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Understanding how the brain encodes upper limb movements is crucial for 
developing control mechanisms in assistive technologies. Advances in assistive 
technologies, particularly Brain-machine Interfaces (BMIs), highlight the importance 
of decoding motor intentions and kinematics for effective control. EEG-based BMI 
systems show promise due to their non-invasive nature and potential for inducing 
neural plasticity, enhancing motor rehabilitation outcomes. While EEG-based BMIs 
show potential for decoding motor intention and kinematics, studies indicate 
inconsistent correlations with actual or planned movements, posing challenges 
for achieving precise and reliable prosthesis control. Further, the variability in 
predictive EEG patterns across individuals necessitates personalized tuning to 
improve BMI efficiency. Integrating multiple physiological signals could enhance 
BMI precision and reliability, paving the way for more effective motor rehabilitation 
strategies. Studies have shown that brain activity adapts to gravitational and inertial 
constraints during movement, highlighting the critical role of neural adaptation 
to biomechanical changes in creating control systems for assistive devices. This 
review aims to provide a comprehensive overview of recent progress in deciphering 
neural activity patterns associated with both physiological and assisted upper limb 
movements, highlighting avenues for future exploration in neurorehabilitation 
and brain-machine interface development.
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1 Introduction

1.1 Background

Human movements are intricately organized through synergies, influenced by affordances, 
and characterized by tension distributions within bio-tensegrity structures (Singh et al., 2018; 
Franchak et al., 2010). Recent advancements in Brain-Machine Interfaces (BMIs) underscore 
their critical role in enhancing motor rehabilitation by precisely decoding motor intentions 
for voluntary movements. BMIs are primarily designed to restore or augment goal-directed 
and voluntary movements. Voluntary motor actions involve a top-down intention to initiate 
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movement, but effective voluntary control also relies on selectively 
utilizing bottom-up sensory feedback to inform and guide these 
actions (Scott, 2016). It is crucial to develop assistive BMIs that 
integrate both top-down intention and bottom-up sensory feedback. 
Recent literature has advanced the current understanding of decision-
making processes involved in goal-directed movements. Mirabella 
(2014) proposed that actions and their inhibition are tightly coupled 
within overlapping neural circuits, challenging the classical view of 
distinct regions for movement and stopping actions. These insights 
highlight the complex decision-making networks underlying 
voluntary motor control, which are essential for refining assistive 
technology systems designed to interface with human intentions.

The human brain executes motor functions through complex 
interactions among various brain regions, including the cerebellum, 
basal ganglia, and motor-related cortical areas like the primary motor 
cortex (PMC) (Caligiore et al., 2017). Basal ganglia and cerebellum are 
essential for controlling the motor system, modulating the activity of 
premotor cortex (PrMC), supplementary motor area (SMA), and PMC 
(Rocha et al., 2023). Cerebellum compares planned actions to executed 
ones, providing feedback to refine motor movements and correct errors 
(Antonioni et al., 2024). Basal ganglia are involved both in coordinating 
the motor plan and inhibiting goal-directed movements. This is 
achieved by integrating cortical inputs and fine-tuning motor plans via 
direct and indirect pathways, by modulating the dopaminergic neurons 
(Lanciego et  al., 2012; Parent, 2012). Characteristically, voluntary 
movements commence with neural signals in the motor cortex, 
transmitting from the central nervous system (CNS) to the peripheral 
nervous system (PNS), ultimately triggering muscle contractions 
(Ullsperger et al., 2014). Specific and coordinated muscle activation 
patterns are necessary for precise action execution (Zhao et al., 2023).

Human movements have often been characterized by kinematic 
and kinetic attributes (Jones and Lederman, 2006). Kinematic 
parameters pertain to the motion and spatial characteristics of 
movement and are also referred to as “high-level control.” The essential 
kinematic parameters of movement are the location, direction, 
velocity, and acceleration, which result in the desired trajectory. In 
contrast, kinetic parameters, often known as “low-level control,” are 
related to the control of individual muscles and forces. Furthermore, 
an individual can employ numerous trajectories to execute a goal-
oriented movement. Previous studies have explored the representation 
of independent and/or integrated kinematic and kinetic features of 
upper limb movements in the sensorimotor cortex (Branco et al., 
2019; Zhou et  al., 2022; Teka et  al., 2017; Dokkum et  al., 2017). 
However, understanding how an individual’s brain finds the optimal 
solution to carry out a voluntary task remains one of the biggest 
scientific challenges.

Understanding the transformation of neural information into 
voluntary movement is pivotal to restore motor functions in 
neurological diseases such as cerebral stroke, spinal cord injury and so 
on. Recent developments of assistive technologies coupled with BMI 
underscore the significance of decoding user’s motor intentions for 
effective control (Sambhav et al., 2022; Wang et al., 2023). In the context 
of wearable robotics, where the human and the device are physically 
connected, synchronous movement is crucial. This synchronization 
could be reflected in the neural correlates, which might be utilized to 
optimize assisted motor movements (Varghese et al., 2018).

Even though invasive BMIs have a higher signal-to-noise ratio, 
they pose adverse effects due to surgery and could become incompatible 

in the long run because of tissue reactivity (Hochberg et al., 2006). On 
the other hand, electroencephalography (EEG) has proven to be an 
excellent non-invasive technique to explore the neurophysiological 
metrics like motor-related cortical potentials (MRCP) (Pfurtscheller 
and Aranibar, 1979; Kornhuber and Deecke, 2016) and event-related 
desynchronization/synchronization (ERD/S) to decode upper limb 
movements (Jochumsen et al., 2017; Tang et al., 2016). Error-related 
potentials (ErrPs), another important parameter, are a subset of event-
related potentials (ERPs) and serve as indicators of instances where a 
wearable robotic device deviates from human expectations 
(Chavarriaga et al., 2014; Spuler and Niethammer, 2015; Lopes-Dias 
et al., 2019). ErrPs enable adjustments in the machine’s responses, 
aligning them with human preferences and enhancing the overall 
interactive experience (Ullsperger et al., 2014; Omedes et al., 2018).

Neural plasticity refers to the brain’s ability to adapt and reorganize 
itself in response to experience (Xu et al., 2014; Rossini et al., 2012). 
Long-term application of EEG-based assistive devices has been 
documented to induce neural plasticity. The concept of neural 
plasticity opens avenues for the development of more effective and 
personalized assistive technologies. In the context of motor 
rehabilitation for stroke patients, neurofeedback therapy (NFT) based 
on assistive technology has been proven to be  beneficial when 
integrated with traditional therapies (Rayegani et al., 2014).

For self-paced movements, significant ERD of alpha and beta 
frequency has been documented in the contralateral motor cortex, 
particularly preceding the movements (−1,000 ms) (Deiber et  al., 
2012). Conversely, in the context of cue-based actions, bilateral alpha 
ERD reaches its maximum over the parieto-occipital areas during the 
planning phase prior to the movement (−1800 ms to −2000 ms) 
(López-Larraz et al., 2014). Studies on MRCP patterns have shown the 
involvement of motor areas and posterior parietal lobule in specific 
goal-oriented tasks (Pereira et al., 2017; Sburlea et al., 2021). This 
spatio-temporal specificity highlights the intricate orchestration of 
neural dynamics during different types of motor tasks. Nevertheless, 
there is a lack of consensus on the interpretation of these findings, thus 
indicating a need for further investigation.

Although extensive research has been done on the neural 
correlates of upper limb movements and kinematics, less is known 
about how these correlates are modulated during externally assisted 
movements. Furthermore, little is known about how biomechanical 
changes alter brain activity. Hence, a large-scale review of the 
published literature is required to answer the following questions and 
reach coherent conclusions.

 (i) Which are the neural correlates predictive of upper limb motor 
intention and kinematics?

 (ii) What are the effects of external assistance on the neural 
correlates of upper limb movement?

 (iii) What are the effects of changes in biomechanical characteristics 
on brain activity?

1.2 Objectives

The primary objective of this study is to conduct a comprehensive 
review of the existing literature to evaluate the neural correlates 
predictive of upper limb motor intention and kinematics. This study 
also investigates the impact of external assistance on these correlates 
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during upper limb movement. The secondary objective of this study 
is to investigate the effects of changes in biomechanical parameters on 
brain activity during upper limb movement. This work attempts to 
provide a thorough understanding of the interactions between neural 
correlates, external assistance, and biomechanical factors by 
methodically integrating available findings from relevant research.

2 Methodology

2.1 Transparency and openness

This review was conducted following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines (Page et  al., 2021). However, the review was not 
pre-registered, and no review protocol was developed before initiating 
the review process.

2.2 Review planning and search strategy

The database search was conducted in October 2024 using 
PUBMED, MEDLINE, and Scopus by two independent reviewers. 
Articles were screened based on titles, abstracts, or keywords that 
included “Upper limb movement” AND “EEG” AND (“Assistance OR 
Kinematics”). The selection process is illustrated in Figure 1, which 
shows the PRISMA flowchart.

An initial limited search of PUBMED, MEDLINE, and Scopus were 
undertaken to identify articles on the topic in October 2024. The words 
contained in the titles and abstracts of significant articles, and the index 

terms used to describe them were used to formulate a full search 
strategy (Figure 1). This consisted of specific keywords joined together 
by Boolean operators “AND” and “OR.” The first search criteria were 
restricted studies on “Upper limb movement” AND “EEG” and the 
second focused on “Upper limb movement” AND (“Assistance” OR 
“Kinematics”) (using all the related terms found in the initial search 
and/or known to be relevant). Thus, the strategy considered synonyms 
and related terms, and used Boolean operators. The search strategy, 
including all identified keywords and index terms, were adapted for 
each included database and/or information source. The reference list of 
all included sources of evidence were screened for additional studies.

2.3 Eligibility criteria

The search was restricted to studies involving human participants. 
Studies that had full-text articles and published exclusively in English 
were included. Articles published in peer-reviewed journals from 1 
January 2004 onwards were considered eligible. Eligible studies had to 
manipulate at least one of the following: upper limb movements or 
upper limb assistance, and they needed to investigate neural correlates 
and kinematic changes.

Studies were excluded if they were not published in English or 
were published before the year 2004. Additionally, articles not having 
full texts available or lacking a DOI were excluded. We also did not 
include studies that did not focus on the adult population or were only 
available as preprints. Our focus was on research exploring the neural 
correlates of external assistance for upper limb movements or 
exoskeleton use. Studies involving lower-limb with/without assistance 
were excluded.

FIGURE 1

Flowchart of PRISMA record selection process.
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2.4 Data collection and analysis

2.4.1 Selection of studies
Two reviewers (SG, RKY) independently screened the search 

results. This dual-reviewer approach was maintained throughout all 
the review stages. Two other reviewers (SS, SG) evaluated the studies 
which were screened by the independent reviewers and suggested 
changes in the screening patterns and techniques to narrow down the 
search strategy.

Studies that (1) examined neural correlates of upper limb motor 
movements, (2) had upper limb movements with and without 
external assistance and (3) used brain activity measurement 
methods to evaluate neural correlates during motor tasks, (4) 
studied changes in biomechanical parameters during upper limb 
motor movements, were considered eligible. The reviewers and the 
corresponding author (SPM) then independently read the titles and 
the abstracts of screened studies and eliminated the irrelevant 
studies. Full text for the remaining studies was obtained and, 
according to the previously mentioned inclusion and exclusion 
criteria, they were independently ranked as relevant, potentially 
relevant, and irrelevant. Since the authors are from different 
backgrounds, their insight about specific domains has been 
beneficial in framing the structure of the methodology. The 
manuscript is written by the first four authors which was reviewed 
and proofread by all the other authors.

In cases where there was a disagreement between reviewers 
regarding the relevance, quality, or interpretation of an article, the 
following steps were taken:

 • The authors discussed the article in question collectively in 
regular meetings to clarify differing perspectives.

 • If the disagreement persisted, the corresponding author (SPM) 
was consulted to provide an independent opinion.

 • Decisions were made by consensus wherever possible. In rare 
cases where consensus could not be  reached, the majority 
opinion was followed.

2.4.2 Assessment of risk of Bias in included 
clinical studies

Since systematic biases can lead to either an underestimation or 
an overestimation of the true intervention effect (Higgins et al., 2008), 
it is necessary to evaluate the risk of bias in clinical trials in order to 
reduce the likelihood of making incorrect decisions regarding 
treatment effects (Gluud, 2006). According to Sterne et al. (2016), this 
study made use of the ROBINS-I tool (Risk Of Bias In Non-randomized 
Studies–of Interventions) to evaluate twenty clinical studies included 
in this review. The core idea behind ROBINS-I is to compare the bias 
risks of the current study under evaluation with those of a target RCT 
that is hypothetically carried out on the same participant group, even 
if this RCT may not be practical or morally acceptable (Schünemann 
et al., 2018).

The ROBINS-I tool includes the evaluation of seven domains 
through which bias might be introduced into a non-randomized study: 
(1) bias due to confounding; (2) bias in classification of interventions: 
(3) bias in selection of participants into the study; (4) bias due to 
deviations from intended interventions; (5) bias due to missing data; 
(6) bias in measurement of outcomes (or detection bias); (7) bias in 
selections of the reported results. To make risk assessments easier, the 

ROBINS-I tool has a set of signalling questions in each domain. Low, 
moderate, serious, and critical risk are the categories for risk of bias 
judgements. First, the risk of bias is evaluated for each domain, and 
then the study as a whole. Three authors independently assessed risk 
of bias of the included studies (SG, RKY, SPM), with disagreements 
between reviewers resolved through discussion between all authors.

3 Results

3.1 Retrieved papers

For more details on the search and screening process, refer to the 
PRISMA flow diagram in Figure 1. The initial search yielded a total of 
274 citations: 134 from PubMed and MEDLINE, and 140 from 
Scopus. Before the screening procedure, a total of 183 duplicates were 
removed, and 91 articles remained. Based on the title and the abstract 
of the articles, 7 were excluded, with 84 full-text articles to be retrieved 
and assessed for eligibility. 2 articles out of these could not be retrieved. 
Thus, 82 full-text articles were assessed for eligibility. The content of 
these studies was inspected to further determine their eligibility 
according to the predefined criteria. Two of them were excluded for 
not being peer-reviewed yet, resulting in a final selection of 80 studies 
that met all eligibility criteria.

This review mainly considers peer-reviewed experimental studies 
within the fields of human neuroscience, BMI, robotic devices, and 
neuro-rehabilitation in healthy and neurological patients. As the 
primary aim of this review is to shed light on the predictive neural 
correlates of upper limb motor intention and kinematics, it mainly 
focuses on studies based on neurophysiological techniques like EEG, 
electromyography (EMG), and kinematics. Additionally, systematic 
reviews/meta-analyses which met the inclusion criteria were also 
scrutinized for useful evidence, depending on their research questions.

3.2 Assessment of risk of bias in included 
clinical studies

Risks of bias represented as percentage across all included clinical 
studies are shown in Figure  2 and Appendix 1. Following the 
ROBINS-I tool, the risks of bias have been classified as follows:

Confounding bias: Most studies exhibited a low or moderate risk 
of confounding bias. However, exceptions included Bhagat et al. (2016, 
2020), Gu (2009), and Ottenhoff et al. (2023). These studies either did 
not control for confounders or did not conduct a pre- vs. post-
intervention data analysis.

Selection Bias: The risk of bias in participant selection was low in 
eleven studies (Bhagat et al., 2016; Wodlinger et al., 2015; Wilkins 
et al., 2017; Tang et al., 2023; Cantillo-Negrete et al., 2021; Rayegani 
et  al., 2014; Bhagat et  al., 2020; Gandolfi et  al., 2018; Gu, 2009; 
Hochberg et al., 2006; Hortal et al., 2015; López-Larraz et al., 2014; 
Mondini et al., 2024; Ofner et al., 2019; Ottenhoff et al., 2023; Pichiorri 
et al., 2023; Pulferer et al., 2022; Rohm et al., 2013; Serino et al., 2022; 
Várkuti et al., 2013), as these studies followed specific inclusion criteria 
and enrolled all eligible participants. However, nine studies had a 
moderate risk of selection bias due to the absence of follow-up data.

Intervention Classification Bias: Twelve studies had a low risk of 
bias, as they collected data during the intervention phase, ensuring all 
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participants followed the same protocol, with outcome measures 
recorded immediately. In contrast, eight studies did not explicitly 
describe the intervention, leaving uncertainty about the data collection 
before the intervention.

Deviation from Intended Intervention Bias: Two studies (Gu, 2009; 
López-Larraz et  al., 2014) showed deviations from the intended 
intervention. In Gu (2009), one participant performed the motor task 
with both wrists, potentially introducing bias. In López-Larraz et al. 
(2014), although two groups were mentioned, no comparative analysis 
between them was conducted.

Missing Data Bias: Only one study (Rayegani et al., 2014) exhibited 
a high risk of bias due to participant dropout post-intervention. In two 
studies (Hortal et al., 2015; Várkuti et al., 2013), the risk was moderate, 
as some participants’ data were excluded from the final analysis. All 
other studies reported complete datasets.

Outcome Measurement Bias: López-Larraz et  al. (2014) was 
classified as having a serious risk of bias, as the absence of inter-group 
comparisons could have affected the outcome measurements. Nine 
studies had a moderate risk, as they did not specify whether assessors 
were blinded to the intervention during outcome assessment. The 
remaining studies had minimal measurement bias.

4 Discussion

4.1 Neural correlates predictive of upper 
limb motor intention and kinematics

Discovering how the brain encodes motions is essential for 
designing efficient control mechanisms for robotic arms and motor 
neuroprostheses. The motor system is organized in a hierarchical 
architecture based on the specific functions executed by the associated 
brain regions (Figure 3).

First, the formation of a sensory map of peripersonal space is 
subserved by the posterior parietal cortex (PPC) (Lindner et al., 2010) 
and PrMC (Holmes and Spence, 2004). SMA/pre-SMA is involved in 
the evaluation of worthiness of a goal-directed actions (Guida 
et al., 2023).

Second, lateral prefrontal cortex (LPFC) receives diverse 
information from environmental resources (e.g., numerosity, duration, 
distance) from PPC (Genovesio et al., 2014) and several other regions 
to synthesize information to select the more appropriate goal relevant 
to the given context.

Third, left dorsal premotor cortex (PrMd) (Klaes et al., 2011), 
PMC (Caligiore et  al., 2017) and parietal reach region (PRR), a 
subregion of the PPC (Cui and Andersen, 2007), chooses the more 
appropriate action to achieve the goal selected by LPFC. For the 
selected action, the same substrates are responsible for the formulation 
of motor plan and guidance of movement execution.

Fourth, the final evaluation of selected motor action is processed 
in a large network of brain regions involving inferior frontal gyrus 
(IFG) and dorsolateral prefrontal cortex (DLPFC) (subregions of 
LPFC), pre-SMA, PrMd and PMC (Mirabella, 2014).

Finally, if the action selected passes the final evaluation process, 
PMC executes movement by controlling muscle force and direction 
(Makino et al., 2016).

In addition to the brain regions of the motor system vide supra, 
cerebellum and basal ganglia contribute significantly to modulate and 
precisely fine tune voluntary movements. The immense density of 
neuronal circuits known as motion adjustment loops in cerebellum is 
responsible for maintaining balance, posture, fine tuning of 
movements and motor learning (Rocha et al., 2023). The basal ganglia 
facilitate movement through the direct pathway, exciting the motor 
cortex via the thalamus to initiate planned actions (Parent, 2012). The 
indirect pathway inhibits competing motor actions by suppressing the 
thalamus, preventing unwanted movements (Lanciego et al., 2012).

Despite the existence of this hierarchical model of the cortical 
motor network involved in movement planning and execution 
(Figure 3), the neural mechanisms responsible for generating motor 
commands from the PMC remain unclear (Makino et  al., 2016; 
Diedrichsen and Kornysheva, 2015). This understanding can 
be refined by considering more specific decision-making processes 
related to goal-directed actions. For instance, Mirabella (2014) 
outlined a framework suggesting that decision-making, such as 
determining whether to act or inhibit movement, occurs throughout 
the genesis, planning, and execution phases of goal-directed behavior 
(Mirabella, 2014). Furthermore, Cisek and Kalaska (2010) proposed 
a competitive process in the dorsal premotor cortex where multiple 
action plans are represented in parallel, and one is selected based on 
internal and external cues (Cisek and Kalaska, 2010). While 
substantial primate and human research has shed light on these 
processes, the identification of movement features for BMI control, 
namely kinematics (spatial and motion aspects) and kinetics (muscles 
and forces) in the sensorimotor cortex (SMC) and their role in 
producing precise movements are not completely understood (Branco 
et al., 2019).

FIGURE 2

Risk of bias presented as percentages across all included clinical studies.
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Functional electrical stimulation (FES)-based prostheses have 
been used to restore movement in spinal cord injury (SCI) patients, 
but advancements in BMI technology offer a more natural and 
comfortable alternative (Rupp and Gerner, 2004; Rupp et al., 2015). 
BMI allows the decoding of movement intentions into control signals 
for robotic arms or neuroprosthetics to provide more accurate and 
effective control (Sambhav et al., 2022). To regulate neuroprostheses, 
the control systems rely on preparatory brain signals such as readiness 
potential (RP) and sensorimotor rhythms (SMR) linked to motor 
imagery (MI) movements (Libet et al., 1983: Kraeutner et al., 2016). 
While identifying preparatory brain signals is central to BMI control 
systems, the brain can still cancel a movement after these signals are 
initiated (Mirabella, 2021). Evidence indicates that movement 
cancellation is possible if the brain issues stop signals at least 200 ms 
before the movement begins, defining a “point of no return” (Schultze-
Kraft et al., 2016). SMR-based BMIs have been shown to restore limb 
functions in tetraplegic participants suggesting that they have the 

potential to be used in rehabilitation (Wu et al., 2013). SMR-based 
BMIs have several drawbacks which include the need for repeated MI 
and less effectiveness to identify spatially distinct EEG patterns. 
Continuous decoding of movement trajectories from EEG data could 
be a potential solution to these challenges (Yong and Menon, 2015; 
Edelman et al., 2019).

MI refers to the mental representation or intention of executing a 
movement (Kraeutner et al., 2016). Cerebellum, PMC, and SMA are 
among the brain areas that are activated both during MI and motor 
execution (ME) (Meister et al., 2005; Lu et al., 2012). However, there 
are notable distinctions between MI and actual execution (Mizuguchi 
et  al., 2016), such as reduced activation of the PMC during MI 
(Mizuguchi et al., 2017; Hétu et al., 2013). Both ME and MI can cause 
differences in neural activity in sensorimotor areas (Tang et al., 2016; 
Yang et al., 2022) (Table 1). Similarly, studies on motor attempt has 
also reported activation in central motor areas when SCI patients 
attempted various arm and hand movements (Ofner et  al., 2019; 
Pulferer et  al., 2022; Muller-Putz et  al., 2022). Regional beta 
synchronization in the left hemisphere could distinguish between 
movements of the left and right hands in both MI and ME (Demuru 
et al., 2013). This pattern implies that activity in motor-related brain 
areas during both MI and ME increases with task difficulty.

According to Hortal et al. (2015), MI based on scalp-recorded 
EEG makes it easier for users to operate assistive technologies. 
MI-BMI training has demonstrated promise in stroke therapy and 
neuronal recovery (Catrambone et al., 2018; Gandolfi et al., 2018). It 
is possible to optimize closed-loop EEG-based BMIs for stroke 
patients for long-term usage without having to recalibrate them 
(Bhagat et al., 2016) (Table 1). BMI systems controlled by hand MI 
could induce neural plasticity in stroke patients, which is correlated 
with an improvement in upper limb functions (Bhagat et al., 2020). 
While the EEG showed promise in predicting upper limb movements 
during MI, its effectiveness varied across subjects due to the absence 
of a consistent activation pattern, necessitating individualized tuning 
(Ofner and Muller-Putz, 2015) (Table 1).

BMIs utilize a structured approach for decoding brain signals, 
involving key stages such as signal processing, feature extraction, 
classification, and feedback loops. Initially, bio-signals such as EEG are 
processed to enhance signal to noise ratio, followed by the extraction 
of relevant features that represent brain activity patterns. These 
patterns are then classified into commands by decoding algorithms to 
operate external devices, with the cycle completed by providing user 
feedback. Extraction and classification of relevant features into 
commands are done using decoders such as linear discriminant 
analysis (LDA), naive Bayes, and support vector machines (SVM) for 
discrete robotic movements. Other methods include convolutional 
neural networks (CNNs), recurrent neural networks (RNNs) and its 
variant long short-term memory (LSTM), and deep neural networks 
(DNNs) (Ottenhoff et al., 2023). Then, there are autoencoders, and 
deep belief networks (DBN) which enhance end-to-end learning from 
raw signals, thus bypassing manual feature extraction (Yang et al., 
2022). To decode continuous movement, deep learning methods are 
combined with the Kalman filter to enhance and optimize the 
abundant motor-related information found in intracortical signals. 
These decoders are extensively applied across offline analyses, real-
time applications, and clinical trials (Dong et al., 2023).

The application of 1 Hz repetitive transcranial magnetic 
stimulation (rTMS) to the PrMd has been reported to augment the late 

FIGURE 3

Brain network involved in movement planning and execution. The 
motor system has a hierarchical organization, with each level 
subserving distinct processes for a movement. First, the posterior 
parietal cortex (PPC) and premotor cortex (PrMC) form a sensory 
representation of the peripersonal space, while supplementary 
motor area (SMA)/pre-SMA assesses the goal-worthiness of 
movements. Second, the lateral prefrontal cortex (LPFC) receives the 
diverse information of both external cues and internal states to select 
appropriate goals. Subsequently, parietal reach region (PRR), PrMC, 
and primary motor cortex (PMC) choose the most suitable action, 
also forming a motor plan and guiding the movement. The final 
action evaluation involves inferior frontal gyrus (IFG), LPFC, pre-SMA, 
PrMC, and PMC. Further, the PMC controls action execution by 
managing muscle force and direction, ensuring precise movement. 
These cortical motor areas are interconnected through complex 
patterns of reciprocal, convergent, and divergent projections, rather 
than simple serial pathways. While serial processing in the motor 
network provides insight, evidence indicates that many of these 
processes can also occur in parallel.
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contingent negative variation (CNV) amplitude over the left central 
region while the Bereitschaftspotential remained unaffected suggesting 
a crucial role of PrMd in cue-guided movements (Lu et  al., 2012) 

(Table 1). Through invasive methods, reports have shown progressive 
neuronal recruitment in SMA over 1,500 ms before self-paced 
movements (Kornhuber and Deecke, 2016; Fried et al., 2011). A study 

TABLE 1 Predictive neural correlates of upper limb motor intention and kinematics.

References Sample size, 
tools used

Movement studied Observations

Tang et al. (2016) 4 healthy subjects, Mean 

age: 28 ± 2.6.

EEG

Motor execution (ME) and 

motor imagery (MI) of left/

right wrist extension

 • Alpha and beta ERD were observed over motor regions contralateral to the hand 

movements around 1–4 s after cue.

 • Classification accuracy of decoder with the participants wearing the exoskeleton:

 ▪ ME: 87.37% ± 3.06%

 ▪ MI: 84.29% ± 2.11%

Yang et al. (2022) 12 healthy subjects,

Mean age: 24.8 ± 2.0.

EEG, fMRI

MI: Grasp., reach, handling, 

rotation

 • Supplementary motor area (SMA) and pre-cingulate gyrus (preCG) showed higher 

activation in all the MI movements.

 • Highest activation in these areas were observed 1.5 s after voice cue during MI.

Bhagat et al. (2016) 10 stroke survivors, 

Mean age: 55 ± 9.2.

EEG, EMG, Motion 

capture

Elbow flexion-extension  • From MRCP amplitude modulations in primary motor cortex and post-central gyrus, 

the motor intent was predicted before movement onset:

 ▪ Online detection (−66 ± 86 ms)

 ▪ Offline detection (−723 ± 740 ms)

Ofner and Muller-

Putz (2015)

9 healthy subjects, Mean 

age: 26.1 ± 4.3

years

EEG

MI: Right arm extended 

movement (center—left—

right—center), (center—

top—bottom—center)

 • Decoding movements from EEG during MI, showed significant correlation in the 

premotor cortex (PrMC), primary motor cortex, somatosensory cortex and posterior 

parietal cortex.

 • Absence of uniform weight pattern across subjects, suggesting that EEG decoding models 

require individual tuning.

Lu et al. (2012) 10 healthy subjects,

Mean age: 27.9 ± 6.9.

EEG, rTMS

Visually cued self-initiated 

finger movement

 • Application of 1 Hz rTMS at left dorsal premotor cortex (PrMd) augmented late 

contingent negative variation (CNV) amplitude over left central region 1.5 to 0.5 s 

before movement.

 • Bereitschaftspotential remained unaffected by PrMd rTMS.

 • This temporal delineation of cortical potentials, provides evidence of the role of the PrMd 

being critically involved in externally guided motor tasks.

Wodlinger et al. 

(2015)

1 tetraplegic patient,

Age: 52 years.

Intracortical 

microelectrode 

recording, BMI

Pinch, scoop, finger 

abduction, thumb 

opposition

 • Broad distribution of neural unit preferred directions across the 10D space highlights 

motor cortex underscoring the complex multidimensional encoding in BMI applications.

 • Significantly, the majority of neural units exhibited tuning preferences across all ten 

dimensions of movement.

Fifer et al. (2014) Subject 1: 55-year-old, 

Subject 2: 30-year-old.

Modular prosthetic 

limb using intracranial 

EEG

Reach and grasp  • The intracranial EEG (iEEG) site responsible for controlling reaching was found dorsally 

to the site responsible for controlling grasping. This spatial organization suggests a 

functional segregation within the motor cortex for different aspects of movement control.

 • High gamma power amplification showed significant spatial selectivity relative to task-

related cortical activity suggesting the effectiveness of iEEG as a source of BMI signal.

Roosink and 

Zijdewind (2010)

20 healthy subjects,

Mean age: 25 ± 7.

EMG, TMS

Simple and complex finger 

tapping sequences

 • Increased corticospinal excitability during active observation was reported compared to 

passive observation, visual, or kinesthetic imagery.

 • First burst of TMS activity was seen in the FDI (First Dorsal Interosseous) during action 

execution varied from 47 to 689 ms after the start signal.

Zhou et al. (2022) 21 healthy subjects,

Mean age: 24.62 ± 1.5.

fNIRS, 3D motion 

capture

Single and bilateral finger 

movement

 • Contralateral activation in prefrontal cortex and motor cortex (t = 0.05 s), emphasized 

the lateralized control of unilateral movements

 • Hand dominance and the complexity of motor tasks (in-phase vs. antiphase movements) 

influenced distinct brain activation.

Sosnik and Zur 

(2020)

9 healthy subjects,

Mean age: 26.5 ± 3.5.

EEG, 3D motion 

capture

Actual and imagined 

pointing movement to 

targets.

Brain regions for actual hand trajectories:

 • Contralateral precentral gyrus (PMC and PrMC)

 o Postcentral gyrus (primary sensory cortex)

 o Contralateral posterior medial frontal cortex (SMA)

 • Brain regions for actual trajectories of the shoulder: Parietal lobule.

EEG, Electroencephalography; PMC, Primary motor cortex; PrMC, Pre-motor cortex; SMA, Supplementary motor area; fNIRS, Functional Near Infrared Spectroscopy; rTMS, Repetitive 
transcranial magnetic stimulation; BMI, Brain machine interface; fMRI, Functional magnetic resonance imaging; EMG, Electromyography; ERD, Event related desynchronization; MRCP, 
Movement related cortical potential.
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involving intracortical microelectrode signals from the left motor 
cortex to assist various hand movements in a tetraplegic patient utilized 
a broader distribution of neural unit preferred directions across the 
10D space to decode the motor cortex’s complex multidimensional 
capacity for BMI applications (Wodlinger et  al., 2015) (Table  1). 
Prominent ERD of alpha and beta frequency were observed before 
(−1,000 ms) actual movement in the contralateral motor cortex during 
the executed movement in healthy adults and attempted movements in 
spinal cord injury patients (López-Larraz et al., 2014).

Yuan et al. found mu and beta rhythms to be predictive of the 
speed of hand movements that were performed or envisioned (Yuan 
et  al., 2010). Moreover, Jochumsen et  al. were able to decipher 
movement force and speed from MRCPs during attempted and actual 
grasping actions in stroke patients and healthy participants 
(Jochumsen et al., 2017). Similar experiments on patients and healthy 
participants have reported that beside velocity and position, it is also 
possible to discriminate different type of actions from non-invasive 
EEG (Hink et al., 1982; Ofner and Muller-Putz, 2012; Schwarz et al., 
2017; Kobler et al., 2020; Mondini et al., 2024). In a novel experiment, 
intracranial EEG (iEEG) derived gamma power was used effectively 
as a BMI control signal for the task involving the reach and grasp 
movement (Fifer et al., 2014) (Table 1). Gu found that MRCPs contain 
a time-domain encoded representation of the velocity of executed 
wrist motions (Gu, 2009). According to Roosink and Zijdewind 
(2010), increased corticospinal excitability was observed during 
intricate successive finger-tapping imagery as compared to simple 
tapping (Roosink and Zijdewind, 2010) (Table 1). Further, complex 
hand movements such as sequential finger tapping, activate the SMA, 
PMC, superior parietal lobule (SPL), thalamus, and cerebellum to a 
greater extent than simple hand movements (Meister et al., 2005). In 
another study, activation of the same regions were found during 
complex spatiotemporal interlimb coordination (antiphase) compared 
to simple interlimb coordination (in-phase) (Debaere et al., 2004). In 
a recent study which investigated motor task complexity and 
dominance effect, it was found that movements performed during 
in-phase or anti-phase elicit distinct patterns of brain activity (Zhou 
et  al., 2022) (Table  1). Complex arm movements involving 
combination of shoulder and elbow joints demonstrated specific 
muscle synergies for proximal and distal joints of the arm (Gritsenko 
et al., 2016). A study by Yeo et al. highlighted that during the execution 
of hand and shoulder movements, there was activation of distinct 
brain networks (Yeo et al., 2013). Slow cortical potentials (SCPs) were 
found to be predictive of trajectories of actual movement. Further, 
distinct brain regions were involved in hand and shoulder trajectories 
(Sosnik and Zur, 2020) (Table 1).

4.2 Effects of external assistance on the 
neural correlates of upper limb movements

The conversion of neural inputs into motion is important for the 
development of assistive devices to restore motor function in 
neurological disorders. During action execution, specific muscle 
groups are activated by neural signals that travel from the motor 
cortex through the spinal cord to the muscles, enabling the planned 
action to be carried out effectively (Guadagnoli and Lee, 2004).

Numerous techniques have been proposed by previous studies to 
decode joint angular velocities, movement directions, speed, locations, 

and intended movement trajectories (Bradberry et al., 2010; Ofner 
and Muller-Putz, 2012). Although EEG has been in use to decode 
these parameters, the poor correlation with actual or planned 
movement makes it difficult to provide precise and reliable control of 
prosthesis (Agashe et al., 2015; Ofner et al., 2017) (Table 2). Moreover, 
the neural signals that map motor commands and movements to 
specific regions of the PMC can vary depending on the position or 
orientation of the upper limb. This might imply that the 
re-interpretation of these parameters for BMI control is crucial 
whenever there is a shift in arm position.

A previous study which explored brain activity using EEG and 
EMG signals found that active-assisted training caused an earlier 
activation of the critical brain regions such as the primary SMC, PrMC, 
and SMA. PMC encodes information related to action and sensing, 
which are relevant for clinical applications of BMIs (Serino et al., 2022; 
Mirabella and Lebedev, 2017; Sburlea and Muller-Putz, 2018). This 
region processes not only motor command but also sensory feedback 
and subjective states related to BMI-generated actions, underscoring 
the complexity of neural representation of agency involving multiple 
neural signals. The sense of agency, which reflects the feeling of control 
over one’s actions, is strengthened through such training, contributing 
to better motor learning and adaptation. It was also found that 
discrepancies between expected and actual sensory feedback can 
influence the sense of agency, emphasizing the role of sensory 
integration in the perception of control over actions (Haggard, 2017). 
Proprioceptive feedback was found to be augmented in the presence of 
the robotic aid, indicating that assistive technologies can enhance the 
engagement of neural circuits crucial for motor control (Tacchino et al., 
2017) (Table 2). It is important to note that the neurological disorder-
induced injury can trigger cortical plasticity, which might help 
compensate for impaired brain functions (Williamson et al., 2022). This 
enhancement of agency may further support cortical plasticity, 
promoting recovery. Further, disease severity, comorbid conditions, 
underlying pathophysiology of disease state, and age-related changes 
could determine the extent of recovery due to cortical plasticity. Hence, 
developing therapeutic interventions such as assistive training that 
could facilitate the recovery outcomes due to cortical plasticity is 
crucial (Marzola et al., 2023; Zhao et al., 2023).

Cortical neuroplasticity in chronic stroke survivors has been 
reported at both functional and structural levels following the use of 
external assistive devices for reach and grasp movements (Wilkins 
et al., 2017) (Table 2). Enhanced functional connectivity (FC) was 
observed in stroke patients due to robotic assistive therapy across 
various brain regions, including motor cortices, SMA, portions of the 
visuospatial system, cerebellum and association cortex. Importantly, 
improvements in upper-extremity function correlated with these FC 
alterations (Várkuti et al., 2013). In alignment with these findings, a 
study on bilateral upper limb robot-assisted training (BRT) for 
reaching and grasping movements found enhanced brain connectivity 
which correlated with motor recovery in stroke patients (Tang et al., 
2023) (Table 2). Active robotic assistive therapy based on EEG was 
found to be more efficient than conventional therapy in stroke patients 
for upper-limb rehabilitation (Cantillo-Negrete et al., 2021) (Table 2). 
Assistive studies on hybrid BMIs have also shown efficiency in motor 
rehabilitation inducing cortical neuroplasticity (Pichiorri et al., 2023; 
Colamarino et al., 2023). Rohm et al. showed the restoration of both 
hand and elbow functions in tetraplegia when undergoing cue-based 
training using assistive devices designed on SMR-based BMI (Rohm 
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et al., 2013). EEG neurofeedback enhances motor function in stroke 
patients by increasing the power spectral density of sensorimotor 
rhythm (Neuper et al., 2006).

Sensory feedback is important in motor control systems, 
particularly in feedback or closed-loop systems where the 
sensorimotor loop allows real-time adjustment of movements (Asan 
et  al., 2022). Furthermore, the absence of sensory proprioception 
hampers the brain’s ability to predict movement and force, making 
tasks that require rapid directional changes difficult. This underscores 
the essential role of sensory feedback in motor control (Jayasinghe, 
2019; Hehenberger et al., 2020). Through EMG biofeedback, stroke 
survivors enhance their motor recovery while fostering self-awareness 
and active engagement (Rayegani et al., 2014) (Table 2). Evidence 
suggests that the motor recovery due to assistive devices is marked by 
several key characteristics. Firstly, there is augmentation in the size of 
motor and sensory regions representing the impaired limb in the 
affected hemisphere. Secondly, there is an increase in activity and 
recruitment of motor networks located in unaffected regions. Thirdly, 
there is a gradual decrease in activity in the contralateral primary and 
secondary motor regions over time (Johnson, 2006). Neurofeedback 
uses real-time input to modify brain activity, hence facilitating 
functional improvement in motor rehabilitation and fostering 

neuroplasticity. Integrating EEG, EMG, and other physiological 
signals could improve the precision and reliability of BMI for motor 
rehabilitation (Wolpaw and Wolpaw, 2012).

4.3 Effects of changes in biomechanical 
characteristics on brain activity

Understanding how the human brain encodes biomechanical 
changes due to internally generated movement, externally assisted 
movement and environmental influence (e.g., gravity) is crucial for 
developing control systems for motor neuroprostheses and robotic 
arms. A recent study by Gaveau and Papaxanthis (2011) revealed that 
the CNS adjusts motor control in response to inertial and gravitational 
constraints (Gaveau and Papaxanthis, 2011) (Table 3). Research across 
electrophysiology and neuroimaging domains indicates distinct neural 
processes influencing different modes of action selection (Marini et al., 
2019). Assistive wearables have been found to affect neuromuscular 
coordination (Gordon et al., 2013), motor complexity (Farris et al., 
2013), and cognitive demands (Bequette et al., 2020).

The brain optimizes vertical arm movements through dynamic 
planning, manipulating the neural representation of gravitational 

TABLE 2 Effects of external assistance on the neural correlates of upper limb movements.

References Sample size, tools 
used

Movement Observations

Agashe et al. (2015) 5 healthy subjects, Mean age: 

24.4 ± 5.2 years.

EEG, cyber glove

Reach and grasping 

movements

 • Time-domain analysis revealed a correlation coefficient of 0.49 ± 0.02 between 

low-frequency (0.3–1 Hz) EEG bands and hand movement kinematics, with the 

highest reported coefficient being 0.59, indicating a strong predictive relationship 

between them.

 • Early recruitment of contralateral frontal-central areas, followed by activation of 

central electrodes over primary sensorimotor areas, suggested a coordinated neural 

response related to movement execution.

Tacchino et al. 

(2017)

9 healthy subjects, Mean age 

26.3 ± 1.9 years.

EEG, EMG

Tasks with and without 

assistive glove

 • Activation started earlier (0.5 s) with the subject’s volitional contribution as compared 

to passive robotic assistance (1.5 s).

 • Active-assisted training caused an earlier activation of the critical brain regions (i.e., 

sensorimotor cortex, PrMC, and SMA) and improved proprioceptive feedback.

Wilkins et al. (2017) 8 stroke survivors, Mean age: 

63.5 ± 4 years.

EEG,

EMG-FES (Functional electrical 

stimulation)

Reaching and grasping 

movements

 • Brain activity associated with opening the affected hand was observed in the 

contralesional hemisphere.

 • Chronic stroke survivors had both functional and structural cortical reconfiguration 

following device-assisted intervention.

Tang et al. (2023) 24 stroke patients with 

hemiplegia, Age: 18–80 years 

old.

EEG

Bilateral upper limb 

robot-assisted training 

(BRT) for reaching and 

grasping movements

 • Quantitative EEG demonstrated increased connection in the primary motor cortex 

and supplementary motor area after BRT.

 • BRT enhanced patients’ upper limb motor functions.

Cantillo-Negrete 

et al. (2021)

10 stroke patients, Mean age: 

59.9 ± 12.8 years.

EEG

ME and MI  • Compared to conventional therapy, EEG based BCI showed substantially higher ERD 

in alpha band in central sagittal regions.

 • For upper limb rehabilitation, a EEG based BCI system might be effective in fostering 

neuroplasticity.

Rayegani et al. 

(2014)

30 stroke survivors, Mean age: 

45.1 ± 11.9 years.

EEG, EMG

Hand function, 

specifically targeting 

the abductor pollicis 

brevis muscle

 • Neurofeedback training led to an increase in the spectral power density of the 

sensorimotor areas after 3.5 s of MI.

EEG, Electroencephalography; FES, Functional electrical stimulation; EMG, Electromyography; BCI, Brain computer interface; ME, Motor execution; MI, Motor imagery; PrMC, Premotor 
cortex; SMA, Supplementary motor area.
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force to minimize muscle activation. This is in contrast to horizontal 
arm motions, where motor control is mostly dependent on kinematics. 
Specifically, in order to counteract gravity, the arm trajectory is 
asymmetrical due to the direction of movement (vertical versus 
horizontal movements) and the orientation of the body axis (Le Seac’h 
and McIntyre, 2007) (Table 3). In a study that investigated elbow 
flexion/extension, forearm supination/pronation, and hand open/
close, a higher fractal dimension, i.e., increased EEG complexity was 
observed during elbow flexion, forearm supination, and hand-open 
movements compared to the corresponding antagonistic actions 
(Namazi et al., 2018) (Table 3).

Given that one of the primary goals of exoskeleton design is the 
“physical fit,” it is plausible to believe that there is a trade-off 
between the biomechanical and cognitive aspects of using them. 
For instance, a passive exoskeleton tailored for the upper limbs 
might minimize biomechanical loads on the shoulder and elbow 
joints, yet potentially elevate but increase neuropsychological 
demands cognitive, and sensory demands on the user. Therefore, 
the exact amount of this trade-off should be considered. Significant 
increments of cognitive demands by the exoskeleton can result in 
the alteration of muscle engagement patterns, muscle coactivity, 
and successive increases in spinal loading. As a result, the 
exoskeleton’s biomechanical benefits may decline or perhaps 
disappear entirely (Zhu et al., 2021). Previous reports suggest that 
the brain selects motions that minimize the total work of forces, 
which include gravitational and inertial forces which rely on 
movement direction and speed, respectively (Berret et al., 2008; 
Teka et  al., 2017) (Table  3). A recent study found a strong 

correlation of EEG from parietal and frontal regions with the 
kinematic synergies of different grasping movements indicating the 
significant interaction between brain activity and movement 
dynamics to facilitate complex hand movements (Pei et al., 2022) 
(Table 3). EEG studies using multivariate pattern analysis have 
explored how the brain processes grasping movements over time. 
These studies examined neural activity as participants looked at 
objects and then performed either one-handed or two-handed 
grasps after being cued (Guo et al., 2021).

5 Concluding thoughts

Advancements in understanding the neural correlates of upper limb 
movements provide valuable insights for developing control mechanisms 
in assistive technologies. Here we systematically reviewed the recent 
developments in predicting the neural correlates of upper limb motor 
intention, the effects of external assistance on neural activity, and the 
influence of biomechanical changes on brain function. The findings 
emphasize significant progress in developing BMIs for upper limb 
rehabilitation while highlighting key challenges and future directions.

Translating neural signals into motion drives advancements in 
assistive technologies for neurological disorders. The motor system 
follows a hierarchical organization with specific brain regions 
assigned distinct roles. PPC and PrMC map peri-personal space. 
SMA/pre-SMA assesses the worthiness of goal-directed actions. 
LPFC integrates diverse information to choose appropriate goals, 
while PrMd, PMC, and PRR select actions to achieve these goals. 

TABLE 3 Effect of changes in biomechanical characteristics on brain activity.

Reference Sample size, tools used Movement Observations

Gaveau and 

Papaxanthis (2011)

8 healthy subjects,

Mean age: 24 ± 3.

3D Motion capture

Single-joint vertical arm 

movements (45° rotation 

around the shoulder joint) 

upwards and downwards

 • To reduce the energy expenditure of motions, brain uses gravity force to 

brake (upward direction) or initiate (downward direction) arm motion.

Le Seac’h and 

McIntyre (2007)

11 healthy subjects,

Mean age: 28.1.

3D motion capture

Horizontal and vertical 

pointing movement

 • In the reclining position, information from subjects’ otoliths (which can 

potentially sense gravity’s direction) became less important to 

the movement.

 • In the upright posture, saccules were extremely sensitive to gravity.

Namazi et al. (2018) 15 healthy subjects,

Mean age: 27 ± 5.

Fractal dimension (EEG signal 

complexity)

ME and MI:

 • Elbow flexion/extension

 • Forearm supination/

pronation

 • Hand open/close

 • More fractal dimensions were seen in the EEG signal during elbow flexion, 

forearm supination, and hand-open movements compared to the 

corresponding antagonistic actions.

Berret et al. (2008) 6 healthy subjects,

Mean age: 29.6 ± 8.9.

EMG, optoelectronic motion capture

Fast vertical arm 

movements

 • Motor planning incorporates both gravitational forces and inertial forces 

while minimizing an absolute-work-like cost.

 • Periods of synchronized muscle inactivation were outcomes of the 

connectivity between the command circuits and the signals they interpret.

Teka et al. (2017) A computational model for neural 

control of goal-directed reaching 

movements was developed.

Straight-line trajectory to a 

target position and a 

predefined bell-shaped 

velocity profile

 • Muscle velocities and muscle geometry determine the direction of 

cortical activation.

 • Viscosity friction in the joints leads to the emergence of directional 

preference.

Pei et al. (2022) 10 healthy subjects,

Mean age: 23.0 ± 3.1.

EEG and cyber gloves.

Grasping of  

objects

 • Electrodes in the parietal and frontal regions showed a strong correlation 

with kinematic synergy.

EEG, Electroencephalography; EMG, Electromyograph; ME, Motor execution; MI, Motor imagery.
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A final evaluation occurs in a broader network, and PMC executes 
the movement by controlling muscle force and direction. Basal 
ganglia and cerebellum refine goal-directed movements alongside 
other regions of motor system. Further, basal ganglia coordinate 
goal-directed actions by exciting motor cortex (Parent, 2012) and 
prevent undesired actions by suppressing thalamus (Lanciego 
et al., 2012).

Despite these insights, the neural mechanisms generating motor 
commands, particularly for movement kinematics and kinetics in the 
sensorimotor cortex for BMI control, remain unclear. Nonetheless, 
existing literature may help identify the movement features best suited 
for BMI control. This paper provides a detailed review of EEG-based 
movement features relevant to BMI applications. To define motor 
intentions in BMI control, both MI and ME movement decoding are 
key factors (Demuru et  al., 2013) that are reviewed in this study. 
MRCPs and ERD/S are studied to predict movement intention using 
EEG and the brain regions responsible are the PMC, SMA, and PrMC 
(Mirabella and Lebedev, 2017).

While EEG shows promise, overcoming challenges to achieve 
precise control for long-term use and addressing associated drawbacks 
remains essential. Closed-loop EEG-based BMIs could be a potential 
choice for long-term rehabilitation in patients. MI-based BMIs have 
been studied to enhance neural plasticity and motor function, 
particularly in stroke rehabilitation (Bhagat et al., 2020). However, 
decoding MI is still a challenging task due to inconsistent activation 
patterns in the brain. Advancements in machine learning, hold 
promise for advancing signal classification and assisting adaptive BMI 
systems (Yang et al., 2022).

The alterations in cortical representation due to arm position 
shifts or orientations necessitate continuous parameter recalibration. 
Continuous decoding of movement trajectories from EEG data show 
promise, but further research is needed. Variations in the predictive 
EEG activity patterns of movement intention and kinematics across 
individuals necessitate personalized tuning to enhance the efficiency 
of BMI (Lew et al., 2012).

Understanding how the brain adapts to biomechanical changes 
during movement is vital, with recent studies revealing modulatory 
brain activity in response to gravitational and inertial constraints, 
emphasizing the intricate interaction between neural processes and 
motor control (Gaveau and Papaxanthis, 2011). The brain adapts 
motor control strategies based on these biomechanical constraints to 
optimize movement execution of complex movements by activating 
broader networks, including the SMA, cerebellum, and parietal 
regions (Várkuti et al., 2013).

Assistive devices, alongside decreasing physical effort, can also 
increase cognitive demands due to the adaptation required by the 
participants (Bequette et  al., 2020). This trade-off between the 
biomechanical and cognitive demands should be carefully studied 
to ensure the benefits of assistive devices outweigh the potential 
costs. Enhancing sensory feedback in BMI systems, such as 
providing real-time proprioceptive input, could significantly 
improve user experience and functional outcomes (Tacchino et al., 
2017). Robotic-assisted therapy has been shown to enhance 
functional connectivity in motor-related brain regions (Cantillo-
Negrete et al., 2021), correlating with improved motor function in 
stroke patients. Sensory integration and proprioceptive feedback 
are also enhanced with robotic assistance, improving the user’s 
sense of agency and motor performance (Haggard, 2017).

This review summarizes current literature on EEG-based neural 
features predictive of upper limb motor intention and kinematics, 
aiming to provide the research community with insights that support 
the development of EEG-based BMIs for motor rehabilitation. In 
addition, this review also summarizes current insights into how the 
brain encodes biomechanical changes from internally generated 
movement, external assistance, and environmental factors, and the 
effects of robotic assistance on neural activity and functional outcomes. 
EEG-based BMIs hold promise, yet challenges with signal variability 
and decoding accuracy persist. The extensive evidence for encoding 
multiple kinetic and kinematic parameters suggests that movement 
might best be understood as an integration of these variables, with 
more complex mechanistic models essential for accurately decoding 
motor behavior. Despite providing a comprehensive review, our study 
has certain limitations. This review focused exclusively on upper limb 
assistive devices in the adult population, thereby excluding research on 
lower limb exoskeletons and pediatric devices. Most of the included 
studies had small sample sizes and variations in study design, leading 
to potential heterogeneity in our study. Since we primarily examined 
neural correlates, we  did not extensively cover BMI decoding 
techniques or control algorithms for assistive device functionality. 
Moreover, the lack of control groups, pre- vs. post-intervention 
comparisons, and follow-up data in certain studies posed a significant 
risk of bias. These limitations highlight the need for future studies with 
larger sample sizes, standardized methodologies, and rigorous bias 
assessments to strengthen the field’s evidence base. Future 
advancements in BMI systems for motor rehabilitation should assess 
decoding performance through these approaches, requiring the 
integration of multiple physiological signals, long-term performance 
stability, improved user engagement, and enhanced sensory feedback.
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