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Stochasticity as a solution for
overfitting—A new model and
comparative study on
non-invasive EEG prospects

Yousef A. Radwan*, Eslam Ahmed Mohamed, Donia Metwalli,

Mariam Barakat, Anas Ahmed, Antony E. Kiroles and Sahar Selim

Center for Informatics Science (CIS), School of Information Technology and Computer Science, Nile

University, Sheikh Zayed City, Giza, Egypt

The potential and utility of inner speech is pivotal for developing practical,

everyday Brain-Computer Interface (BCI) applications, as it represents a type

of brain signal that operates independently of external stimuli however it is

largely underdeveloped due to the challenges faced in deciphering its signals.

In this study, we evaluated the behaviors of various Machine Learning (ML) and

Deep Learning (DL) models on a publicly available dataset, employing popular

preprocessingmethods as feature extractors to enhancemodel training. We face

significant challenges like subject-dependent variability, high noise levels, and

overfitting. To address overfitting in particular, we propose using “BruteExtraTree”:

a new classifier which relies on moderate stochasticity inherited from its base

model, the ExtraTreeClassifier. This model not only matches the best DL model,

ShallowFBCSPNet, in the subject-independent scenario in our experiments

scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6%

average per-subject accuracy in the subject-dependent case. Our results on the

subject-dependent case show promise on the possibility of a new paradigm for

using inner speech data inspired from LLM pretraining but we also highlight the

crucial need for a drastic change in data recording or noise removal methods to

open the way for more practical accuracies in the subject-independent case.
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1 Introduction

In an ever-evolving world, groundbreaking innovations like Brain-Computer Interface
(BCI) technology, which enables direct communication between the brain and external
devices (Wolpaw, 2007), profoundly impact individuals facing daily challenges in
communication due to diverse conditions such as deafness or locked-in syndrome
(Ortiz-Rosario and Adeli, 2013; Zander and Kothe, 2011; Mudgal et al., 2020). Various
electroencephalogram (EEG) signals are used across different BCI applications due to their
non-invasive nature, such as the P300 signal, which is utilized in the P300 speller, and
motor imagery, which involves generating signals by mentally simulating the movement
of different limbs (Zander and Kothe, 2011; McFarland and Wolpaw, 2017). However,
the inner speech signal, which involves silently verbalizing thoughts without vocalization,
known as “inner thought” or “internal voice”, remains underutilized (Nieto et al., 2022).
This signal offers a substantial potential for enhancing BCI technology and usability (Nieto
et al., 2022). Inner speech is not limited to limb movement, unlike motor imagery signals
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(Padfield et al., 2019; Park et al., 2021; Lun et al., 2022).
Furthermore, it does not require visual stimuli like the P300 signal
(Mudgal et al., 2020). These characteristics broaden its applications
and make interactions more natural.

Despite their potential, EEG signals often have a high noise-to-
signal ratio (Torquato Rollin and Buenrostro-Leiter, 2022; Lopez-
Bernal et al., 2022), making it difficult to distinguish the relevant
components from background brain activity caused by muscle
or organ movements, eye movements, or blinks. Additionally,
EEG signals are subject-dependent, meaning each individual has a
unique signal pattern (Ng and Guan, 2023). This high noise and
variability significantly impacts the performance of classification
models. To mitigate this problem, researchers can use advanced
preprocessing techniques and sophisticated classifiers. With the
high noise-to-signal ratio, which is significantly higher in inner
speech signals, a few more factors play a role in the challenges
and difficulties of acquiring inner speech EEG signals. For instance,
the absence of external stimuli. The reason this makes the desired
signal acquisition complex is due to the fact that the presence of an
external stimulus triggers particular neural responses, such as in the
P300 andMotor Imagery signals. This phenomenonmakes it easier
to detect and acquire the desired signal, as observed in Medina-
Juliá et al. (2020). Hence, its absence makes signal detection and
acquisition difficult. Another challenge faced with this particular
type of signal is its variability and difference from one individual
to another (Buenrostro-Leiter and Rollin, 2022). To elaborate,
in signals such as P300 and Motor Imagery, the sources of the
signals are known and fixed. Accordingly, the headset’s electrodes
are placed in universally known places. On the other hand, the
signal sources for inner speech are different from one individual
to another (Montoya-Martínez et al., 2021). Consequently, the
electrodes placement for collecting these signals is complicated, as
there is no particular pattern one can follow that will ensure this
signal is accurately acquired.

To say the least, utilizing this signal will be life-changing for
numerous individuals, particularly people with communication or
some physical disabilities. The main advantage of inner speech is
that it comes naturally to individuals, where they can simply think
of the word they desire, and its respective command or use will
be executed. That being said, inner speech can be incorporated in
many day-to-day activities or uses for people such as navigating a
wheelchair. To elaborate, when navigating a wheelchair, it would be
easier to move in the desired direction by simply pronouncing it,
such as saying “left” to go in that direction. That way, the process
and experience will be easier and more natural. Additionally, the
progression of this technology will make it possible for people
with communication disabilities to talk easily and more naturally.
Instead of needing to write their thoughts or have someone
communicate their thoughts somehow, they will simply think of
what they wish to say and it will be vocalized or represented in
whatever way they wish. These examples only show a glimpse of the
potential of such unique and rich technology. While its acquisition
can be challenging, its advantages and possible uses make it worth
the challenge and scientific effort.

To enhance the performance of inner speech EEG in BCIs,
researchers have implemented various ML and DL models with
different preprocessing techniques. Using the “Thinking out

loud” dataset (Nieto et al., 2022), van den Berg et al. (2021)
explored EEG classification with a DL approach. Firstly, they
applied a band-pass filter (0.5–100 Hz) and a notch filter (50
Hz), removed artifacts using Independent Component Analysis
(ICA), and downsampled the data to 254 Hz. The researchers
focused on channels in the left hemisphere, and employed the
EEG-Net Convolutional Neural Network (CNN) architecture.
Their approach achieved an average accuracy of 29.67%, with
the highest accuracy being 34.5% and the lowest 23.75% across
different subjects.

Gasparini et al. (2022) explored various ML and DL models,
including support vector machine (SVM), XGBoost, long short-
term memory (LSTM), and bidirectional LSTM (BiLSTM). They
employed preprocessing techniques such as band-pass filtering
and artifact removal via Independent Component Analysis (ICA),
following methods used in prior studies (van den Berg et al., 2021).
Their findings highlighted the potential of SVM and XGBoost with
26.2% and 27.9% accuracy. LSTM and BiLSTM got 30.4% and
36.1%.

In another study, Merola et al. (2023) applied Random Forest,
SVM, and K-Nearest Neighbor (KNN) to the same dataset (Nieto
et al., 2022). The authors extracted the important features by
applying several MATLABmember functions to each set of epochs.
They were able to achieve a test accuracy of 27.5%, 33.9%, and
25.8% for each of the Random Forest, SVM, and KNN, respectively.

On the other hand, a similar study done by Abdulghani et al.
(2024) achieved even higher results. In this study, they tested their
approaches on two different datasets. The first dataset is a publicly
available Spanish dataset, while the second is a 4-word English
dataset developed by the authors of the study. Their approach that
achieved the highest accuracy involved combining multi-wavelet
analysis with SVM classification. In doing so, they were able to
obtain an accuracy of 68.2% with the first dataset and 97.5% in the
second one. These results are, to say the least, incredibly promising
to the field, as it shows that we are slowly but surely getting
closer to achieving the goal of incorporating this technology in the
day-to-day life of individuals.

Across this review, some studies (van den Berg et al., 2021)
reported accuracy per-subject, which wewill refer to as the “subject-
dependent” case. While others (Gasparini et al., 2022; Merola et al.,
2023) focused on results for all subjects at the same time, which we
will refer to as the “subject-independent” case.

The aim of this research is to push the boundaries of
EEG-based inner speech classification through the following
key activities:

- Assess and compare the performance of Machine Learning
(ML) and Deep Learning (DL) models in both subject-
dependent settings (where modeling is performed on
individual subjects) and subject-independent settings (where
modeling involves data from all subjects collectively).

- Develop and introduce a new model that surpasses existing
ML models in per-subject accuracy while incorporating
innovative approaches to reduce overfitting.

- Evaluate the effectiveness of six well-known preprocessing
techniques for EEG data, as documented in contemporary
studies.

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1484470
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Radwan et al. 10.3389/fnhum.2025.1484470

- Thoroughly investigate the practical capabilities of non-
invasive EEG for accurate and reliable classification,
challenging current limitations in EEG-based BCI
technologies.

To emphasize, we aim to increase the performance
and accuracy of inner speech classification to push this
technology further and increase its usability. With data
as sensitive as inner speech EEG and its critical uses,
ensuring the performance of this technology is accurate before
incorporating it in the day-to-day life of individuals who need
it is essential. That being said, this study aims to push this
study in this direction.

2 Methodology

This study assesses the performance of ML and DL models in
both subject-dependent environments (where models are trained
and tested on data from the same subject) and subject-independent
environments (where models are trained on data from one set of
subjects and tested on another). The “Thinking out Loud” dataset
(Nieto et al., 2022) was utilized in this paper. A number of DL
and ML models were implemented with different preprocessing
techniques to optimize their performance on the dataset. The
following sections outline the models and preprocessing techniques
used in this analysis.

2.1 Dataset

The analysis focuses on the inner speech component of the
“Thinking Out Loud” dataset (Nieto et al., 2022). This dataset
comprises recordings from 10 subjects across four classes, Arriba
(up), Abajo (down), Derecha (left), and Izquierda (right), each
labeled in Spanish. The number of trials recorded varies between 45
and 60 per class for each subject, based on their availability. Overall,
the dataset encompasses 559 trials per class, resulting in a total of
2236 data points. Data extraction is performed using the specified
loader function from the (Nieto et al., 2022) GitHub repository to
ensure accuracy and consistency in data handling.

2.2 Preprocessing techniques

A set of preprocessing techniques was chosen and used as a
result of our research on previous work. They fall under multiple
categories: independent component analysis (ICA), principal
component analysis (PCA), discrete wavelet transform (DWT),
and common spatial patterns (CSP). ICA and PCA were both run
using all components. The CSP algorithm was used with pairwise
comparison and one-versus-all comparison, each separately. One
additional method that was tried was common average referencing
(CAR) combined with discrete wavelet transformation. The last
approach used was concatenating the outputs of all of the previous
methods together: “All”. These methods were selected due to their
abundant appearance in the EEG literature as effective feature
extractionmethods for EEG signal processing. In order to target the
best performance possible, we used the best-known preprocessing
techniques that were seen in the literature.

The selected preprocessing techniques aim to enhance EEG
signal analysis by extracting meaningful features and reducing
noise or redundancy in the data. Independent Component
Analysis (ICA) is used to separate mixed signals into statistically
independent components, often to isolate artifacts such as eye
blinks or muscle movements from neural activity. Principal
Component Analysis (PCA) reduces the dimensionality of the data
by identifying orthogonal axes of maximum variance, helping to
retain the most significant features while discarding less relevant
information. Discrete Wavelet Transform (DWT) decomposes the
EEG signal into different frequency bands, enabling the analysis
of transient, non-stationary features commonly found in EEG
data. Common Spatial Patterns (CSP) optimizes spatial filters
to maximize the variance differences between classes, such as
motor imagery tasks in brain-computer interface applications,
with pairwise and one-versus-all comparisons providing flexibility
in classification scenarios. Common Average Referencing (CAR)
removes the common noise by re-referencing the signal to the
average of all channels, improving signal-to-noise ratio, while
combining it with DWT enhances the identification of localized
frequency-specific features. Finally, concatenating the outputs of
all these methods into a single feature set ("All") integrates
the complementary strengths of each technique, capturing
diverse signal characteristics and providing a comprehensive
representation for further analysis. These methods are well-
documented in the EEG literature as effective for feature extraction,
ensuring robust preprocessing for downstream tasks.

2.3 Training procedure

The methodology used for this study was split into 2 categories,
each split into 2 subcategories. The first split is subject-dependent
experiments vs. subject-independent experiments, and then for
each, we compared DL and ML models. Subject-dependent results
of experiments were conducted on the data of individual subjects;
this means fewer data points but more consistent data. The data
was also stratified during splitting to ensure equal class distribution
between train and test. Subject-independent experiments show
results on the data of all 10 subjects together; the data was split so
that no subject is common between train and test splits to avoid data
leakage. Each of these categories is split into the ML experiments
and the DL experiments. In these segments, we attempt to:

1. Find the best-performing model.
2. Find the best preprocessing or feature extraction method to

improve the best-performing model.

In our ML tests, we ran data through all 20+ ML models
available from the Sklearn Python library to find the best model,
in addition to our new proposed model, the “BruteExtraTree”
model, which involves training 1,000–2,500 ExtraTreeClassifiers
with random seeds to find the best seed for test accuracy. The
number of trees trained depends on the training data size, which
varies with preprocessing to ensure similar training runtimes
with other models. The ExtraTreeClassifier is a variant of the
DecisionTreeClassifier that does not choose the best split at every
splitting point and instead includes a level of stochasticity or
randomness in its split selection. This model in particular is useful
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for combatting overfitting by forcing the model to not optimize
perfectly on the data it sees and instead include a sense of variability
in its split selection. Built on this, we implemented a simple
algorithm to train a large number of these classifiers, each with their
own random seed, and then choose the best-performing model on
the development set. The models are completely independent of
each other and the number of trained models, as aforementioned,
was tuned according to the training set size to make the training
runtime similar to its competing models. The ExtraTreeClassifier
should not be mistaken for the ExtraTreesClassifier which is an
ensemble model that provided worse performance in comparison
to ours.

The ExtraTreeClassifier itself is very fast to train which leaves
its 2 main limitations to be:

- Training time of multiple ExtraTreeClassifiers in relation to
training set size.

- Inherent stochasticity.

The first issue has been mentioned in the previous text and
can be addressed by tuning the number of training iterations. The
second issue revolves around the idea that replicating the model
due to its inherent stochasticity might be difficult.

The inherent stochasticity of the ExtraTreeClassifier, stemming
from random feature selection and thresholding during tree
construction, often results in variability across individual model
runs, making it challenging to achieve reproducibility in scientific
settings. However, training a large number of independent models
and selecting the best-performing one on the development set
leverages this randomness to effectively explore the space of
possible models. Statistically, this approach increases the likelihood
of identifying a model that aligns well with the data’s underlying
patterns, yielding consistent performance across experiments.
While it does not guarantee that the selected model will generalize
perfectly to unseen data, the brute-force exploration of model
variability compensates for the randomness, ensuring that the
approach is robust.

All ML models included normalization as a fixed preprocessing
step before training in all experiments. Code for our ML
pipeline and preprocessing implementations can be found in the
accompanied github repository.1

The basic procedure went as follows:

1. Split data with stratification according to given experiment
scheme (subject-dependent or subject-independent).

2. Run the selected preprocessing technique (ICA, PCA,
CAR+DWT, CSP, All).

3. Perform normalization of the preprocessed data.
4. Train each of the ML models separately on the data and report

train and test metrics.
5. Go back to step 2 and choose the next preprocessing technique

until all techniques are used.

In our DL experiments, we used Resnet18, Gated Recurrent
Unit (GRU), and various EEG-specific architectures such as
EEGNetv4, Deep4Net, and ShallowFBCSPNet, sourced from the

1 https://github.com/yradwan147/InnerSpeechMLPipeline

Braindecode library (Schirrmeister et al., 2017), as well as deep
learning-based feature extraction methods using conformers and
variational autoencoders. For all experiments, we used AdamW
with a learning rate of 3 × 10−4 and 200 epochs. This setup
is the default unless stated otherwise. These parameters were
chosen based on empirical evidence that they are generally effective
parameters for deep learning training across a variety of fields,
topics, and datasets.

The basic procedure went as follows:

1. Split data with stratification according to given experiment
scheme (subject-dependent or subject-independent).

2. Put the data in the appropriate shape according to the used
model: in cases of convolutional/spatial models, the data was
treated as a spectrogram or image and in cases where the models
were sequential, the data was put into the correct shape format
that the model accepts.

3. In the case of feature extraction experiments, the data is first
fed to a feature extraction model such as a conformer or
convolutional variational autoencoder to train class separation
and proper feature extraction.

4. The classifier model is trained on the data (coming from a
feature extractor before it or as raw data) and train and test
metrics are reported.

5. Go back to step 3 and run the next classifier model experiment
until all configurations including feature extraction and without
are complete.

All evaluations were done based on accuracy, which is detailed
in Equation 1.

Accuracy =
correct predictions

total predictions
(1)

3 Results

This section presents the results of our experiments,
starting with subject-dependent experiments and then
subject-independent.

3.1 Subject-dependent experiments

3.1.1 Machine learning methods
The first step is finding the best performing model on the

original raw data. In Figure 1, the model accuracies of all tested
models vs subjects is visualized using a heatmap. As can be seen,
our proposed model BruteExtraTree significantly outperforms all
other models across all subjects with an average accuracy of 46.6%
in the subject dependent case. When observing the graph from
the subjects axis, there seems to be no particular subject that
performs notably worse than the others, neither does any one
subject have notably higher scores than the rest. Across the models
axis, all models always seem to drop off in performance in 1–3
subjects with moderate performance in the rest with the exception
of the BruteExtraTree model. Certain models like LabelSpreading
and LabelPropagation maintained consistent performance across
all subjects which is significant to note. Figure 2 shows the
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FIGURE 1

Subject vs. model test accuracy heatmap.

experiments for the next step of finding the best preprocessing
to improve ML model performance on the subject-dependent
case. It can be seen that the preprocessing techniques do not
improve the results over the raw data which is an interesting
observation. ICA notably reduces accuracies across the board.
These phenomena could be due to the loss of information during
preprocessing which does not benefit a DecisionTree based model
like the ExtraTreeClassifier. Although preprocessing methods are
meant to highlight the main factors of a data sample, they do this
at the cost of removing data they deem insignificant. This might be
a generally useful strategy for other models but with models that
make use of every feature, this can reduce performance.

3.1.2 Deep learning methods
As shown in Table 1, the EEG architectures perform

substantially worse than the traditional ML models. This is
due to the stronger tendency of DL models to overfit, despite their
specific tailoring for EEG data. The choice of learning rate also
seemed very influential in these experiments. The use of a lower
win rate seemed to improve performance by 3-4% in many of the
cases but not all of them. The best overall performance goes to the
ShallowFBCSPNet most probably due to its smaller size which lead
to less overfitting overall.

3.2 Subject-independent experiments

3.2.1 Machine learning methods
To find the best-performing model, every model was tested

and implemented with every preprocessing method. Results can be
seen in Figure 3. Our proposed model BruteExtraTree remains the
best performing across all preprocessing methods with the highest
overall accuracy and also best consistency across preprocessing
techniques. To elaborate, the accuracies obtained were above 30%
in 6 out of the 7 proposed preprocessing techniques, as seen in
Figure 3. Next highest accuracy is BernoulliNB with CAR+DWT
preprocessing with a 30% accuracy and the third highest is a three
way tie between RandomForest, LinearDiscriminantAnalysis,
and LGBM with a 29% accuracy, all with
no preprocessing.

3.2.2 Deep learning methods
The best results are summarized in Table 2. Across all

experiments, Convolutional VAE with a fully connected network
for classification was able to reach the highest accuracy of 32%.
The second highest experiment used ML for classification instead
of a FCN and showed similar results. It should be noted that
the training of the feature extractors, be they conformer or
variational autoencoder, showed a very smooth traditional learning
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FIGURE 2

Subject vs. preprocessing test accuracy heatmap (BruteExtraTree results).

TABLE 1 Performance of EEG architectures on the subjects individually.

EEGNetv4 Deep4Net ShallowFBCSPNet

Subject 1 0.25 0.272 0.252

Subject 2 0.272 0.25 0.312

Subject 3 0.25 0.302 0.312

Subject 4 0.25 0.25 0.332

Subject 5 0.31 0.272 0.312

Subject 6 0.292 0.25 0.292

Subject 7 0.272 0.312 0.312

Subject 8 0.322 0.27 0.27

Subject 9 0.22 0.292 0.39

Subject 10 0.312 0.27 0.332

Average accuracy 0.274 0.273 0.310

23e-6 LR.

curve. The focus in the training of the feature extractors was to
improve class separability using losses like triplet loss and VAE
loss but this did not improve results drastically compared to
the literature.

3.3 Discussion and future work

The objective of this paper was to observe the behavior
of different models on non-invasive inner speech EEG data.
Among the experiments, accuracy was unstable and sometimes
unreproducible across the experiments and models. The frequent
presence of overfitting which occurred particularly with the DL
models, explains why the implemented ML models generally
outperformed the DL models. The highest accuracy achieved
was obtained twice, the first time using a heavily complicated
DL model, and the second approach with our new model, a
single BruteExtraTree model, which is a much simpler ML model
using a novel approach to combatting overfitting by leveraging
stochasticity.

While Abdulghani et al. (2024) was able to achieve a higher
accuracy than the model proposed in this paper, it is important
to note that unlike the other papers mentioned, they used datasets
different than the one used in this research and the other studies
mentioned in the literature review. This plays an important factor
since, as previously mentioned, acquiring inner speech signals is
difficult since it depends on accurate electrode placement and
differs from one individual to another. That being said, it is
important to study the differences between how the data was
acquired in the mentioned datasets and the electrode placement
as they may yield more precise signals. Furthermore, it was noted
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FIGURE 3

Models vs. preprocessing methods test accuracy on all subjects.

TABLE 2 Deep learning methods on all subjects.

Feature
extraction

Training
loss

Classifier Accuracy

None CrossEntropy Resnet18 0.25

None CrossEntropy GRU 0.24

None CrossEntropy EEGNetv4 0.25

None CrossEntropy Deep4Net 0.25

None CrossEntropy ShallowFBCSPNet 0.29

Conformer TripletLoss AdaBoost 0.27

Convolutional
VAE

VAE BCE Loss LGBM 0.28

VAE BCE Loss +
Triplet

XGB 0.31

VAE MSE Loss +
Triplet

FCN 0.32

that one of the factors that played a valuable role in the high
accuracy they achieved was their utilization of Multi-Wavelet
feature extraction techniques. While our research only utilized
Discrete Wavelet Transform (DWT), we believe that combining
both the approach in Abdulghani et al. (2024) and ours will have
promising results, as well as investigate and find which dataset
includes the most precise or cleanest inner speech signal.

Furthermore, another approach that can be implemented
is using Multivariate Empirical Mode Decomposition (MEMD),
which is a feature extraction technique that “decompose(s) an input
EEG signal into different frequency bands called Intrinsic Mode
Functions (IMFs)” (Zahra et al., 2017). The main advantage that
is expected to be observed with this technique is its ability to
provide high-resolution decompositions of the signals. This will
enable detailed analysis of the oscillatory components without
introducing artifacts or losing time-domain information. Another
significant property of MEMD is that its a non-linear and data-
driven approach. To elaborate, it can adaptively decompose the
signals into meaningful segments or modes without making
assumptions about the data structure, which makes it robust and
usable with data such as EEG signals. Another approach that can
be incorporated in EEG Inner Speech research is Multivariate
Iterative Filtering (MIF) for feature extraction. This technique
has been used with EEG signals in previous researches, such
as Das and Pachori (2021). This feature extraction technique
is similar to MEMD, where it is adaptive and data-driven. We
believe that investigating and implemeting these approaches, as
well as experimenting with different implementations is key in the
advancement of this technology and will push it further, making it
more usable and efficient.

Results from the literature compared to our results are seen in
Table 3. It should be noted that to successfully use non-invasive
inner speech EEG in practical applications, only the subject-
independent environment is relevant, since we cannot possibly
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TABLE 3 Summary of previous results and our results for subject-independent and subject-dependent cases.

Group Year Model Features extraction Results

Subj. indep. van den Berg et al., 2021 EEG-Net CNN CNNmodel 0.29

Gasparini et al., 2022 SVC XGBoost classifier 0.26

XGBoost XGBoost classifier 0.27

BiLSTM Raw 0.36

LSTM XGBoost classifier 0.30

Merola et al., 2023 SVC MATLAB member functions 0.33

KNN MATLAB member functions 0.25

Random Forest MATLAB member functions 0.27

Implemented
in this paper

BruteExtraTree PCA 0.32

BernoulliNB CAR + DWT 0.30

FCN CVAE 0.32

XGB CVAE 0.31

Subj. dep. van den Berg et al., 2021 EEGNet ICA, bandpass, downsampling 0.297

Implemented
in this paper

BruteExtraTree Raw 0.466

ShallowFBCSPNet Raw 0.31

Bolded results represent the highest performance achieved for each approach in the respective studies or experiments.

gather data from all possible subjects to setup subject-specific
models. The general variability in data between subjects may be
due to inconsistency in recording procedure (which is difficult to
monitor). In order to push inner speech into application-friendly
levels of accuracy, we need to either find better ways to standardize
the recording procedure across subjects and also across datasets, or
find new sophisticated noise removal methods that can help reduce
the gap between different subjects. However, our new model does
pose a new paradigm of building devices that learn from a sample
of the subject data to provide tuned results for that specific subject.
The idea of having a pretrained model on general inner speech EEG
data and then tuning it for specific subjects can be a topic to be
studied in future work.

Our significant performance improvements in subject-
dependent scenarios, compared to existing technologies, suggest
that this approach may be more practical than the idealistic pursuit
of subject-independent models. However, this cannot be stated
with certainty. A primary challenge is acquiring a labeled sample
of the subject’s data for training. The required sample size remains
uncertain, but with further experimentation, it may become
manageable for real-life implementation.

4 Conclusion

This paper reviewed the performance of a wide range of
models on non-invasive EEG data for inner thought classification.
It utilizes the “BruteExtraTree” model, which leverages the
stochastic nature of the ExtraTreeClassifier by training multiple
instances with varying random seeds and selecting the optimal
performer. Our findings indicate that this approach enhances
classification accuracy in EEG-based inner speech recognition
tasks, outperforming traditional models such as Random Forests
and Support Vector Machines.

The model’s inherent stochasticity poses reproducibility
challenges. To address this, we recommend fine-tuning training
iterations and implementing robust random seed management
strategies. Future research should explore methods inspired by
large language model (LLM) pretraining paradigms to reduce
reliance on labeled data. Additionally, advancements in noise
removal techniques and standardized EEG recording protocols are
essential for improving model performance in subject-independent
scenarios.

By addressing these areas, we can further the development of
reliable and efficient EEG-based inner speech recognition systems,
paving the way for practical applications in brain-computer
interfaces and related fields.
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