65.26%), and 
EEGTCN (61.99%).

In task 4, the CNN model consistently outperforms the 
PSD + SVM approach (accuracy of 51%). Among them, the shallow 
CNN model demonstrates the highest accuracy (81%). Other models 
include the dCNN (accuracy of 75%), EEGNet (62.58%), EEGNex 
(59.52%), and EEGTCN (52.77%).

In task 5, the CNN model outperforms the PSD + SVM approach 
(with an accuracy of 48.51%). Specifically, the shallow CNN model 
demonstrates the best performance (with an accuracy of 76.74%), 
followed by dCNN (73.19%), EEGNet (57.63%), EEGNex (53.52%), 
and EEGTCN (49.27%).

When applied to task 6, namely within-subjects cross-time load 
classification, the traditional method, and CNN-based models 
exhibited poorer recognition performance than tasks 3 to 5, and these 
three methods have similar performance. Specifically, in task 6, the 
traditional PSD + SVM method achieved an accuracy of 34.13%, with 
the dCNN model exhibiting the best performance with an accuracy 

FIGURE 5

Subjective results, with (a–c) across different groups and (d–f) across time. *Denotes statistically significant (p > 0.05).
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of 36.97%. Other models included sCNN (accuracy of 35.61%), 
EEGNet (34.7%), EEGTCN (34.11%), and EEGNex (33.40%).

To sum up, comparing the traditional PSD + SVM classifier with 
the CNN-based models, we can observe that (1) the CNN models 
have better decoding performance, and (2) the simpler the CNN 
model, the more adept it becomes at decoding when the input is an 
original signal.

4 Discussion

The discussion section has several parts. The sample size and 
accuracy of each individual are shown first. Second, model 
convergence is shown. Third, ablation research is carried on. Fourth, 
visualization of learned feature representation is displayed. Finally, the 
limitations are discussed.

4.1 Brain activation pattern

We present the PSD distribution of EEG across various frequency 
bands and cognitive states to compare brain activation patterns, with 

five frequency bands. By calculating the average PSD across 36 
subjects for each task state and normalizing it to [0, 1], we obtain the 
PSD matrix for each state. This matrix is then converted into a 
channel-by-frequency band format for visualization. The PSD 
distribution results are displayed in Figure 9.

The β  band and α  band have been reported they be associated 
with the load changes (Dimitrakopoulos et  al., 2017; Zhou et  al., 
2022), indicating the brain is in engaged and high conscious states, 
respectively. Focusing on the two frequency bands, we can see there is 
similar brain pattern activation in both resting states; the difference 
lies in whether the activation is positive or negative. By comparing the 
colors, it can be observed that the positive activation value in the 
fatigued resting state is larger (more intense red) in the left temporal 
and central brain regions than in the non-work resting state. Between 
the high load state to the low load states, the activation pattern of PSD 
features is more elicited in the frontal, occipital and parietal 
brain regions.

Besides, we  have used the paired t-test to make the statistical 
analysis between the different load states. The statistical analysis is given 
in Table 3 with p < 0.05. Between the resting state 1 and fatigued resting 
state 2, there are significant differences in three frequency bands except 
the low-frequency δ  band and high-frequency γ  band. Between the 

FIGURE 6

Objective task performance, including response time for the system monitoring task (a–c) and tracking error in the tracking task (d–f). *Denotes 
statistically significant (p > 0.05).
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low-load state and medium-load states, there are significant differences 
in all four frequency bands except the low-frequency δ  band. Between 
the low load state and high load states, there are significant differences 
in all four frequency bands except the high-frequency β  band. Between 
the medium load state and high load states, there are significant 
differences in δ  band and β  band.

4.2 Time effects

Additionally, we examined how the decoding model influenced 
the subjects’ operational states over time by comparing the decoding 
performance across the three model groups. In this analysis, data from 
subject #13 were omitted from the experimental evaluation, focusing 
on the results from 35 subjects in the sCNN model.

Figures 10a,c represent the average classification accuracy and F1 
score of the sCNN model across tasks 3 to 5 (i.e., Groups 1 to 3). Here, 
“Last” denotes that we take the result from the 50th epoch as the final 
result for each subject. Additionally, we conducted experiments to 
document the best classification metric observed, subsequently 
averaging these values to obtain Figures 10b,d with “Best.” The results 
in Figures  10a–d indicate that recognition performance has 
significantly decreased tendencies over time. Comparing Figure 10a 

vs. Figure 10b and Figure 10c vs. Figure 10d, the best condition has 
better results than the last one.

Figure 10e illustrates the accuracy distribution across subjects. 
Subjects # 1, 4, 5, and 20 exhibited notable variations in their accuracy 
outcomes across the three groups, potentially due to fatigue incurred 
by these individuals throughout the high-cognitive-load experiment. 
Of all the subjects, subjects #16 and 35 demonstrated consistent and 
superior performance on cognitive tasks, whereas subjects #2 and 3 
exhibited inferior performance.

4.3 Feature visualization

The study utilizes t-distributed Stochastic Neighbor Embedding 
(t-SNE) (van der Maaten and Hinton, 2008) to map the feature 
representation onto a 2D plane for visualization, as depicted in 
Figures  11, 12. t-SNE is a nonlinear dimensionality reduction 
technique designed to maintain the relationships within the data in a 
lower-dimensional representation. Two subjects were randomly 
chosen, and the feature distribution of both training and test data was 
visualized after the first-fold of model training, with the respective 
task number displayed at the bottom. In the case of task 6, only the 
training features were visualized. Light colors indicate features from 

FIGURE 7

Objective results of the standard deviation of fuel level in the resource management task, where (a–c) are for tank A and (d–f) are for tank B. *Denotes 
statistically significant (p > 0.05).
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FIGURE 8

CLR results under six tasks, where (a–f) are accuracy results and (g–l) are F1 score results.
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the training data, while dark colors represent features from the test 
data. For instance, in task 1, red signifies normal resting state data and 
blue signifies fatigue resting state data. Similarly, in tasks 3, 4, 5, and 
6, pink represents low load data, blue represents medium load data, 
and green represents high load data.

It is evident that distinguishing task 1 in subject A is relatively 
straightforward, as features within the same cluster are well-integrated 
and features of the same class align well between training and testing 
data. While the resting state and low load of task 2 can be differentiated, 
medium load and high load samples lack a clear classification 
boundary, resulting in significant overlap. The cognitive load 

classification of different data groups reveals challenges in 
distinguishing tasks 3 and 5 (Groups 1 and 3), with some 
distinguishability in task 4 with Group 2 data. The distribution results 
of task 6 indicate difficulty across time in distinguishing training data.

Similar to subject A, in Figure 12, task 1 in subject B is easily 
distinguishable, with consistent characteristics within the same class 
across training and testing data. Task 2 can be separated into low and 
medium loads. Tasks 3, 4, and 5 are distinguishable from subject A, 
with data from different load states forming distinct clusters. However, 
distinguishing the distribution data for task 6 is challenging.

Comparing the above two subjects, subject B has a better BCI 
adaptation and discriminatory than subject A, which also indicates 
the variation between subjects.

4.4 Limitations and future outlook

This study has several limitations. Firstly, the narrow time interval 
of this study does not encompass a broad period, potentially impeding 
a comprehensive understanding of cognitive load changes. Secondly, the 
recognition performance in cross-time decoding was suboptimal than 
within-subject design, failing to effectively capture the dynamic EEG 
changes over time.

Future research can focus on, first, developing an efficient deep 
model tailored for cognitive load decoding to enhance performance 

FIGURE 9

The brain activation patterns across various frequency bands and cognitive states. Red indicates positive activation, blue represents negative activation, 
and the intensity of the color corresponds to the magnitude of the activation value.

TABLE 3 Statistical analysis of brain activity patterns across various load 
conditions.

Bands Rest1 vs. 
Rest2

Low vs. 
medium

Low vs. 
high

Medium 
vs. high

δ \\ \\ ** *

θ ** ** ** \\

α ** ** ** \\

β ** ** \\ *

γ \\ ** ** \\

\\ means there is no significant difference, and * denotes the significant difference with 
p < 0.05, and ** denotes the significant difference with p < 0.01.
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FIGURE 10

The impact of the decoding model on the working state of subjects over time, (a,c) denote last results, (b,d) denote the best results, and (e) is the 
accuracy distribution across subjects.

Task 1 Task 2 Task 3

Task 4 Task 5 Task 6 Train
FIGURE 11

The t-SNE visualization of Sub #A.
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across periods, such as the model that integrates CNN and self-
attention (Song et al., 2023). Furthermore, we can use interpretability 
tools to explain the spatiotemporal patterns learned by CNNs (e.g., 
specific frequency bands or brain regions). Second, exploring 
advanced transfer learning algorithms (Shao et al., 2024; Zhou et al., 
2022; Zhou et al., 2023) that mitigate time and subject variability, 
thereby bolstering the robustness and adaptability of decoding 
models to cognitive load changes. For example, in our previous work, 
to ease the issue of high subject variance in CLR, we have proposed 
a domain adaptation model for joint shallow and deep feature 
alignment (Zhou et al., 2023). The model incorporates a distributional 
difference measure to adjust shallow feature distributional offsets, 
and one domain discriminator to reduce inter-domain distributional 
differences. Further, we have introduced the bi-classifier joint domain 
adaptation (BCJDA) model (Shao et al., 2024) tailored for cross-
session and cross-subject CLR, incorporating domain-level and class-
level alignment. These models reduce the distributional differences 
between different subjects or periods, thereby facilitating the effective 
utilization of multi-subject shared features for the mining of subject/
time stability patterns and the construction of models for subject 
generalization. The advanced deep decoding model for efficient 
feature learning and transfer learning methods that can reduce the 
EEG variance will constitute the focus of the next step of our research.

5 Conclusion

This study aimed to investigate the evaluation criteria for 
cognitive load state in a complex operational task environment, 

with a specific focus on methods utilizing EEG signals and 
behavior data. Our results suggest that, when exposed to prolonged 
cognitive load, participants exhibit heightened sensitivity towards 
high-load states, displaying behavioral reactions and brain 
activation patterns that differ significantly from those observed in 
low-load states. Specifically, a stronger activation of high-frequency 
EEG was observed in states of high load. Additionally, the results 
of our classification study indicate shallow CNN models yield 
superior recognition results in within-subject decoding tasks, 
which is noteworthy. Our study provides further confirmation that 
cognitive load states are substantially influenced by temporal 
factors in continuous cognitive tasks, as evidenced by the 
downward trend in recognition performance observed between the 
groups. Besides, all models demonstrate inadequate performance 
in cross-time generalization, thereby necessitating future research 
to focus on time variation and subject discrepancy. In conclusion, 
this paper establishes a potential foundation for assessing cognitive 
states in intricate simulated MATB tasks across different 
individuals. Future research may delve deeper into the application 
of deep CNN models in cross-session and cross-individual 
decoding, aiming to enhance the precision and dependability of 
cognitive load state evaluation.
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FIGURE 12

The t-SNE visualization of Sub #B.
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