
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Hum. Neurosci.
Sec. Brain-Computer Interfaces
Volume 19 - 2025 | doi: 10.3389/fnhum.2025.1539081
This article is part of the Research Topic Non invasive BCI for communication View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Brain Computer Interface spellers offer a promising alternative for individuals with Amyotrophic Lateral Sclerosis (ALS) by facilitating communication without relying on muscle activity. This study assessed the feasibility of using movement related cortical potentials (MRCPs) as a control signal for a Brain-Computer Interface speller in an offline setting. Unlike motor imagery-based BCIs, this study focused on executed movements. Fifteen healthy subjects performed Three spelling tasks that involved choosing specific letters displayed on a computer screen by performing a ballistic dorsiflexion of the dominant foot. Electroencephalographic signals were recorded from 10 sites centered around Cz. Three conditions were tested to evaluate MRCP performance under varying task demands: a control condition using repeated selections of the letter "O" to isolate movement-related brain activity; a phrase spelling condition with structured text ("HELLO IM FINE") to simulate a meaningful spelling task with moderate cognitive load; and a random condition using a randomized sequence of letters to introduce higher task complexity by removing linguistic or semantic context. The success rate, defined as the presence of an MRCP, was manually determined. It was approximately 69% for both the control and phrase conditions, with a slight decrease in the random condition, likely due to increased task complexity. Significant differences in MRCP features were observed between conditions with Laplacian filtering, whereas no significant differences were found in single-site Cz recordings. These results contribute to the development of MRCP-based BCI spellers by demonstrating their feasibility in a spelling task. However, further research is required to implement and validate real-time applications.
Keywords: Movement-related cortical potentials, Brain-Computer Interface Speller, control signal, Amyotrophic Lateral Sclerosis, Electroencephalography MDPI_4.1_table_caption Formatted: MDPI_4.1_table_caption Formatted: MDPI_4.1_table_caption MDPI_4.1_table_caption, left
Received: 03 Dec 2024; Accepted: 07 Mar 2025.
Copyright: © 2025 Hernandez-Gloria, Jaramillo Gonzalez, Savic and Mrachacz Kersting. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Natalie Mrachacz Kersting, Department of Sport and Sport Science, Wirtschafts- und Verhaltenswissenschaftliche Fakultät, Albert Ludwigs Universität Freiburg, Freiburg, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.