
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Hum. Neurosci.
Sec. Brain Imaging and Stimulation
Volume 19 - 2025 | doi: 10.3389/fnhum.2025.1489940
This article is part of the Research TopicMethods in Brain StimulationView all 8 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Neuromodulation, the targeted regulation of nerve activity, has emerged as a promising approach for treating various neurological and psychiatric disorders. While deep brain stimulation has shown efficacy, its invasive nature poses substantial risks, including surgical complications and high costs. In contrast, non-invasive neuromodulation techniques, particularly those utilizing magnetic fields (MFs), have gained increasing attention as safer, more accessible alternatives.Magnetothermal stimulation has emerged as an innovative method that enables precise modulation of neuronal ion channels through localized heating induced by interaction of MF with biological tissues. This review discusses the principles of MF-based neuromodulation and highlights the critical role of ion channels in synaptic transmission, and the therapeutic potential of these advanced techniques. Additionally, it highlights key challenges such as spatial targeting precision, safety considerations, and the long-term effects of magnetic exposure on brain function. The findings presente the promise of MF-based neuromodulation as a non-invasive, highly targeted therapeutic strategy for conditions such as epilepsy, movement disorders, and neurodegenerative diseases, with potential applications in chronic pain management and future clinical interventions.
Keywords: Neuromodulation, Magnetic Fields, Magnetothermal stimulation, Ion Channels, Deep Brain Stimulation
Received: 02 Sep 2024; Accepted: 09 Apr 2025.
Copyright: © 2025 Alipour, Abdolmaleki, Zali, Ashrafi, Nohesara and Hajipour-Verdom. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Behnam Hajipour-Verdom, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Alborz, Iran
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.