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Error-related potentials during
multitasking involving
sensorimotor control: an ERP
and o	ine decoding study for
brain-computer interface

Masaki Yasuhara and Isao Nambu*

Graduate School of Engineering, Nagaoka University of Technology, Nagaoka, Japan

Humans achieve e�cient behaviors by perceiving and responding to errors.

Error-related potentials (ErrPs) are electrophysiological responses that occur

upon perceiving errors. Leveraging ErrPs to improve the accuracy of

brain-computer interfaces (BCIs), utilizing the brain’s natural error-detection

processes to enhance system performance, has been proposed. However, the

influence of external and contextual factors on the detectability of ErrPs remains

poorly understood, especially in multitasking scenarios involving both BCI

operations and sensorimotor control. Herein, we hypothesized that the di�culty

in sensorimotor control would lead to the dispersion of neural resources in

multitasking, resulting in a reduction in ErrP features. To examine this, we

conducted an experiment in which participants were instructed to keep a ball

within a designated area on a board, while simultaneously attempting to control

a cursor on a display through motor imagery. The BCI provided error feedback

with a random probability of 30%. Three scenarios–without a ball (single-task),

lightweight ball (easy-task), and heavyweight ball (hard-task)–were used for the

characterization of ErrPs based on the di�culty of sensorimotor control. In

addition, to examine the impact of multitasking on ErrP-BCI performance, we

analyzed single-trial classification accuracy o	ine. Contrary to our hypothesis,

varying the di�culty of sensorimotor control did not result in significant changes

in ErrP features. However, multitasking significantly a�ected ErrP classification

accuracy. Post-hoc analyses revealed that the classifier trained on single-task

ErrPs exhibited reduced accuracy under hard-task scenarios. To our knowledge,

this study is the first to investigate how ErrPs are modulated in a multitasking

environment involving both sensorimotor control and BCI operation in an o	ine

framework. Although the ErrP features remained unchanged, the observed

variation in accuracy suggests the need to design classifiers that account for task

load even before implementing a real-time ErrP-based BCI.
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1 Introduction

Error perception is crucial for achieving efficient behaviors. For instance, when

reaching for an object, even a slight deviation in hand position leads to errors. Precise

action is achieved through feedback strategies that respond to errors. Error signals can be

observed as electrophysiological responses measurable by electroencephalography (EEG)
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and are referred to as error-related potentials (ErrPs). Typically,

approximately 250 ms after erroneous feedback, a negative peak

known as error-related negativity (ERN) is observed, followed by a

positive potential known as error positivity (Pe) (Ferrez andMillán,

2005). Ferrez and Del R. Millan (2008) integrated error detection

and correction strategies into a brain-computer interface (BCI).

Traditionally, BCIs decode EEG signals such as P300 and motor

imagery to generate commands for communication aids or robotic

device control (Rashid et al., 2020): users can input text without

physical movement (Pan et al., 2022), or control a wheelchair

directly via brain signals (Naser and Bhattacharya, 2023). The

incorporation of ErrP into BCIs enhances system performance by

facilitating error correction strategies (Chavarriaga et al., 2014; Zeyl

et al., 2016; Cruz et al., 2018; Kim et al., 2019; Parashiva and Vinod,

2022). Hence, the development of ErrP-based BCIs (ErrP-BCIs)

that integrate error detection and correction strategies is critical for

enhancing system usability.

An important question is whether the ErrP-BCIs can function

effectively in multitasking environments. Although most studies

on BCI have been conducted in controlled laboratory settings,

recent studies have focused on how these systems operate in more

realistic multitasking scenarios that reflect everyday life (Huang

et al., 2020). A study on the P300 speller, a widely used BCI,

demonstrated that increasing cognitive load slows neural responses

to stimuli, resulting in decreased system performance (Ke et al.,

2016). As mental workload increases, cognitive resources become

more dispersed, leading to a reduction in P300 amplitude (Käthner

et al., 2014).

ErrP modulation has been assessed in the context of

the availability of cognitive resources. Sleep deprivation has

been demonstrated to slow down reaction times and reduce

Pe amplitudes (Boardman et al., 2024). ERN amplitude is

significantly correlated with sustained attention, where reduced

attention leads to a decrease in ERN amplitude (Xiao et al.,

2015). Similarly, attention bias correction lowers attention and

diminishes ERN amplitude (Nelson et al., 2017). In contrast,

task evaluation in flanker tasks increases attention, resulting in

greater amplitudes of ERN and Pe (Grützmann et al., 2014).

These results indicate that ErrPs are affected by attentional

resources and cognitive load. Studies on ErrP modulation under

multitasking cognitive load have revealed that increasing cognitive

demands reduces ERN amplitude (Tanaka et al., 2005; Klawohn

et al., 2016). Studies on multitasking have primarily focused on

cognitive load.

However, to our knowledge, ErrP modulation during

sensorimotor control remains unexplored. In real-life scenarios,

such as operating a navigation system while driving, performing

sensorimotor tasks along with interfacial operations is common.

Extending physical control through simultaneous interface

operations during sensorimotor tasks represents an ideal

application of BCI (Penaloza and Nishio, 2018; Eden et al.,

2022). Studies have been conducted to address the challenges

associated with multitasking involving both sensorimotor control

and BCI operation (Penaloza and Nishio, 2018; Bashford et al.,

2018). Investigating ErrPs related to BCI operation during

sensorimotor control is crucial for determining the applicability

of ErrP-BCIs.

This study aimed to investigate whether ErrPs generated during

BCI operations are affected by multitasking with sensorimotor

control. Similar to previous studies on cognitive load (Tanaka et al.,

2005; Klawohn et al., 2016), we hypothesized that ErrPs would

fluctuate because of the distribution of neural resources caused by

multitasking during sensorimotor control. However, Iwane et al.

(2021) showed that errors can still be detected using the same

classifier despite such fluctuations; accordingly, we expected that

errors in different scenarios could also be detected using the same

classifier during multitasking. To test this hypothesis, we designed

an experimental paradigm that intentionally induced BCI errors

during multitasking using sensorimotor control. To replicate real-

life scenarios, participants were asked to control the BCI while

carrying an object with both hands. Specifically, they attempted

to keep a ball steady on a board while simultaneously performing

motor imagery EEG to move a cursor on a screen in an instructed

direction. The cursor moved in the opposite direction in 30% of the

trials, regardless of EEG decoding. Varying the weight of the ball,

we examined the characteristics of ErrPs at various sensorimotor

control levels.

2 Materials and methods

2.1 Participants

A total of 28 individuals (two females, mean age 23.75 ±

3.27 years) participated in the study. Three participants whose

trials yielded more than 80% invalid results (see below: data

analysis) were excluded from the analysis. Therefore, data from

25 participants were used in the final analysis. The experimental

protocol was approved by the local ethics committee of Nagaoka

University of Technology (Number 2023-03-03), and written

informed consent was obtained from all participants prior to the

experiment. This study was conducted in accordance with the

principles of the Declaration of Helsinki.

2.2 Experimental setup

An experimental environment was constructed to

simultaneously measure EEG and electromyography (EMG)

signals while participants performed sensorimotor control and

BCI tasks. The sensorimotor control task was a modified version

of the ball-balancing-board task used by Penaloza and Nishio

(2018). In the modified task, participants were required to keep

a ball within a designated area on a custom-made ball-balancing

board (width: 450 mm; height: 600 mm) featuring a green area,

walls, and ArUco markers (Figure 1A). A camera (C980; Logicool

Co.) was positioned to capture the entire board to detect both

the ArUco markers and the position of the ball (Figure 1B). A

monitor was placed near the board, allowing participants to view

the board and the monitor simultaneously. To vary the difficulty of

the sensorimotor control task, three scenarios were tested: without

a ball, with a light rubber ball (diameter: 49 mm, weight: 55 g;

D7222; Danno Works, Osaka, Japan), and with a heavy metal ball

(diameter: 40 mm, weight: 265 g; SUS304).
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EEG data, EMG data, and trigger information were streamed

using the Lab Streaming Layer1 (LSL) and recorded using

LabRecorder software. EEG data were streamed using App-

Biosemi software, and EMG data were streamed using custom-

made software based on the Trigno Software Development Kit.

The monitor was controlled by PsychoPy (Peirce et al., 2019),

which streams trigger information to the LSL during stimulus

presentation changes. The camera was controlled using OpenCV

integrated into PsychoPy, and the video was continuously recorded

at 30 frames per second in a format that allowed separation by trial.

2.3 Experimental design

The participants were required to multitask, involving both

sensorimotor control and motor-imagery-based BCI operation.

While performing the ball-balancing task, the participants

attempted to move the cursor in the instructed direction based

on imagined hand movements. The gaze was fixed at the

center of the screen, and attention was allowed to shift to

the ball only when it moved out of the green area. Prior

to data collection, a familiarization session was conducted for

approximately 5 min, during which participants practiced keeping

the ball within the green area while focusing on the monitor.

During the familiarization session, the experimenter ensured

that the participants fully understood the experimental process.

Figure 1C shows a cue diagram. Initially, a fixation point was

displayed on the monitor for 1 s, followed by the presentation of a

red cursor and a blue rectangle for 4 s. The blue rectangle appeared

randomly on either the left or right side of the screen, and the task

was to move the red cursor toward the blue rectangle using motor

imagery. Prior to the experiment, event-related desynchronization

was explained to the participants, emphasizing that the cursor

movement reflected neural activity related to imagined hand

movements. After the motor imagery phase, feedback was provided

by moving the red cursor to either the left or the right side. The

actual feedback was programmed to include a 30% error rate,

leading to the cursor moving in the wrong direction independent

of the EEG signals. This error rate was selected based on previous

ErrP studies (Kim et al., 2019; Usama et al., 2020; Iwane et al., 2023).

We designed three sessions: a single-task session (without a

ball), an easy-task session (lightweight ball), and a hard-task session

(heavyweight ball). Each session consisted of three blocks with

40 consecutive trials per block. This resulted in 84 correct and

36 erroneous feedback trials for each scenario (single, easy, and

hard tasks). To minimize the effects of fatigue (Xiao et al., 2015),

participants were given a 3-min break between blocks and a 5-

min break between sessions. Participants were allowed to take

longer breaks if needed. The first and second sessions involved

multitasking scenarios (easy and hard tasks); the order of the

sessions was randomized. The third session, which consisting of

the single-task scenario, served as a control experiment to examine

the effects of multitasking. Additionally, to investigate temporal

adaptations, such as fatigue or learning effects, 15 participants

completed an extra single-task session before the multitasking

1 https://github.com/sccn/labstreaminglayer

sessions. Of these 15 participants, two were excluded from the

analysis, resulting in data from 13 participants that were used to

analyze the effects of temporal adaptation.

2.4 Questionnaire

A two-section questionnaire was administered for each block.

One section assessed the difficulty of the ball-balancing board

task on a 5-point scale to verify whether the task difficulty

was appropriately set. Difficulty was assessed only for easy

and hard tasks. The other section evaluated the reliability of

kinesthetic motor imagery on a 5-point scale to determine whether

multitasking interfered with motor imagery. A motor imagery

reliability assessment was conducted during all sessions using a

questionnaire adapted from the Japanese version (Nakano et al.,

2018) of the motor imagery scale developed by Malouin et al.

(2007). The data collected after each block were averaged for each

session and participant.

2.5 EEG acquisition

Continuous EEG data were recorded using the Active Two

system (Biosemi, Amsterdam, Netherlands). A 32-channel cap

utilizing the international 10-20 layout was used with the common

mode sense and the driven right leg electrodes placed on the cap.

Additional electrodes were placed on the earlobes, and vertical

and horizontal electrooculogram (EOG) electrodes were attached

following the method described by Croft and Barry (2000). The

offset voltage was maintained at ± 25 mV. Continuous EEG data

were streamed to the LSL at a sampling rate of 2,048 Hz.

2.6 EMG acquisition

EMG was recorded to assist in trial rejection. Surface EMG

activity was recorded in the extensor digitorum and flexor

digitorum superficialis of both arms. Continuous EMG data

were measured using a Trigno wireless system (Delsys, Boston,

MA, USA) and streamed to the LSL at a sampling rate of 2

kHz using custom-made software based on the Trigno Software

Development Kit.

2.7 Data analysis

Python (version 3.12.2) was used for all data analyses,

including EEG and EMG signal processing, and ball position

detection. MATLAB (version R2024a), EEGLAB (version 2024.1),

and ERPLAB (version 12.00) were used to quantify ErrPs.

2.7.1 Error-related potentials
EEG data were pre-processed and analyzed using MNE-python

1.7.1 (Gramfort, 2013). Continuous EEG data were first resampled

to 500 Hz and referenced to the average earlobe electrodes. A
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FIGURE 1

The experimental setup. (A) The ball-balancing board had walls, a green area, and ArUco markers. (B) Participants were seated and held the

ball-balancing board with both hands. A monitor was placed in front of the board to provide cues and feedback. Throughout the session, participants

performed the ball-balancing-board task, keeping the ball within the green area. Participants were instructed to keep their gaze fixed on the center

of the monitor, and could only focus on the ball if the ball moved outside the green area. (C) The monitor displayed rest cues, motor imagery cues,

and feedback. During the motor imagery phase, a blue rectangle appeared on either the left or right side of the screen, while a red cursor was

located at the center. Participants were instructed to imagine clenching the hand on the side of the blue line for 4 s. After this, feedback was provided

through the movement of the cursor.

bandpass filter of 1-40 Hz was applied, and bad channels were

marked for interpolation. An independent component analysis

(ICA) was performed to remove artifacts related to eye movement

and muscle activity. The components to be removed were selected

through visual inspection with reference to the recorded EOG data

and ICLabel-based classification (Pion-Tonachini et al., 2019; Li

et al., 2022). The marked bad channels were interpolated using

spherical spline interpolation. The ICA-processed EEG data were

segmented into epochs ranging from -250 to 1,000 ms, time-locked

to the feedback onset. Epochs with EEG amplitudes exceeding 150

µVwere rejected tominimize contamination from artifacts. Epochs

were created using the remaining valid trials. Baseline correction

was applied with a range of -250 to 0 ms relative to the feedback

onset. ERN and Pe were analyzed within time windows of 150–300

ms and 250–550 ms, respectively. ErrPs were computed separately

for error and correct feedback trials. Visual inspection of the

grand averaged ErrPs, along with previous information regarding

motor imagery-based BCI-related ErrPs (Usama et al., 2020), was

used to define the time windows for quantification. For each

component, the peak amplitude and peak latency were quantified

using the ERPLAB toolbox (Lopez-Calderon and Luck, 2014).

This toolbox offers advanced functionalities for ERP analysis,

including algorithms for local peak detection (Luck, 2014). Time-

frequency domain features were extracted to further investigate

neural activities associated with error processing. Event-related

spectral perturbations (ERSPs) were computed from the epoched

data to capture changes in the spectral power related to error events.

ERSPs were calculated as dB values, representing the log ratio of

power during the epoch relative to the baseline period. To prevent

contamination from task-related brain activity (Pfurtscheller and

Lopes Da Silva, 1999), data from a 3-min resting-state EEG

recorded with eyes open prior to the experiment was used as

the baseline.

2.7.2 EMG power
EMG data were preprocessed with a 30-200 Hz bandpass filter

and a 50 Hz notch filter to remove power-line noise. The data were

then subjected to full-wave rectification and smoothened with a 5

Hz low-pass filter. Unintended muscle movements during motor

imagery tasks can induce ErrPs that differ from those associated

with BCI operations. Therefore, trials with significant changes in

muscle power were classified as erroneous and excluded from the

analysis. The exclusion threshold was determined by calculating the

average EMG power during the resting period. If the peak EMG

power during the motor imagery exceeded twice the average rest-

period power, the trial was excluded. The threshold was established

based on the findings of the pilot experiment.

2.7.3 Ball position detection
The video data were separated for each trial, and the board

position, along the green area, was detected using OpenCV and

ArUco markers. The center coordinates of the ball were estimated

by detecting the circular edges using the Hough transform in
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OpenCV. In this experiment, two types of errors occurred: BCI-

related errors and ball-balancing board-related errors. To exclude

trials with ErrPs induced by ball-balancing-board errors, trials in

which the center coordinates of the ball moved outside the green

area were identified. Any trial in which the ball was outside the

green area, was excluded from the analysis.

2.8 Classification

Pre-processing and classification were performed as per a

review by Yasemin et al. (2023). First, the ICA-processed EEG were

referenced using a common average reference and were filtered

using a low-pass filter of 10 Hz. The data were then resampled to

60 Hz, and a time window of 200–800 ms relative to the feedback

onset was extracted. An overlap window average was used to

reduce the number of features. The classification was performed

using shrinkage linear discriminant analysis implemented in Scikit-

learn (Pedregosa et al., 2011). The classifier categorized ErrPs as

either erroneous or correct trials. The performance was evaluated

using balanced accuracy, which is used in ErrP-BCI evaluations

to account for imbalances between the number of erroneous

and correct trials (Yasemin et al., 2023; Iwane et al., 2023). The

balanced accuracy was calculated as the average sensitivity (true-

positive rate) and specificity (true-negative rate). In addition,

transfer learning was applied to investigate whether ErrPs under

multitasking scenarios could be classified using a model trained on

single-task data. Specifically, a classifier was trained on ErrPs from

the single-task scenario and then tested on multitasking data to

assess balanced accuracy in more complex environments. Herein,

we refer to this as transfer (easy) for the easy-task scenario and

transfer (hard) for the hard-task scenario in transfer learning. To

determine whether the mean-balanced accuracy exceeded chance,

a permutation test was conducted for each task. The class labels

were shuffled, and the grand-averaged balanced accuracy across

participants was calculated 1000 times. The chance level was

defined as the 95th percentile of the resulting distribution.

2.9 Statistics

All statistical analyses of the questionnaire scores, EEG

responses, and classification accuracies were performed using R

(version 4.4.3) with the ez (version 4.4-0) and rstatix (version 0.7.2)

packages and MNE-python for a cluster-based permutation test.

The threshold for statistical significance was set at p = 0.05.

2.9.1 Questionnaire
A paired t-test was conducted to examine whether the

participants perceived a difference in difficulty between the

easy and hard multitasking scenarios. To investigate whether

multitasking affected the reliability of motor imagery, a one-way

repeated-measures analysis of variance (ANOVA) was performed

with task scenarios (single, easy, and hard tasks) as a within-

subject factor. If the assumption of sphericity was violated, the

Greenhouse-Geisser correction was applied. Post-hoc tests with

Benjamini-Hochberg correction (Benjamini and Hochberg, 1995)

for multiple comparisons were applied when significant effects

were observed.

2.9.2 Error-related potentials
To investigate the effects of multitasking on ErrPs, a two-way

repeated-measures ANOVA was conducted on the peak amplitude

and peak latency of ERN and Pe, with task scenarios (single,

easy, and hard tasks) and feedback type (erroneous and correct)

as within-subject factors. Based on previous studies, repeated

measures ANOVA was chosen to investigate modulations in

ErrPs (Tanaka et al., 2005; Klawohn et al., 2016; Usama et al.,

2020). The Greenhouse-Geisser correction was applied when the

assumption of sphericity was violated. Additionally, to examine

the effects of multitasking in the frequency domain, a cluster-

based permutation test was performed using 2,000 permutations

(Maris and Oostenveld, 2007; Sassenhagen and Draschkow, 2019).

Previous studies on ErrP typically focused on the FCz or Cz

channels, where the peak amplitudes tended to be maximal (Ferrez

and Millán, 2005; Ferrez and Del R. Millan, 2008; Gehring et al.,

2011). As the 32-channel EEG cap used herein did not include the

FCz, statistical analyses were conducted using the Cz channel.

2.9.3 Classification
To investigate the effects of multitasking on ErrP classification,

a one-way repeated-measures ANOVA was conducted with the

classification scenarios (single task, easy task, hard task, transfer

easy, and transfer hard) as within-subject factors. The Greenhouse-

Geisser correction was applied when the assumption of sphericity

was violated. For significant effects, post-hoc tests with Benjamini-

Hochberg correction for multiple comparisons were performed.

2.9.4 Temporal adaptation e�ect
Fatigue alters the characteristics of ErrPs (Xiao et al., 2015).

To investigate temporal adaptation effects, such as fatigue or

learning effects, a statistical analysis was conducted on the

differences between the first and last single-task sessions. The same

methods used in the multitasking analysis were used to assess the

questionnaires, ErrPs, and classification performance.

3 Results

Owing to EEG signal quality, errors in EMG power, and ball

position detection, 22.6% of all trials were excluded from analyses.

The success rates for the ball-balancing task were 95.0% (variance:

30.7) for the easy-task and 84.6% (variance: 138.5) for the hard-task.

Additionally, the removal rates due to EMG-related errors were

18.7% for the single-task, 16.1% for the easy-task, and 19.2% for

the hard-task.

3.1 Questionnaire

We first investigated whether the participants perceived a

difference in difficulty between the easy and hard tasks using

questionnaire data (Figure 2A). The grand-averaged difficulty
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FIGURE 2

Results of the questionnaire analysis. (A) Task di�culty of multitasking scenarios. (B) Reliability of kinesthetic motor imagery. Statistical significance:
∗p < 0.05,∗∗∗∗ p < 0.0001.

scores across participants were 2.08 for the easy tasks and 3.47

for the hard tasks. A paired t-test revealed a significant difference

between the two scenarios (t(24) = −8.45, p < 0.0001), indicating

that participants clearly perceived the difference in task difficulty

and that the task difficulty was appropriately set by these scenarios.

The grand-averaged scores for the reliability of kinesthetic

motor imagery were 3.27, 3.00, and 2.84 for the single, easy,

and hard tasks, respectively (Figure 2B). The ANOVA revealed a

significant main effect of task scenarios (F(2,48) = 4.63, p < 0.05).

Post-hoc tests showed significant differences between the single-

and easy-task scenarios (t(24) = 2.28, p.adj < 0.05) and between the

single- and hard-task scenarios (t(24) = 2.74, p.adj < 0.05). These

results suggested that multitasking interfered with the reliability of

motor imagery.

In summary, the findings indicated that the participants

experienced interference in their motor imagery during BCI

operation with multitasking. Although participants perceived a

difference in difficulty between the two multitasking scenarios,

task difficulty did not appear to affect kinesthetic motor

imagery reliability.

3.2 Error-related potentials

To investigate the effect of multitasking on ErrPs, we

compared ErrPs across task scenarios in both time and frequency

domains (Figure 3). During erroneous feedback, ERNwas observed

at approximately 212 ms after feedback, followed by Pe at

approximately 418 ms (Figure 3A, Table 1). During correct

feedback, correct-related negativity (CRN) was observed at

approximately 194 ms after feedback, followed by a positive peak

at approximately 386 ms (Figure 3B, Table 1). Topographical maps

showed that ERN was distributed across all scalp electrodes,

whereas Pe was primarily observed in the frontal-central region

(Figures 3A, B). In the frequency domain, ErrP components were

detected in the 4-8 Hz range across all tasks (Figures 3C–E).

ANOVA for the peak amplitude of ERN revealed a significant

main effect of the feedback type (F(1, 24) = 26.4, p < 0.05).

Similarly, ANOVA for the peak latency of ERN showed a significant

main effect of the feedback type (F(1 24) = 8.35, p < 0.05). For

the peak amplitude of Pe, ANOVA revealed a main effect of the

feedback type (F(1, 24) = 72.2, p < 0.05); similarly, for the peak

latency of Pe, a significant main effect of the feedback type was

observed (F(1, 24) = 13.5, p < 0.05). Detailed statistical results

are provided in Supplementary Table 1. These results indicate that

ERN and CRN differ, with erroneous feedback showing greater

amplitude and longer latency. The cluster-based permutation test

for the ERSP analysis did not reveal any significant clusters.

Overall, both time- and frequency-domain analyses

suggested that electrophysiological responses were not influenced

by multitasking.

3.3 Classification

Figure 4 summarizes the accuracy of the ErrP classification

evaluated using a shrinkage linear discriminant analysis. The

grand-averaged accuracies were 67.6%, 67.0%, 61.3%, 64.9%, and

60.7% for the single, easy, hard, transfer (easy), and transfer

(hard) tasks, respectively. The results of the permutation test

demonstrated that all classifiers performed above the chance level,

indicating that errors can be detected by the classifier even in

multitasking scenarios.

The results of the one-way repeated measures ANOVA showed

a significant main effect (F(4,96) = 4.74, p < 0.05). Post-hoc

tests revealed significant differences between the single-task and

transfer-hard scenarios (t(24) = 3.25, p.adj < 0.05), easy-task and

transfer-hard scenarios (t(24) = 3.49, p.adj < 0.05), and transfer-

easy and transfer-hard scenarios (t(24) = 2.62, p.adj < 0.05).

These results indicate that while multitasking affects ErrP

classification accuracy, training the classifier on data from

multitasking scenarios can yield a classification performance

comparable to that of single-task scenarios. Conversely, if the
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FIGURE 3

Grand-averaged ErrPs at Cz with topographic distribution maps and event-related spectral perturbations at Cz. (A) ErrPs responses to erroneous

feedback and (B) correct feedback. The shaded area around the line represents the standard deviation across all participants. The three time points

shown in the topographic maps correspond to 250 ms and 400 ms as defined by Ferrez and Millán (2005), with an additional 200 ms selected based

on visual inspection. Color represents amplitudes in µV. (C–E) Event-related spectral perturbations for erroneous feedback trials, computed using the

eyes-open condition recorded prior to the experiment as the baseline. Color represents amplitude in dB. ErrP, Error-related potentials.

classifier is trained exclusively on data from a single-task scenario,

the accuracy may decrease for multitasking scenarios.

3.4 Temporal adaptation e�ect

Figure 5 summarizes the questionnaire responses, ErrP, and

classification results for the first and last single-task sessions

of 13 participants who underwent trials to assess the effect of

temporal adaptations. The grand-averaged scores for the reliability

of kinesthetic motor imagery were 2.82 for the first session

and 3.23 for the last session (Figure 5A). Table 2 corresponds to

Figure 5B and summarizes the peak amplitudes and latencies of

the ERN and Pe. The single-trial ErrP classification accuracies

were 68.6% and 69.6% for the first and last sessions, respectively

(Figure 5C).

The results of the one-way repeated-measures ANOVA for the

questionnaire showed no significant main effects, indicating that

temporal factors did not influence the reliability of motor imagery

in this experiment.
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TABLE 1 Summary of peak amplitude and peak latency of ERN and Pe across all participants for the task scenarios (single, easy, and hard tasks).

Peak amplitude (µV) Peak latency (ms)

ERN Pe ERN Pe

Single-task Erroneous −3.78± 2.08 11.4± 4.72 211± 42.3 412± 30.8

Correct −2.01± 1.42 6.68± 3.11 188± 28.1 387± 71.9

Easy-task Erroneous −3.18± 1.99 11.0± 5.46 217± 37.2 422± 51.2

Correct −2.08± 1.41 6.58± 3.13 194± 25.3 389± 64.5

Hard-task Erroneous −3.62± 2.38 10.9± 4.72 207± 43.7 419± 55.4

Correct −2.01± 1.04 6.89± 3.47 199± 37.2 381± 66.2

Values are presented as the mean± standard deviation. ERN, error-related negativity; Pe, error positivity.

FIGURE 4

E�ects of simultaneous sensorimotor control on ErrP classification during BCI operation. The bar graphs labeled Single-task, Easy-task, and

Hard-task represent the classification performance within their respective scenarios. Transfer (Easy) and Transfer (Hard) show the classification results

when the classifier was trained on Single-task ErrPs and tested on data from Easy- and Hard-task scenarios, respectively. Each dot indicates the

accuracy for each participant. The black lines on each bar graph indicate the chance level calculated using the permutation test. Statistical

significance: ∗p < 0.05. ErrP, Error-related potentials; BCI, brain-computer interface.

FIGURE 5

E�ects of temporal adaptation on participants and the classifier. (A) Results of the questionnaire analysis for reliability of kinesthetic motor imagery.

The format is the same as that in Figure 2B. (B) Grand-averaged ErrPs. The shaded area around the line represents the standard deviation across all

participants. The formats are the same as those in Figures 3A, B. (C) Classification result. The format is the same as that in Figure 4. ErrP, Error-related

potentials.
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TABLE 2 Summary of peak amplitude and peak latency of ERN and Pe for 13 participants in the first and last sessions of the single-task scenario.

Peak amplitude (µV) Peak latency (ms)

ERN Pe ERN Pe

First session Erroneous −4.49± 2.43 12.4± 4.46 224± 35.5 418± 26.2

Correct −2.62± 1.09 8.51± 2.95 201± 35.3 405± 50.7

Last session Erroneous −3.60± 2.11 12.0± 5.10 196± 32.3 403± 28.2

Correct −2.00± 0.906 6.99± 2.64 178± 19.7 371± 70.1

Values are presented as the mean± standard deviation. ERN, error-related negativity; Pe, error positivity.

Regarding the peak amplitude of ERN, a significant main effect

of the feedback type was observed (F(1,12) = 13.9, p < 0.05).

Regarding the peak latency of ERN, significant main effects were

observed for both sessions (F(1,12) = 23.2, p < 0.05) and the

feedback type (F(1,12) = 5.18, p < 0.05). The peak amplitude of

Pe showed a significant main effect of the feedback type (F(1,12) =

25.7, p < 0.05), whereas no significant main effects were observed

for the peak latency of Pe. The findings indicated that temporal

factors had a significant influence on the peak latency of ERN.

The ANOVA of ErrP classification accuracy revealed no

significant main effects of temporal factors, indicating no influence

on the classification performance.

4 Discussion

This study aimed to investigate the impact of sensorimotor

multitasking on electrophysiological responses associated with

interaction errors in a motor imagery-based BCI to aid the

development of an ErrP-BCI suitable for real-life multitasking

scenarios. Questionnaire analyses indicated that multitasking

interfered with motor imagery. However, the peak amplitudes and

latencies of both ERN and Pe remained unaffected by multitasking.

Despite no significant changes in ErrPs, classification accuracy

decreased owing to the influence of multitasking. The accuracy

of ErrP classification significantly decreased when a single-task

ErrP-BCI was applied to more difficult sensorimotor multitasking

scenarios. The classification accuracy for all conditions exceeded

the chance level, demonstrating that errors can still be detected by

ErrP even in multitasking scenarios.

Over the past 20 years, various studies have explored how

changes in attentional resources and cognitive load affect ErrP.

Sleep deprivation has been demonstrated to slow reaction times

and reduce Pe amplitude (Boardman et al., 2024). Moreover, ERN

amplitude declines as sustained attention decreases (Xiao et al.,

2015). Research on attentional bias correction has shown that

diminished attentional focus leads to smaller ERN amplitudes

(Nelson et al., 2017). In contrast, increased attention, as evaluated

by task performance in the flanker task, enhances amplitudes of

ERN, CRN, and Pe (Grützmann et al., 2014). These findings suggest

that ErrPs are influenced by attentional resources and cognitive

load. Tanaka et al. (2005) and Klawohn et al. (2016) observed that in

multitasking scenarios, ERN amplitude decreased with an increase

in cognitive load.

This study focused onmultitasking in daily life and investigated

the impact of simultaneous sensorimotor control and BCI

operations on ErrPs. Based on previous studies onmultitasking and

ErrPs (Tanaka et al., 2005; Klawohn et al., 2016), we hypothesized

that sensorimotor control would interfere with motor imagery and

lead to changes in ErrP characteristics. However, contrary to our

hypothesis, no changes in ERN or Pe owing to multitasking were

observed. One possible explanation is that cognitive and attention

loads imposed by the multitasking scenarios herein may not have

been sufficient to alter ErrP. Tanaka et al. (2005) investigated

changes in ErrPs with increasing cognitive load and reported

significantly decreased ERN only at the highest difficulty level.

This suggests that neural responses due to attentional resource

distributionmay not change continuously with increasing difficulty

but rather exhibit discrete changes once certain thresholds are

exceeded. Moreover, Klawohn et al. (2016) observed no significant

changes in ErrPs between the two types of multitasking but noted

a difference between the single-task and multitasking conditions,

which further corroborates this hypothesis. Herein, the participants

perceived the hard tasks as difficult (Figure 2A); however, no

changes in ErrPs were observed, suggesting that ErrPs may remain

stable even during challenging sensorimotor multitasking. This is a

promising result for the future use of ErrP-BCIs as it implies that

errors can be reliably detected even in complex scenarios.

The ErrPs observed in this study exhibited reduced ERN

amplitudes and lacked the characteristic positive peak preceding

ERN, differing from typical interaction ErrPs (Figure 6). Typical

interaction ErrPs are characterized by the difference in waveforms

between erroneous and correct feedback, with an initial positive

peak at approximately 200 ms after the feedback, followed by a

large negative deflection at approximately 250 ms, and a third

prominent positive peak at approximately 320 ms (Ferrez and Del

R. Millan, 2008). These differences in ErrPs are consistent with

previous findings of Si-Mohammed et al. (2020), who compared

different types of error feedback in a virtual reality system. Therein,

one type of error feedback occurred when a virtual object was

suddenly lost during a task, thereby providing immediate and

abrupt indications of failure. This type of feedback led to typical

interaction ErrPs, characterized by a positive peak at approximately

200 ms, followed by a negative peak at 250 ms. Conversely,

in another type of error feedback–termed gradual feedback–

participants were informed of failure only after completing the task,

despite having successfully transported the virtual object. Gradual

feedback produced a different ErrP pattern compared with that

of the immediate feedback, which was similar to that observed in

Figure 5; it showed a small negative peak at approximately 150

ms, followed by a positive peak at 250 ms. Xavier Fidêncio et al.

(2022) reviewed the differences in ErrPs and reported that in cases
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FIGURE 6

Di�erences in waveforms and topographic distribution maps at Cz, illustrating the di�erences in grand-averaged ErrPs between erroneous and

correct feedback. The shaded area around the line represents the standard deviation across all participants. The formats are the same as those in

Figures 3A, B. ErrP, Error-related potentials.

of continuous or gradual feedback, the clear ERN peak tended to

diminish as the error occurred progressively. The ErrP waveform

observed herein was consistent with previous findings regarding

gradual feedback. Instead of responding to an immediate error, the

participants may have processed the feedback more slowly as they

monitored the cursor’s movement. This gradual understanding of

the error likely led to a smaller ERN peak compared with that of

typical interaction ErrPs. Regarding ErrP classification, previous

studies have reported that typical interaction ErrPs, with their

more distinct features, result in higher classification accuracy than

gradual error types (Si-Mohammed et al., 2020). These findings

suggest that the feedback presentation method plays a critical role

in accurately detecting errors in BCI systems.

This study revealed that ERN latency decreased over time

(Figure 5, Table 2). A previous study investigating the effects of

fatigue on the ERN reported that ERN amplitude was affected

but no statistically significant changes in latency were observed

(Xiao et al., 2015). Since no impact on amplitude was observed

herein, the change in ERN latency was unlikely to be due to

fatigue. The most plausible explanation for the observed decrease

in ERN latency over time is habituation. Shortening of ERN

latency has been demonstrated in studies comparing differences in

auditory and visual feedback (Faßbender et al., 2023). Reportedly,

auditory feedback leads to shorter ERN latencies compared with

visual feedback (Miltner et al., 1997; Threadgill et al., 2020),

providing evidence that the speed of error recognition varies

depending on the type of feedback. Moreover, although the

differences were not significant, the questionnaire results regarding

the reliability of motor imagery showed slightly higher scores in the

final session, further corroborating the hypothesis of habituation

effects (Figure 5A). Overall, increased familiarity with the BCI

operation potentially improved the speed of error recognition,

which may have led to shorter ERN latencies during the

final session.

We believe that the shortening of the ERN latency due to

habituation did not affect the main objective of this study, which

was to analyze ErrPs across different multitasking difficulty levels.

Studies on ErrPs in multitasking scenarios with cognitive load

have reported reductions in ERN amplitude but no changes

in ERN latency (Tanaka et al., 2005; Klawohn et al., 2016).

Similarly, reports on ErrP variations due to changes in attention

have focused primarily on ERN amplitude, with no reports

on ERN latency (Grützmann et al., 2014; Xiao et al., 2015;

Nelson et al., 2017). The lack of change in ERN latency during

sensorimotor multitasking observed herein is consistent with these

previous findings.

This study has several limitations that should be addressed

in future studies. First, the system was not tested in real-

time; therefore, further investigation is required to evaluate

its practicality for real-world applications. Although artifact

removal was performed herein using cleaned EEG data, future

studies should incorporate algorithms capable of real-time artifact

removal. Second, errors due to sensorimotor control were excluded

from the study. However, in practical scenarios, ErrPs may be

triggered by a combination of errors in BCI operations and

sensorimotor control. Further studies are needed to explore how

these mixed errors affect ErrP classification. Third, in ErrP studies,

errors are often intentionally introduced, whichmay lead to a credit

assignment problem. However, this issue is seldom discussed in the

literature. Similarly, in this study, the lack of a direct relationship

between motor imagery and feedback may introduce a credit

assignment problem. Future researchmay need to provide feedback

that reflects motor imagery EEG decoding to verify whether our

conclusions hold in real-world scenarios. Finaly, although the

sample size of 25 participants is consistent with prior studies on BCI

and ErrPs (Penaloza and Nishio, 2018; Huang et al., 2020; Usama

et al., 2020; Iwane et al., 2023), the limited number of participants–

particularly the underrepresentation of female participants–may

affect the generalizability of our findings. This study represents

a foundational step in investigating how multitasking involving

sensorimotor control influences ErrPs during BCI operation.

However, further research with larger and more diverse participant

groups is necessary to validate these findings and ensure their

broader applicability across different populations.
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