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Objective: This study aimed to explore differences in sleep electroencephalogram 
(EEG) patterns in individuals with prolonged disorders of consciousness, utilizing 
polysomnography (PSG) to assist in distinguishing between the vegetative state 
(VS)/unresponsive wakefulness syndrome (UWS) and the minimally conscious 
state (MCS), thereby reducing misdiagnosis rates and enhancing the quality of 
medical treatment.

Methods: A total of 40 patients with prolonged disorders of consciousness (pDOC; 
27 patients in the VS/UWS and 13  in the MCS) underwent polysomnography. 
We  analyzed differential EEG indices between VS/UWS and MCS groups and 
performed correlation analyses between these indices and the Coma Recovery 
Scale-Revised (CRS-R) scores. The diagnostic accuracy of the differential indices 
was evaluated using receiver operating characteristic (ROC) curves.

Results: 1. The fractal dimension (Higuchi’s fractal dimension (HFD)) of patients 
in the MCS tended to be higher than that of patients in the VS/UWS across all 
phases, with a significant difference only in the waking phase (p < 0.05). The 
HFD in the waking phase was positively correlated with the CRS-R score and 
exhibited the highest diagnostic accuracy at 88.3%. The Teager–Kaiser energy 
operator (TKEO) also showed higher levels in patients in the MCS compared 
to those in the VS/UWS, significantly so in the NREM2 phase (p  < 0.05), with 
a positive correlation with the CRS-R score and diagnostic accuracy of 75.2%. 
The δ-band power spectral density [PSD(δ)] in the patients in the MCS was lower 
than that in those in the VS/UWS, significantly so in the waking phase (p < 0.05), 
and it was negatively correlated with the CRS-R score, with diagnostic accuracy 
of 71.5%.

Conclusion: Polysomnography for the VS/UWS and MCS revealed significant 
differences, aiding in distinguishing between the two patient categories and 
reducing misdiagnosis rates. Notably, the HFD and PSD(δ) showed significantly 
better performance during wakefulness compared to sleep, while the TKEO 
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was more prominent in the NREM2 stage. Notably, the HFD exhibited a robust 
correlation with the CRS-R scores, the highest diagnostic accuracy, and immense 
promise in the clinical diagnosis of prolonged disorders of consciousness.

KEYWORDS

polysomnography, prolonged disorders of consciousness, CRS-R, fractal dimension, 
Teager–Kaiser energy operator

1 Introduction

Prolonged disorders of consciousness (pDOC) are defined as 
pathological states characterized by a loss of consciousness that lasts 
for more than 28 days following brain injury from various causes 
(Cheapen et al., 2017). This category includes the vegetative state (VS)/
unresponsive wakefulness syndrome (UWS), in which patients appear 
awake but show no behavioral signs of consciousness, and the 
minimally conscious state (MCS), in which patients demonstrate 
fluctuating awareness and can respond appropriately to certain stimuli 
(Septien and Rubin, 2018). As critical care medicine advances, an 
increasing number of patients with acute brain injuries survive, 
leading to a rise in pDOC cases. This trend poses significant burdens 
on families and society (Kang et al., 2022). One of the challenges in 
clinically diagnosing and treating these patients is accurately 
determining their level of consciousness and distinguishing between 
the MCS and VS/UWS (Calabrò et al., 2016). This distinction has 
important ethical and therapeutic implications as patients in the MCS 
may experience pain or suffering and could benefit from analgesic 
treatments or other interventions aimed at improving their quality of 
life. In addition, the prognosis for MCS is generally more favorable 
than that for VS/UWS, making it crucial to encourage families to 
adopt a proactive approach in treating their loved ones (Thibaut et al., 
2019). However, the differential diagnosis between the MCS and VS/
UWS is extremely challenging and is associated with a high rate of 
misdiagnosis. Currently, the Coma Recovery Scale-Revised (CRS-R) 
is regarded as the gold standard for diagnosis, yet its misdiagnosis rate 
can be as high as 43%, due to both subjective factors (variability in 
scores among different raters) and objective factors (such as patients’ 
motor deficits and significant fluctuations in levels of consciousness; 
Giacino et al., 2004). For example, a study by Bodien et al. found that 
some patients diagnosed with VS/UWS using the CRS-R exhibited 
detectable abilities to perform cognitive tasks, as shown by functional 
magnetic resonance imaging (fMRI) and electroencephalogram 
(EEG), suggesting a certain level of consciousness that is often 
misdiagnosed in the clinic in this population (Bodien et al., 2024). 
There is an urgent need for new diagnostic methods to aid in 
accurate diagnosis.

Numerous studies have investigated the role of various diagnostic 
tools, such as EEG, fMRI (Bodien et al., 2024), positron emission 
tomography–computed tomography (PET-CT; Stender et al., 2014), 
and polysomnography (PSG), in diagnosing pDOC (Kondziella et al., 
2020; Stender et al., 2014). Among these, EEG has been the focus of 
extensive research, revealing two primary types of indicators for 
differentiating between the consciousness states: linear and non-linear 
metrics. The linear indicators include the spectral power of different 
EEG bands, power ratios between frequency bands, and variations 
between closed and open eye states (e.g., alpha blocking; Schmidt 
et al., 2013). In contrast, the non-linear metrics encompass fractal 

dimensionality, entropy, and EEG microstates (Porcaro et al., 2022). 
Notably, Porcaro et al. found that the likelihood of distinguishing 
between the MCS and VS is greater when using Higuchi’s fractal 
dimension (HFD) compared to traditional linear methods (Porcaro 
et al., 2022). On the other hand, PET-CT and fMRI are less frequently 
utilized in clinical practice due to challenges such as high costs and 
difficulties in patient cooperation.

In contrast, PSG offers distinct advantages. Unlike neuroimaging 
techniques such as fMRI and PET-CT, PSG provides a direct 
measurement of neuronal activity in the brain. In addition, compared 
to short-term EEG, PSG is more sensitive to changes in brain network 
dynamics throughout the patient’s wake–sleep cycle. Duclos et al. 
found that improvements in consciousness and cognitive function 
were closely associated with enhancements in sleep–wake quality, 
highlighting a significant relationship between the sleep brain network 
and the conscious brain network (Duclos et  al., 2017). Therefore, 
investigating polysomnographic differences in patients with pDOC is 
crucial for assessing their levels of consciousness. HFD is a time-
series-based non-linear metric related to brain activity and brain 
network complexity (Walker et al., 2022). The Teager–Kaiser energy 
operator (TKEO) is a non-linear metric related to signal energy that 
quantifies instantaneous changes in EEG signal energy, emphasizing 
changes in the frequency and amplitude of the signal, thus responding 
to the strength of brain function (Shi et al., 2022). The δ-band power 
spectral density [PSD(δ)] is a commonly used linear metric, with 
larger values generally representing poorer awareness (Stefan et al., 
2018). In this study, we analyzed PSG data from 40 patients with 
pDOC (27  in the VS/UWS and 13  in the MCS) to explore three 
discrepancies between the VS/UWS and MCS, calculating the 
diagnostic efficacy of these discrepancies separately.

2 Methods

2.1 Data collection and clinical evaluation

This study was a prospective cohort investigation involving 60 
patients with pDOC who underwent PSG testing at the Fifth Affiliated 
Hospital of Zhengzhou University from 1 January 2024 to 31 July 
2024. Basic clinical information was collected, including age, gender, 
etiology, and the duration of DOC. The inclusion criteria were as 
follows: 1. Age between 18 and 80 years; 2. DOC duration of 28 days 
or more; 3. no history of seizures and no use of antiepileptic, sedative, 
or other neuroexcitation-inhibiting medications before and after 
enrollment; 4. stable clinical status; 5. diagnosis of the VS/UWS or 
MCS based on the CRS-R scale; and 6. voluntary participation from 
the patient’s legal representative after reviewing the informed consent 
form. The exclusion criteria included: 1. History of psychiatric or 
neurodegenerative diseases prior to the onset of the condition; 2. 
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severe cardiac, hepatic, or renal dysfunction or other significant 
comorbidities; and 3. the presence of a large cranial defect that would 
interfere with electrode-scalp contact. The enrolled patients were 
evaluated by two trained neurosurgeons who administered the CRS-R 
for five consecutive days. Based on the highest scores obtained, the 
patients were classified into either the VS/UWS group or the MCS 
group. In cases of discrepancies in the final scores, the supervising 
physician was consulted to reassess the patients and determine the 
final scoring results. Subsequently, a professional neurophysiologist 
conducted PSG tests on the patients. The study was conducted in 
accordance with the ethical standards of the Declaration of Helsinki 
and received approval from the Ethics Committee of the Fifth 
Affiliated Hospital of Zhengzhou University (Ethics No. 
KY2024006-K02). Before enrollment, the legal representatives of the 
patients were informed about the study, and written consent was 
obtained, with the option to withdraw from participation at any time.

2.2 PSG testing

Data were recorded using a mobile polysomnograph (NicoletOne, 
United States) with a sampling rate of 256 Hz, a high-pass filter set at 
0.5 Hz, and a low-pass filter set at 40 Hz. The setup included 16-lead 
EEG, two-channel electrooculography, and three-channel 
electromyography. All recordings were conducted in the patient’s 
ward, and it was communicated in advance to the supervising 
physician and nursing staff that nursing interventions should 
be minimized during the testing. The experimenter checked electrode 
impedance after each intervention and replaced the electrodes when 
the impedance exceeded 5 kΩ. The patients remained in stable 
condition for at least 1 week before the recording, and their individual 
medication regimens were kept consistent. The recordings 
commenced at approximately 4:00 PM and concluded at 8:00 AM the 
following day.

2.3 Sleep score

The AASM Sleep and Associated Events Scoring Manual is the 
most widely used guideline for sleep staging (Morgenthaler et al., 
2006). In this study, we adopted the sleep-scoring method proposed 
by Rossi et al. (2018), which aligns closely with the AASM guidelines 
while incorporating some modifications to account for the unique 
sleep patterns observed in the patients with disorders of consciousness 
(Cologan et al., 2013).

The two raters first reached a consensus on the sleep-scoring 
criteria before independently scoring each segment of the sleep 
EEG. Any discrepancies in period staging and arousal identification 
were subsequently reviewed and resolved. Uncertain periods were 
excluded from statistical analysis to maintain data integrity.

2.4 EEG data analysis

2.4.1 Data preprocessing
The EEG signals were re-referenced using an average reference 

montage. The signals were filtered with a 50 Hz notch filter and a 
bandpass filter set between 0.5 and 40 Hz. To ensure consistency 

across the channels, each signal was normalized. For improved 
computational efficiency, the signals were downsampled to 100 Hz, 
and EEG was segmented into consecutive 30-s  cycles. The time 
periods in which the voltage range of the EEG channel exceeded 
100 μV were excluded from further analysis. Subsequently, the EEG 
traces were carefully reviewed, and any segments contaminated with 
residual artifacts were discarded. A text file containing sleep stage 
vectors was then loaded at a sampling frequency of 1/30 and 
upsampled to match the sampling frequency and duration of the EEG 
signal. Finally, we  categorized the entire EEG data, after artifact 
removal, into wakefulness, NREM1, NREM2, NREM3, and REM 
phases according to the sleep-scoring method proposed by Rossi 
Sebastiano et al.

2.4.2 Feature extraction
HFD is a method used to estimate the dimensionality of discrete 

time series data, serving as a quantitative measure of the inherent 
complexity or similarity of a signal or geometric structure (Walker 
et al., 2022). This method has been widely applied in sleep studies as 
it allows for the direct estimation of the fractal dimension from time 
series data without requiring prior transformations or embedding. 
The standard approach of HFD consists of the following steps: (1). 
For each sample i  of an EEG segment Sj, calculate the absolute 
difference between Sj (i) and Sj (i + k) values (i.e., the samples at 
distance k), considering k = 1, klin. (2). These absolute differences 
are multiplied by a normalization factor that considers the sample 
size of the number of available samples for each k-value. (3). For each 
k, L(k) is calculated by summing the resulting values for all EEG 
segment samples and dividing by k. (4). By definition, if the value of 
L(k) is proportional to k-D, then the curve is a fractal curve of 
dimension D. If L(k) is proportional to k-D, klin, then log(k) and 
log(L(k)) have a linear relationship. In particular, from the log(L(k)) 
vs. log(k) curve (hereafter referred to as k), the linear coefficient of 
D as a regression line can be estimated by ordinary least squares. (5). 
Choose klin as the largest k for which L(k) is proportional to 
k-D. The fractal dimension D computed using the Higuchi method 
is in the linear region of the k-curve, i.e., k ≤ klin, while the 
non-linear region of the k-curve, i.e., k > klin, is usually 
not considered.

The TKEO is a non-linear energy tracking operator that measures 
the energy and frequency content of a signal, effectively determining 
the instantaneous energy of non-smooth signals. The discrete wavelet 
transform (DWT) has been successfully applied to EEG detection. 
Since the smoothness of the Daubechies 4 (db4) wavelet makes it 
more suitable for detecting changes in EEG signals, the DWT with the 
function db4 wavelet was used in this study. The DWT provides near-
optimal time-frequency localization that decomposes EEG signals 
into seven different bands, corresponding to various brain rhythms. 
The signals were categorized into delta (A7), theta (D7), alpha (D6), 
beta (D5), gamma (D4), high gamma (D3), ripple (D2), and fast ripple 
(D1). Based on the TKEO method and the DWT, a combined global 
TKEO-DWT detection method is proposed, which analyzes the signal 
in both time and frequency domains.

The PSD quantifies the power distribution of a signal across 
various frequency components (Stefan et al., 2018). δ-wave brainwave 
frequencies typically range from 0.5 to 4 Hz and are closely associated 
with deep sleep stages. In this study, the Welch method was employed 
to compute the PSD for each time segment.
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For detailed calculations of the characteristics mentioned above, 
please refer to Annex 1.

2.5 Statistical analysis

Continuous variables were reported as mean ± standard 
deviation, while non-normally distributed variables were 
expressed as quartiles. Categorical variables were presented as 
counts and/or frequencies. The Shapiro–Wilk normality test was 
conducted for the continuous variables. One-way ANOVA was 
utilized to identify indicators of variability between the MCS and 
the VS groups. The correlation between the variability indicators 
and the CRS-R scores was assessed using Spearman’s correlation 
analysis. In addition, the diagnostic accuracy of the variability 

indicators was evaluated using receiver operating characteristic 
(ROC) curves.

3 Results

3.1 Demographic results

A total of 60 patients with pDOC were initially included in the 
study. The study excluded 15 patients for failing to meet the inclusion 
criteria. Ultimately, 27 patients in the VS/UWS and 13 in the MCS 
were included in the analysis. The research subject and flowchart are 
shown in Figure 1. There were no significant differences in age, gender, 
the duration of DOC, or etiology between the two groups (p > 0.05). 
Basic clinical information is presented in Table 1.

FIGURE 1

Flowchart of the study. CRS-R, Coma Recovery Scale-Revised; PSG, polysomnography.
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3.2 Results of the PSG analysis

The one-way ANOVA analysis revealed that the HFD in the MCS 
group exhibited a tendency to be higher than that in the VS/UWS 
group across all stages, with a statistically significant difference 
observed only during the waking stage (p < 0.001). Moreover, both 
groups displayed a gradual decrease in the HFD from the waking 
stage to NREM3, followed by an increase in the REM stage. Similarly, 
the TKEO in the MCS group showed a discernible tendency to 
be higher than that in the VS/UWS group across all stages, with a 
statistically significant difference observed only in the NREM2 stage 
(p = 0.009). Furthermore, the PSD (δ) in the MCS group demonstrated 
a pattern of being lower than that in the VS/UWS group across all 
stages, with statistical significance observed only during the waking 
stage (p  = 0.017). For further details, please refer to Table  1 and 
Figure 2.

3.3 Spearman correlation analysis

The Spearman correlation analysis of the HFD, TKEO, PSD of δ 
waves, and CRS-R scores revealed significant relationships. The HFD 
showed a strong positive correlation with the CRS-R score (r = 0.781, 

p < 0.001). Similarly, the TKEO was positively correlated with the 
CRS-R score (r = 0.555, p < 0.001). In contrast, the PSD (δ) exhibited 
a negative correlation with the CRS-R score (r = −0.512, p < 0.001). 
Among these indicators, the HFD demonstrated the strongest 
correlation with the CRS-R score. Please refer to Figure  3 for 
further details.

3.4 Analysis of the receiver operating 
characteristic curve (ROC curve)

The ROC curve analysis indicated that the HFD exhibited the 
highest diagnostic accuracy at 88.3% (p < 0.001). The TKEO 
demonstrated diagnostic accuracy of 75.2% (p = 0.011), while the PSD 
of δ waves had diagnostic accuracy of 71.5% (p = 0.029). Please see 
Figure 4 for additional details.

4 Discussion

As the number of patients with pDOC continues to rise, an 
increasing number of studies have been conducted in recent years. 
Although the CRS-R score remains the gold standard for diagnosis, its 

TABLE 1 Basic clinical characteristics and sleep EEG characteristics of the patients.

Total MCS VS/UWS p-value

Patients (n %) 40 13 (32.5) 27 (67.5) –

Sex (male n %) 19 8 (61.5) 11 (40.7) 0.217

Age (years) 54 ± 12.93 55.46 ± 7.03 53.3 ± 15.05 0.539

Etiology (traumatic brain injury n %) 12 4 (30.8) 8 (29.6) 0.941

Duration of coma (days) 79.78 ± 72.18 56.92 ± 42.67 90.78 ± 81.17 0.168

CRS-R 6.5 (5–8) 10 (8–11.5) 5 (5–7) <0.001*

HFD

Wake 1.47 ± 0.13 1.59 ± 0.10 1.42 ± 0.10 <0.001*

NREM1 1.43 ± 0.10 1.46 ± 0.12 1.42 ± 0.08 0.206

NREM2 1.41 ± 0.09 1.43 ± 0.08 1.40 ± 0.09 0.410

NREM3 1.13 ± 0.49 1.22 ± 0.38 1.08 ± 0.53 0.400

REM 1.34 ± 0.40 1.43 ± 0.11 1.30 ± 0.48 0.317

TKEO

Wake 1.98 ± 0.93 2.25 ± 0.84 1.85 ± 0.96 0.214

NREM1 1.74 ± 0.7 2.07 ± 0.80 1.58 ± 0.71 0.054

NREM2 1.97 ± 1.12 2.62 ± 1.20 1.65 ± 0.94 0.009*

NREM3 2.14 ± 1.52 2.31 ± 1.20 2.07 ± 1.66 0.646

REM 1.51 ± 0.83 1.81 ± 0.90 1.37 ± 0.77 0.113

PSD(δ)

Wake 0.43 ± 0.07 0.40 ± 0.06 0.45 ± 0.07 0.017*

NREM1 0.43 ± 0.08 0.41 ± 0.05 0.44 ± 0.09 0.237

NREM2 0.46 ± 0.08 0.43 ± 0.06 0.47 ± 0.09 0.093

NREM3 0.39 ± 0.20 0.33 ± 0.20 0.41 ± 0.20 0.241

REM 0.38 ± 0.15 0.37 ± 0.12 0.39 ± 0.16 0.701

CRS-R, Coma Recovery Scale-Revised; HFD, Higuchi’s fractal dimension; TKEO, Teager–Kaiser energy operator; PSD(δ), δ-band power spectral density; *indicates statistically significant 
differences.
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misdiagnosis rate is notably high in clinical applications (Giacino et al., 
2004). In contrast to neuroimaging techniques such as fMRI and PET, 
there is growing interest in electrophysiological techniques such as PSG 
and EEG. This interest stems from the advantages of electrophysiological 
testing as it is low-cost, non-invasive, and portable. Given that many 
patients with pDOC are bedridden and may have poor oxygen 
saturation, these techniques can be performed at the bedside, making 
them widely applicable in clinical practice (Comanducci et al., 2020; 
Porcaro et  al., 2022). Moreover, unlike neuroimaging methods, 
electrophysiological techniques provide direct measurements of brain 
electrical activity, allowing for an intuitive reflection of changes in brain 
function. This makes them particularly valuable for diagnosing pDOC, 
a notion supported by the growing number of electrophysiological 
markers developed over the past decade (Comanducci et  al., 2020; 
Porcaro et  al., 2022). While PSG requires a longer detection time 
compared to EEG, it allows for the exploration of the complete sleep–
wake cycle and the characteristics of EEG, revealing the close 
relationship between the conscious brain network and the sleep brain 
network (Duclos et al., 2017). Therefore, investigating sleep differences 

in pDOC using PSG is highly valuable. In this study, we analyzed the 
PSG data from 27 patients in the VS/UWS and 13 patients in the MCS, 
finding significant differences in the HFD and PSD (δ) during 
wakefulness, as well as in the TKEO during the NREM2 stage. The 
correlation analyses indicated that both HFD and TKEO were 
significantly positively correlated with the CRS-R scores, while the PSD 
(δ) exhibited a significant negative correlation with the CRS-R scores. 
Notably, the HFD showed the strongest correlation with the CRS-R 
scores (r = 0.781). The ROC curve analysis demonstrated significant 
diagnostic efficacy for the HFD, TKEO, and PSD (δ), with the HFD 
achieving the highest diagnostic accuracy of 88.3%.

HFD of EEG signals serves as an indicator of the complexity of 
EEG activity, with higher HFD values potentially reflecting more 
complex brain dynamics associated with elevated levels of 
consciousness. Currently, HFD is widely utilized in various fields, 
including neuroimaging analysis, bone studies, mammography, and 
ECG/EEG diagnostics (Maetani et al., 2023). Its versatility in EEG 
applications has contributed to significant advancements in 
understanding several disorders, such as epilepsy, sleep disorders, 

FIGURE 2

Sleep electroencephalogram differences between the VS/UWS and MCS groups. (A) The difference in the fractal dimension during wakefulness 
between the VS/UWS and MCS groups. (B) The difference in the Teager-Kaiser energy operator during the NREM2 phase between the VS/UWS and 
MCS groups. (C) The difference in the power spectral density of the δ-band during wakefulness between the VS/UWS and MCS groups.

FIGURE 3

Scatterplot between the HFD, TKEO, PSD (δ), and CRS-R scores. (A) Dimension of the fractal during wakefulness. (B) The TKEO in the NREM2 phase. 
(C) The power spectral density of the δ-band during wakefulness.
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and Alzheimer’s disease (Gangadhar et  al., 2003; Woyshville and 
Calabrese, 1994; Raghavendra et al., 2009; De Ruiz Miras et al., 2019). 
Woyshville et  al. reported that patients with Alzheimer’s disease 
exhibited significantly lower HFD values compared to healthy 
participants (Woyshville and Calabrese, 1994). Similarly, 
Raghavendra et al. found a diffuse reduction in HFD values among 
patients with schizophrenia (Raghavendra et al., 2009). Ruiz et al. 
demonstrated that brain activity in the conscious state displayed a 
more complex structure and evolution compared to the unconscious 
state, noting that HFD values during sleep were generally lower than 
those during wakefulness (De Ruiz Miras et al., 2019). In our study, 
we observed that patients’ HFD values gradually decreased from 
wakefulness to deep sleep, with a tendency for the HFD to increase 
upon entering the REM phase, potentially correlating with dreaming 
during this stage (Boyce and Adamantidis, 2017). Furthermore, 
during the wakefulness period, the HFD values of the patients in the 
MCS were significantly higher compared to those in the VS/
UWS. This finding suggests that brain activity in the MCS is more 
pronounced, indicating a higher level of consciousness. The 
correlation analysis further revealed that higher CRS-R scores 
corresponded with increased HFD values, reflecting greater 
complexity in brain activity. Although a similar trend was observed 
in the TKEO, it was not as pronounced as that seen with the HFD, 
aligning with previous studies.

The TKEO is a non-linear indicator that reflects the complexity of 
instantaneous energy in various signals. It has applications in 
engineering and materials science, where it is widely used to diagnose 
bearing faults (Shi et  al., 2022) and to detect layered composite 
materials by analyzing instantaneous energy changes (Gałęzia and 
Orłowska-Gałęzia, 2021). In recent years, numerous studies have 
investigated the role of the TKEO in biological contexts. For instance, 
the TKEO has been shown to enhance the detection of 
electromyography onset (Li et al., 2007), identify focal EEG signals in 
patients with epilepsy (Chatterjee, 2019), quantify respiratory impacts 
on cardiac function by analyzing electrocardiogram changes 
(Imirzalioglu and Semiz, 2022), and detect spontaneous seizures in 
mice during basic experimental setups (Wei et al., 2021). However, no 

studies have yet explored the role of the TKEO in the sleep EEG of 
patients with pDOC. Our study found that during the NREM2 stage, 
the TKEO values were significantly higher in the patients in the MCS 
compared to those in the VS/UWS. This finding suggests that the EEG 
signals of patients in the MCS exhibit greater energy, further confirming 
that residual brain function in the MCS is relatively well-developed 
compared to the VS/UWS, with stronger functional connectivity 
among consciousness-related brain regions. The correlation analysis 
indicated a positive relationship between the TKEO and CRS-R scores, 
suggesting that the TKEO may serve as a sensitive indicator of 
consciousness level progression. Currently, there are limited studies on 
this topic, and further exploration of its clinical value is warranted.

Numerous previous studies on power spectra have identified 
significant differences between the power spectra of patients with pDOC 
and healthy controls, as well as between those in the VS/UWS and MCS 
(Stefan et al., 2018). Specifically, patients with pDOC demonstrated 
decreased α-band power and increased δ-band power, with these 
differences being more pronounced in individuals in the VS/UWS 
compared to those in the MCS (Franks, 2008). The PSD of δ waves is a 
commonly used linear metric that is closely associated with deep sleep 
stages, which are critical for assessing brain function, particularly in 
cases involving altered states of consciousness. The presence of stable 
and intense δ waves during anesthesia and deep sleep typically indicates 
unconsciousness (Franks, 2008). Our study reached a similar conclusion, 
finding that the PSD (δ) was significantly higher in the VS/UWS group 
than in the MCS group. However, the correlation with the CRS-R score 
was lower, and the diagnostic accuracy was also diminished, indicating 
weaker diagnostic value compared to the HFD and the TKEO.

The application of non-linear methods in EEG analysis has garnered 
increasing interest, recognizing that EEG production may not be solely 
explained by linear deterministic processes. As previously mentioned, 
Porcaro et al. found that HFD is more effective at detecting differences 
between the MCS and VS/UWS compared to traditional linear methods 
(Porcaro et al., 2022). In our study, both HFD and TKEO were identified 
as non-linear indicators, while the PSD of δ waves served as a linear 
indicator. We  observed that the correlation between the HFD and 
TKEO and the CRS-R scores was significantly higher compared to the 
PSD (δ). In addition, the ROC curve analysis indicated that the 
diagnostic accuracy of both HFD and TKEO surpassed that of the PSD 
(δ), particularly for the HFD, which demonstrated a stronger correlation 
and higher diagnostic accuracy. This finding aligns with Porcaro et al.’s 
conclusion that the diagnostic efficacy of non-linear indicators may 
be superior to that of linear indicators, especially HFD, which shows 
promising diagnostic value in the assessment of pDOC.

In conclusion, our study identified three differential indicators in 
the PSG results of the patients in the MCS and VS/UWS. The correlation 
and ROC curve analyses demonstrated that all three differential 
indicators were correlated with the CRS-R scores and exhibited 
diagnostic value. Among these, the non-linear indicators (HFD and the 
TKEO) showed stronger correlations and higher diagnostic accuracy 
than the linear indicator, the PSD (δ), particularly HFD. This finding 
can help clinical practitioners distinguish between the VS/UWS and 
MCS, reduce the misdiagnosis rate, and provide an objective basis for 
clinical decision-making. However, we acknowledge that a primary 
limitation of the study is the relatively small sample size and the 
significant discrepancy in the number of participants between the two 
groups, which might have affected the outcomes. In addition, the 16-h 
testing period might not have encompassed the complete sleep–wake 

FIGURE 4

ROC curve. HFD, the fractal dimension during wakefulness. The 
TKEO, the Teager–Kaiser energy operator in the NREM2 phase. The 
PSD (δ), the power spectral density in the δ-band during wakefulness.
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cycle of the patients compared to a 24-h PSG assessment. Therefore, 
further research is needed to validate our findings in a larger cohort and 
to increase the number of test leads and the duration of testing as much 
as possible. Furthermore, diagnosing pDOC is complex, and relying on 
single diagnostic methods is often insufficient; thus, we should explore 
as many multimodal diagnostic approaches as possible in the future.

5 Conclusion

The PSG results in the VS/UWS and MCS groups differed 
significantly, aiding in distinguishing between these groups and 
lowering the misdiagnosis rate. Notably, the HFD and PSD (δ) showed 
better diagnostic potential during wakefulness than during sleep, 
while the TKEO excelled in NREM2. In particular, the HFD during 
wakefulness exhibited a stronger correlation with the CRS-R scores, 
the highest diagnostic accuracy, and promise in diagnosing pDOC.
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