
Frontiers in Human Neuroscience 01 frontiersin.org

A retrospective, observational 
study of real-world clinical data 
from the Cognitive Function 
Development Therapy program
Eric D. Kirby 1,2,3,4, Brian Beyst 5, Jen Beyst 5, Sonia M. Brodie 4 and 
Ryan C. N. D’Arcy 1,4,6,7*
1 BrainNet, Health and Technology District, Surrey, BC, Canada, 2 Faculty of Individualized 
Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada, 3 Faculty of Science, Simon 
Fraser University, Burnaby, BC, Canada, 4 Centre for Neurology Studies, HealthTech Connex, Metro 
Vancouver, BC, Canada, 5 Cognitive Function Development Institute, Prescott Valley, AZ, United States, 
6 Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 
Vancouver, BC, Canada, 7 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada

Introduction: Cognitive deficits are common in psychiatric and mental health 
disorders, making the assessment of cognitive function in mental health 
treatment an important area of research. Cognitive Function Development 
Therapy (CFDT) is a novel therapeutic modality designed to enhance cognitive 
function and regulate the autonomic nervous system through targeted exercises 
and activities focused on attention networks and memory systems. The therapy 
is tracked and based on Primary Cognitive Function (PCF) scores.

Methods: This retrospective, observational study analyzed real world data from 
183 children and adults undergoing CFDT to evaluate changes in cognition over 
time, incorporating both cognitive performance measures and an exploratory 
analysis of neurophysiological function. Objective neurophysiological measures 
in the form of the brain vital signs framework, based in event-related potentials 
(ERPs), were measured in a small subset of clients to explore the frameworks 
use in CFDT.

Results: Our findings indicate that CFDT holds promise for improving cognitive 
performance, as evidenced by increased PCF scores at the group level compared 
to pre-treatment levels [F (5, 173) = 7.087, p < 0.001, ηp

2 = 0.170]. Additionally, a weak 

effect of age [Spearman’s Rho range: −0.301 to −0.340, p < 0.001] was found to 

influence the degree of cognitive improvement, suggesting the importance of early 

intervention for maximizing cognitive gains. The exploratory analysis suggested 

that CFDT may affect neurophysiological measures of information processing, 

particularly in basic attention, as reflected in increased amplitude in P300 measures.

Discussion: While these initial findings are encouraging, caution is warranted 
due to the retrospective nature of the study, though overall, the results suggest 
a positive impact of CFDT on cognitive function.
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Introduction

Cognitive training aims to drive neuroplastic changes in neural 
systems, which can improve cognitive processes related to emotion 
regulation and clinical symptoms across various neuropsychiatric 
disorders (Haas et al., 2021; Thomas et al., 2018; Hochberger et al., 
2019; Vinogradov et al., 2012). Unfortunately, traditional therapeutic 
modalities that address distorted cognitions, focus on emotional 
expression, or expose individuals to traumatic memories, often fail to 
modify autonomic dysregulation in response to present day experience 
(Fisher, 2019). Moreover, where the patient’s presenting symptomology 
is neurologically based, attempting to treat dysregulation through 
traditional talk-therapy approaches may elicit an increase in 
dysregulation rather than a resolution of the distress (McRae et al., 
2012). The promise of cognitive training for mental health conditions 
lies in its ability to enhance cognition and community functioning, 
although more research is needed to understand its mechanisms and 
real-world applicability (Keshavan et al., 2014).

Cognitive Function Development Therapy (CFDT)—is a 
nonpharmaceutical, non-invasive treatment option for individuals 
aged 6 and above with a wide range of presenting symptoms 
(including, but not limited to anxiety, attentional problems, 
depression, psychosis, self-control challenges, and trauma-related 
conditions). Treatment decisions and outcome expectations of CFDT 
are based on objective assessment results mapped to five Primary 
Cognitive Functions (PCFs). These five PCFs include: Attentional 
Alerting, Attentional Orienting, Attentional Executive, Working 
Memory, and Encoded Memory (further explained in methods and 
Supplementary Data 1). Treatment is indirect (e.g., it does not seek to 
discover and ameliorate “root causes” of distress), thereby reducing 
the risk of treatment-related trauma or re-traumatization in clients. 
Rather, CFDT works by presenting targeted, interactive activities that 
engage and develop the client’s attention system, working memory, 
and encoded memory, reflected in PCF scores.

Cognitive performance can be improved through targeted training 
(Mandolesi et al., 2018; Thillier et al., 2023) and has been shown to have 
an effect on neurophysiological measures (Kariofillis et  al., 2014). 
Therefore, it is important to explore the effects of novel cognitive training 
programs on neurophysiological measures. The brain vital sign 

framework (Hajra et  al., 2016) utilizes portable and accessible 
electroencephalography (EEG) to extract well-established event-related 
potentials (ERPs) as objective neurophysiological indicators of cognitive 
information processing (Gawryluk and D’Arcy, 2010; Luck, 2014). Recent 
work has begun to use brain vital signs to track cognitive changes during 
rehabilitation (Fickling et al., 2020; Kirby et al., 2023), as well as attention 
training differences in healthy individuals (Smith et al., 2020). The brain 
vital signs framework elicits and records the N100, P300, and N400 in a 
portable, rapid and automated device that can be readily integrated at 
point-of-care (i.e., the NeuroCatch® Platform). Response latency (speed) 
and amplitude (size) are recorded for each of these three components. 
Slower and modulated responses, such as those for severe cognitive 
impairment in dementia (Ighalo et  al., 2024) or after brain injury 
(Fickling et al., 2019b, 2021b; Fickling et al., 2021a), have been shown in 
previous work. In relation to mental health, the P300 attention related 
ERP component (Sutton et al., 1967) is commonly studied (Boudarene 
and Timsit-Berthier, 1997; Araki et al., 2005; Felmingham et al., 2002) 
and has been previously associated with changes in post-traumatic stress 
disorder (PTSD) related symptoms in a case study using the brain vital 
signs framework (Fickling et al., 2020).

The primary objective of this retrospective, observational study was 
to describe cognitive changes in a sample of children and adults 
undergoing CFDT and explore potential factors contributing to variation 
in cognitive changes. Our primary hypothesis was that individuals who 
have undergone CFDT would show improved cognitive measures as 
determined by analysis of the primary cognitive functions (PCFs). The 
secondary exploratory objective of this study was to evaluate changes in 
brain vital signs measures over time in a subset of program participants, 
to investigate the neurophysiological effect of CFDT. We anticipated that 
individuals would exhibit modulation of the P300 component over time 
in response to cognitive training.

Methods

Experimental paradigm

Real world, de-identified data from 183 clients (Figure  1; 
demographics in Tables 1, 2) taking part in CFDT at a community 

FIGURE 1

Pie chart of participant demographics: distribution of biological sex (A), distribution of age bins (B), and distribution of assessment type (C).
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mental health clinic (Polara Health, AZ, USA; CFD Services, AZ, 
USA) from 12/26/2019 through 5/13/2024 and overseen by the 
Cognitive Function Development Institute (CFDI), a nonprofit 
organization who developed CFDT, were included in the overall 
analysis. Clients selected for inclusion in the study were referred to 
CFDT (clinicians, school counselors, pediatricians, nurse practitioners, 
other clients, etc.) due to treatment resistance with traditional 
modalities (e.g., talk therapy) and neurological dysregulation (e.g., 
threat-related behavior without an observable, external environment 
threat present). For clinical intake purposes, client diagnoses include 
anxiety disorder, attention deficit hyperactivity disorder / attention 
deficit disorder, adjustment disorder, autism spectrum disorder, 
alcohol use disorder, bipolar disorder, developmental delay, disruptive 
mood dysregulation disorder, generalized anxiety disorder, impulse 
control disorder, major depressive disorder, obsessive-compulsive 
disorder, oppositional defiance disorder, opioid use disorder, persistent 
depressive disorder, PTSD, reactive attachment disorder, social anxiety 
disorder, traumatic brain injury, schizophrenia, and schizoaffective 
disorder. Note: clients may have multiple diagnoses. However, 
traditional diagnoses are not considered for CFDT purposes. Instead, 
CFDT treatment protocols are based on the most recent PCF 

assessment scores. Typical CFD therapy targets the two lowest PCFs 
with dynamically variable interactive engagements. For example, the 
therapist may present a pair of integers the client must add. 
Subsequently, the therapist repeatedly presents an integer and requires 
the client to add the therapist’s previous and currently presented 
numbers. If the client can do so, the therapist may simultaneously 
require the client to identify patterns of images in a densely populated, 
widely spaced visual field. The presented activities are increased in 
intensity incrementally until the client demonstrates fatigue, at which 
point the therapist will reset requirements for client responses. The 
pattern of fatigue and reset may be repeated two or three times in a 
typical session, often interlaced with a demonstration of client 
enjoyment without an easily identifiable reason. Each session is 1 h in 
duration. Client data were included in the analysis if the client had 
completed the same cognitive assessment (BFx or Creyos) before and 
after CFDT and if they received a minimum of 1,440 min of treatment, 
denoted as “Dosing” in the results (mean therapy duration between 
assessments [standard deviation]: 250.0 [135.2] days; range: 
98–761 days). Final assessment results were taken from the client’s final 
cognitive assessment after completing CFDT (within 14 days of their 
final session). In addition, CFDI initiated a search for an objective 
neurophysiological assessment tool, and, recently started incorporating 
NeuroCatch as an exploratory tool. Therefore, data from a subset of 18 
of these clients (demographics in Table 1) had been evaluated with 
NeuroCatch at two timepoints (mean therapy duration between scans 
[standard deviation]: 203.7 [93.0] days; range: 49–388 days).

Primary cognitive function scores

The 5 PCFs used in the CFDT framework are: Attentional 
Alerting (Callejas et al., 2004; Ex. notice (and name) things in the 
external or internal environment), Attentional Orienting (Callejas 
et al., 2004; Ex. select certain items from a larger field of items (select 
all the cards with a certain feature, like colour, from a messy pile of 
image cards)), Attentional Executive (Callejas et al., 2004; Ex. call 
out the characteristics of a card in a certain order amidst a wide or 
cluttered visual field), Working Memory (Ex. assign a number to a 
color and compute the value of the images), and Encoded Memory 
(Ex. recall information such as, patterns shown (then recreated)). 
Clients were objectively assessed using either the BrainFX® SCREEN 
(BFx) or the Creyos Health (Creyos) digital cognitive assessments at 
semi-regular intervals throughout their CFDT program. BFx is a 
function-focused assessment tool that addresses neurofunction 
through a digital interface on a tablet. Based on its more 
comprehensive predecessor the BrainFX® 360 (Searles et al., 2019), 
the BFx assessment is administered by a healthcare professional in 
10–15 min via a touch tablet and has 7 domain-specific tasks. 
Similarly, the Creyos platform is used to administer 12 online 
cognitive tests to children, adolescents, and adults. The assessment 
results were then mapped to PCF scores. PCF mapping is a custom 
method developed by the CFDI to consolidate multiple scores from 
different assessment tools into a comprehensive, universal metric. 
PCF scores are normalized as an adjusted T-score (mean of 0 and 
standard deviation of 10) and are used to guide treatment decisions 
and outcome expectations. The mapping process for each of these 
assessments to PCF scores differs due to BFx and Creyos having a 

TABLE 1 Descriptive demographics of study population.

Group Number of 
participants

Biological 
sex

Mean age 
(standard 

deviation); 
[Range]

Total 183 86 females 23 (17) years; 

[7–83 years]

BrainFx 

(assessment 

type)

135 55 females 21 (14) years; 

[10–67 years]

Creyos 

(assessment 

type)

48 31 females 29 (23) years; 

[7–83 years]

NeuroCatch 

subset

18 11 females 30 (20) years; 

[10–61 years]

TABLE 2 Psychiatric diagnoses of study population.†

Psychiatric diagnosis Percentage of study 
population

ADHD 32%

AjD 22%

PTSD 12%

BPD 10%

Other 46%

Diagnoses occurring in 10% or more of the population are listed. Other diagnoses include 
major depressive disorder (MDD), autism spectrum disorder (ASD), generalized anxiety 
disorder (GAD), alcohol use disorder (AUD), oppositional defiant disorder (ODD), 
disruptive mood dysregulation disorder (DMDD), opioid use disorder (OUD), 
schizoaffective disorder (SZA), schizophrenia (SCZ), and obsessive-compulsive disorder 
(OCD). ADHD, Attention-deficit/hyperactivity disorder; AjD, Adjustment disorder; PTSD, 
Post-traumatic stress disorder; BPD, Borderline personality disorder.
†Percentages do not sum to 100% as some clients have multiple diagnoses.
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TABLE 3 Mean change of PCF measures (standard error).

Group Attentional 
Alerting

Attentional 
Orienting

Attentional 
Executive

Working 
Memory

Encoded 
Memory

Total 4.491 (0.460) 4.656 (0.430) 4.468 (0.439) 3.968 (0.616) 4.928 (0.489)

BFx 3.973 (0.464) 3.986 (0.435) 3.793 (0.444) 3.216 (0.623) 4.261 (0.494)

Creyos 5.009 (0.835) 5.326 (0.782) 5.142 (0.798) 4.721 (1.119) 5.595 (0.888)

different number of output results and different standardization 
techniques. BFx was utilized for clients included in this study from 
December 2019 through June 2024. The CFDI started using Creyos 
as its primary assessment tool for new clients as of June 2023. The 
mapping process for each is outlined with more information on the 
5 PCFs, as well as the BFx and Creyos tasks used, in 
Supplementary Data 1.

EEG acquisition and processing

Brain vital signs were recorded using the NeuroCatch® Platform 
(Version 2.0, NeuroCatch Inc., Surrey, BC). Clients were fitted with a 
low-density EEG sensor cap (ANT Neuro Waveguard) with standard 
Ag/AgCl electrodes, and skin-electrode impedances were prepared to 
below 25 KOhms. Data were recorded from 3 midline electrodes (Fz, 
Cz, and Pz), with a ground electrode located at AFz, a reference 
electrode placed on the left earlobe, and a single electrooculogram 
(EOG) recorded from FPz. The scans took approximately 10 min in 
total, with brain vital sign testing for about 6 min. All clients received 
passive repeated auditory stimulation (ear insert headphone) of 
standard tones (80 dB) and random rare deviant tones (105 dB) ahead 
of basic spoken word pair primes that either matched or mismatched. 
The tones stimuli elicited the N100 and P300 and the word pair stimuli 
elicited the N400.

Recorded EEG traces were processed in Python. EEG data were 
filtered using a 0.1–20 Hz bandpass and 60 Hz notch filter. Ocular 
artifacts were corrected using an adaptive filter (He et al., 2004) with 
the EOG derived from the FPz channel. Stimulus-locked evoked 
epochs were extracted according to stimulus condition (i.e., standard/
deviant tones, congruent/incongruent words). Epochs containing 
artifacts were rejected using an automated EEG signal-quality index 
(Fickling et al., 2019a). Artifact-free epochs were averaged for each 
stimulus condition to form representative ERP waveforms for each 
participant. The N100, P300, and N400 peaks were automatically 
detected and manually verified.

Statistical analysis

To assess change in PCF scores, a mixed (between-subject factors: 
Sex [2: female and male] and Assessment Type [2: BFx and Creyos] 
and within-subject factors: Timepoint [2: pre- and post-treatment]) 
repeated measures multivariate analysis of covariance 
(RM-MANCOVA; covariates: [2: Age and Dosing]) was run. As a 
post-hoc analysis, all PCF scores were run in separate non-parametric 
Wilcoxon Signed-Rank tests due to the left skewedness of data. This 
is a non-parametric statistical test appropriate for non-normal data 

comparing the same group of subjects before and after an intervention 
(Woolson, 2005).

To further investigate potential factors affecting the change in PCF 
scores from pre- to post-treatment, a non-parametric Spearman’s rank 
correlation was run. Similar to the use of the Wilcoxon Signed-Rank 
test, non-parametric statistical tests like Spearman’s rank correlation 
are used for non-normally distributed data. The change in PCF scores 
were correlated against Age to better understand the effect this 
measure may be having on the change in PCF scores from pre- to 
post-treatment. All Wilcoxon Signed-Rank and Spearman’s rank 
correlation resulting p-values were Bonferroni corrected (5 scores, 
therefore p-values for each Wilcoxon Signed-Rank and Spearman’s 
rank correlation run are divided by 5). As Dosing was used to filter 
participants, this measure was further investigated in 
Supplementary Data 2.

As an exploratory sub-analysis, brain vital signs results were 
analyzed similarly to the PCF scores. The N100, P300, and N400 peaks 
were automatically detected and manually verified. A mixed (between-
subject factors: Sex [2: female and male] and within-subject factors: 
Timepoint [2: scan 1 and scan 2]) repeated measures multivariate 
analysis of covariance (RM-MANCOVA; covariates: [1: Age]) was run. 
To ensure homogeneity of variance in this small sample size, Levene’s 
test of equality of error variance was performed for each brain vital 
signs component. Additionally, a post-hoc Pearson’s correlation 
analysis of P300 amplitude change (scan 2 P300 amplitude—scan 1 
P300 amplitude) vs. Age was run.

Results

Primary cognitive function scores

On a group level, the 5 PCF scores had a significant increase 
from pre- to post-treatment. Figure  2 and Table  3 shows the 5 
different PCF scores from pre- to post-treatment. RM-MANCOVA 
results showed a multivariate effect of Timepoint [F (5, 173) = 7.087, 
p < 0.001, ηp

2 = 0.170], Age [F (5, 173) = 2.640, p = 0.025, 
ηp

2 = 0.071], and Assessment Type [F (5, 173) = 11.255, p < 0.001, 
ηp

2 = 0.245]. Additionally, results showed a significant interaction 
between Timepoint × Age [F (5, 173) = 3.696, p = 0.003, 
ηp

2 = 0.097]. The interaction between Timepoint × Assessment 
Type was not significant [F (5, 173) = 1.060, p = 0.384, ηp

2 = 0.030]. 
Further MANCOVA results are outlined in Table 4.

The PCF scores showed a left-skewed distribution, resulting 
in violation of a normal distribution. This is a common result in 
cognitive assessments (Saffari et al., 2024). Therefore, separate 
non-parametric Wilcoxon Signed-Rank tests were done to analyze 
each PCF score’s change from pre- to post-treatment. All PCF 
scores showed a significant change from pre- to post-treatment 
(Table 5).
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Brain vital signs results

Brain vital signs group average waveforms at both timepoints 
showed a change in the P300 component (Figure 3). This change was 
confirmed with the RM-MANCOVA, showing a significant increase 
in P300 amplitude (Figure 3 and Table 6). However, no other brain 
vital signs components showed significant change (Table  6). 
Furthermore, all brain vital signs data passed Levene’s test of equality 

of error variances (all p > 0.05). Visually, brain vital signs waveforms 
seemed to have a higher group variability at scan 1 compared to scan 
2 (shown by wider standard error shading in Figure 3, quantified in 
Supplementary Data 3).

Interestingly, the P300 amplitude showed a significant 
interaction of Timepoint × Age (Table 7). To further understand 
this, a post-hoc Pearson’s correlation between Age and P300 
amplitude change showed a significant negative correlation 
(Pearson’s R: −0.590, p < 0.01).

Correlations

Lastly, to further investigate the age effect noted in the primary 
RM-MANCOVA analyzing PCF scores, Spearman’s rank correlation 
was investigated. Correlation results showed a significant but weak 

FIGURE 2

Change in all 5 PCF scores (A: Attentional Orienting, B: Attentional Executive, C: Attentional Alerting, D: Working Memory, E: Encoded Memory) from 
pre- to post-treatment. Individual scatter plots for each participant are shown faded in the background with group means denoted with large markers, 
including group standard deviation lines (*p < 0.05).

TABLE 4 MANCOVA multivariate results.

Multivariate Effect F-value p-value Partial eta 
squared 

(ηp
2)

Timepoint 7.087 <0.001 0.170

Sex 0.789 0.559 0.022

Assessment Type 11.255 <0.001 0.245

Age 2.640 0.025 0.071

Dosing 1.204 0.310 0.034

Sex*Assessment Type 0.839 0.524 0.024

Timepoint*Assessment 

Type
1.060 0.384 0.030

Timepoint*Age 3.696 0.003 0.097

Timepoint*Dosing 0.807 0.546 0.023

Timepoint*Sex 0.361 0.875 0.010

Bold * - p < 0.05.

TABLE 5 Wilcoxon signed-rank test results and Bonferroni adjusted p-
values.

PCF Score Wilcoxon 
Signed-Rank 
Statistic (W)

p-value 
(Bonferroni 
corrected)

Alerting 2230.0 <0.001*

Orienting 1959.0 <0.001*

Executive 2188.5 <0.001*

Working 4014.5 <0.001*

Encoded 2201.0 <0.001*

Bold * - p < 0.05.
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negative correlation between the change in PCF scores and Age 
(Table 8; Spearman’s R range: −0.301 to −0.340).

Discussion

The current retrospective, observational study investigated real 
world data of cognitive performance changes in individuals taking 
part in CFDT. Specifically, the current study measured cognitive 
performance with PCF scores, derived from BFx and Creyos 
assessments before and after a minimum of 1,440 min of CFDT. The 
results suggest that CFDT improved cognitive performance measured 

FIGURE 3

Brain vital signs waveform results at timepoint 1 (A) and 2 (B). Waveforms elicited by standard and deviant tones (left) and congruent and incongruent 
word pairs (right). N100, P300, and N400 group average peaks are denoted with black dot, as well as a latency (ms) and amplitude (uV) label. A dotted 
line at time = 0 ms denotes stimuli event onset.

TABLE 6 RM-MANCOVA univariate test results on the main effect of 
Timepoint.

Brain vital signs 
component

F-value p-value Partial eta 
squared (ηp

2)

N100 Latency 0.390 0.542 0.025

N100 Amplitude 0.003 0.958 0.000

P300 Latency 0.001 0.980 0.000

P300 Amplitude 6.590 0.021* 0.305

N400 Latency 0.729 0.407 0.046

N400 Amplitude 4.892 0.264 0.082

Bold * - p < 0.05.

TABLE 7 RM-MANCOVA univariate test results on the main interaction of 
Timepoint × Age.

Brain vital signs 
component

F-value p-value Partial eta 
squared (ηp

2)

N100 Latency 1.078 0.316 0.067

N100 Amplitude 0.146 0.708 0.010

P300 Latency 0.012 0.916 0.001

P300 Amplitude 8.539 0.011* 0.363

N400 Latency 3.449 0.083 0.187

N400 Amplitude 0.337 0.570 0.022

Bold * - p < 0.05.

TABLE 8 Spearman’s correlation results and Bonferroni adjusted p-values 
for change in PCF scores against Age.

PCF Score Spearman’s Rho p-value 
(Bonferroni 
corrected)

Alerting −0.340 <0.001*

Orienting −0.329 <0.001*

Executive −0.337 <0.001*

Working −0.301 <0.001*

Encoded −0.306 <0.001*

Bold * - p < 0.05.
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with PCFs. Exploratory analyses suggest that CFDT may also lead to 
improvements in neurophysiological measures of cognition, 
measured as a P300 amplitude increase with the brain vital signs 
framework. Lastly, the results suggest that age may be contributing to 
variation in cognitive change with a weak, negative relationship 
between age and cognitive performance, as well as 
neurophysiological change.

PCF scores

PCF scores, regardless of whether they were derived from BFx or 
Creyos assessments, improved with CFDT. Psychiatric disorders are 
commonly related to deficits in cognitive function, such as decreased 
attention, working memory, and disrupted social cognition (Trivedi, 
2006; Wang Y. et al., 2022; Johnsen and Asbjørnsen, 2009; Burri et al., 
2013; Kim et al., 2018). The improvement of mental health treatment 
seems to be a critical area of research as less than 20% of mental 
healthcare practitioners use or integrate measurement-based care in 
their practice (Lewis et  al., 2018); thus, for those clients who can 
secure treatment, determining effectiveness of the treatment provided 
is dependent on highly subjective self-reported levels of patient 
distress rather than objective test results common with physical 
health care.

Digital cognitive performance assessment technology is shown to 
be  useful in primary care settings and growing to better detect 
neuropsychological and cognitive deficits (Libon et al., 2023; Jannati 
et al., 2024; Banks et al., 2024; Brenkel et al., 2017; Levine et al., 2013). 
The cognitive tasks used in Creyos have been validated in several 
large-scale studies examining healthy controls and patient populations 
(Brenkel et  al., 2017; Levine et  al., 2013). Brenkl et  al. compared 
cognitive impairment screening of tasks from Creyos with the 
commonly used Montreal Cognitive Assessment (MoCA). Authors 
found that the Creyos assessments provided more information that 
may be able to aid in differentiating levels of cognition in older adults 
(Brenkel et al., 2017). Cognitive testing also plays a role in cognitive 
rehabilitation, training, and even pharmacological development 
(Keefe et al., 2015; Wessels et al., 2021; Bahr et al., 2019; Preiss et al., 
2013). Cognitive training offers behaviorally constrained cognitive or 
socio-affective learning events delivered in a scalable and reproducible 
manner to potentially improve neural system operations (Keshavan 
et al., 2014). By identifying specific areas of strength and weakness, 
cognitive tests can guide personalized programs aimed at improving 
specific cognitive functions (Preiss et al., 2013; Chen and Vinogradov, 
2024). They allow for the monitoring of progress over time, providing 
feedback that can be used to adjust programs. It is important that 
cognitive training can affect other outcome variables besides cognitive 
function, and it implies the importance of better understanding 
cognitive improvements in mental health therapy (Kim et al., 2018).

Attention, encoded memory, and working memory are well-
represented in the literature as individual topics of investigation. 
However, there exist challenges to leveraging the growing body of 
literature for clinical application in an integrative care setting. A form 
of mapping, such as with PCFs, provides an opportunity to track these 
cognitive functions across multiple cognitive tests (such as BFx and 
Creyos). It should be anticipated that networks governing a particular 
cognitive function (e.g., attention) will be coupled via edge interactions 
with networks that give rise to other cognitive functions (e.g., encoded 

memory; Bassett and Bullmore, 2017). It can be easily observed, for 
example, that cognitive functions operate on a coupled basis (Popp 
et al., 2024). However, the study of individual cognitive functions, as 
noted above, tends to obscure the possibility of such coupling, let alone 
interpret clinical applications for improving dysregulation. Conversely, 
the PCF mapping developed by the CFDI highlights the coupled 
nature of PCFs and provides actionable information to client-facing 
treatment providers regarding observable client behavior and 
therapeutic approaches to achieve the desired, targeted treatment. The 
PCF mapping method is noteworthy for two reasons. First, it provides 
an objective “line-in-the-sand” for each identified PCF against which 
improvements may be  measured, as it also showed its robustness 
across different cognitive tests (no Timepoint*Assessment Type 
interaction noted). As an adjunct, therapists can readily identify 
functional areas to target for treatment based on the relative position 
of PCF scores (e.g., therapists target the two lowest functions for 
development). Second, graphing the obtained PCF scores produces a 
limited number of identifiable patterns with demonstratable 
behavioral explanatory or predictive ability. Therefore, demonstrating 
a positive change in PCF scores is an important initial step for CFDI 
to work towards a standardized level of evidence-based mental and 
cognitive healthcare.

Brain vital signs

Previously, neuroimaging research focused on mental illness 
showed that cognitive training is associated with both structural and 
functional brain changes (Subramaniam et al., 2012; Kontis et al., 
2013; McClure and Bickel, 2014; Li et al., 2022; González-Alemañy 
et al., 2024). More specifically to EEG neuroimaging research, the 
P300 oddball paradigm is one of the most heavily studied ERP 
components and is most associated with basic attention (Sutton et al., 
1967). It is an indicator of the engagement of attentional resources to 
the stimuli, particularly related to the awareness of an individual’s 
surrounding environment. In relation to mental health, research 
suggests that individuals with PTSD exhibit abnormalities in 
information processing, reflected in ERP measures correlating with 
illness severity (Javanbakht et al., 2011). This includes a decreased 
P300 amplitude in groups with PTSD relative to controls (Boudarene 
and Timsit-Berthier, 1997; Araki et al., 2005; Felmingham et al., 2002). 
In a previous case study, brain vital signs have been sensitive to 
changes in the P300 ERP component during physical therapy paired 
with neuromodulation. These increases in P300 amplitude were paired 
with self-reported improvements in PTSD symptoms (Fickling et al., 
2020). Based on previous research, the N100 and N400 ERP 
components show promise as biomarkers for psychiatric disorders. 
The primary finding being that schizophrenic patients show reduced 
N100 and N400 amplitudes (Jackson et al., 2014; Wang B. et al., 2022), 
with N400 abnormalities not being specific to schizophrenia, but also 
characterizing psychosis broadly (Jackson et al., 2014). It is interesting 
that these responses did not show changes in this subset. As a larger 
number of studies tend to focus on the P300, the N100 and N400 
should be areas of future research on larger groups that are more 
organized by their diagnoses. The current study builds on this work, 
replicating the effect of increasing P300 amplitude alongside cognitive 
training therapy.
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A disruption in brain physiology is suspected in several psychiatric 
disorders (Millan et al., 2012; Wang Y. et al., 2022; Paunova et al., 
2023), which may be  reflected in an increased neural variability 
(Menon, 2020; Månsson et  al., 2022). Using functional magnetic 
resonance imaging (fMRI), Månsson et al. showed that task-based 
brain signal variability, historically considered a source of noise, was 
the strongest contributor to results of a treatment outcome-based 
prediction model, focused on measuring improvements in social 
anxiety. This variability measure also showed high test–retest reliability 
(Månsson et al., 2022). Speculatively, the variability in event-based 
neural responses measured with ERPs visually seen in the waveforms 
in Figure 3 (quantified in Supplementary Data 3) may be a potential 
area of interest for future biomarkers of psychiatric disorders or for 
treatment of psychiatric disorders.

Correlations

Interestingly, there seems to be a significant, but weak, negative 
relationship between increasing age and the magnitude of change in 
PCF scores. This was both reflected in the significant Timepoint × Age 
interaction and the significant negative, but weak, Spearman’s rank 
correlation between each of the 5 PCF scores and age. While the 
ability to change and learn is kept throughout the lifespan, it is 
common for this ability to be somewhat lessened in older populations 
compared to younger populations (Pauwels et al., 2018). If the ability 
to improve cognitive performance is negatively associated with older 
age, it is critical for individuals to receive mental healthcare when 
problems first arise (Wass, 2015). Similar to the PCF result, there 
seems to be a significant relationship in the change in P300 amplitude 
and age. This was both reflected in the significant Timepoint × Age 
interaction and the significant Pearson’s correlation between the 
change in P300 amplitude and age. Future work may further clarify 
this with larger studies that are more evenly distributed across 
age ranges.

Future work and limitations

The present analysis was a retrospective, observational analysis 
conducted with a diverse (i.e., range of ages, diagnosis types and 
complexities, and time in program), real world data set, limiting the 
interpretation of results. In relation to existing cognitive assessment 
tools used in CFDT (BFx and Creyos), PCF mapping was not affected 
by which tool was used (shown in the lack of a Timepoint × Assessment 
Type interaction effect). However, a large main effect of Assessment 
Type was present on an overall PCF score level. Therefore, while it 
seems like the change of PCF scores during therapy is not affected by 
the assessment used, the scores themselves may be on different scales 
depending on the assessment type used. The potential effect of 
assessment type used for PCF mapping should be better tested with 
more evenly weighted groups in future work or CFDT should 
dominantly focus on the use of a single assessment modality.

It was important to explore the possibility that brain vital signs 
framework’s objective neurophysiological measurements may 
be modulated by CFDT, to complement results from digital cognitive 
assessments. As this was an exploratory sub-analysis, future work can 
evaluate the effects on brain vital signs changes in larger samples of 

individuals taking part in CFDT. Additionally, future work may 
further clarify the connection between P300 amplitude change with 
larger studies that are more evenly distributed across age ranges. This 
can also include a correlation between brain vital signs measure 
changes and PCF score change to better understand the 
neurophysiological and cognitive performance connection. Future 
work to understand the connection between neurophysiology and 
cognitive performance may also look into deriving cognitive 
workload measures from continuous EEG during cognitive tasks 
(Mariani et al., 2023; Jia et al., 2021; Barzon et al., 2024). As can 
be seen from the PCF scores, CFDT emphasizes the importance of 
attention on primary cognitive function with three of the five PCFs 
being based in attention. The P300 is mainly associated with 
attention, therefore the most P300 change may also have the largest 
baseline attentional deficits, that are targeted in CFDT. As the current 
dataset is heavily weighted towards children (60% of PCF scores are 
from 10- to 17-year-olds), a more evenly distributed age range will 
also be useful for further analysis of the weak correlation between age 
and PCF and P300 changes.

Lastly, as clients were diagnosed with a range of mental health 
and/or cognitive concerns (such as PTSD, attention-deficit/
hyperactivity disorder, bipolar disorder, etc.) and many clients had 
more than one diagnosis, the current study did not include ‘diagnosis’ 
as a predictive variable. Focusing on a particular clinical condition in 
the future (e.g., only adults with PTSD) may better clarify who CFDT 
is best suited for. Along with this, it is difficult to attribute the changes 
noted specifically to CFDT. Adding quality of life data and control 
groups in a prospective, randomized controlled study will improve 
the ability to draw more concrete conclusions about the 
program impact.

Conclusion

The current retrospective study showed that clients taking part in 
CFDT for a minimum of 1,440 min of therapy improved cognitive 
performance as measured by PCFs. Given that mental illness is 
associated to cognitive deficits, it is noteworthy that the CFDT clients 
increased their cognitive performance during therapy. As an 
exploratory analysis, we also showed the feasibility and potential 
usefulness of an objective neurophysiological measure alongside 
digital cognitive performance measures. Analyses suggest that CFDT 
may also lead to improvements in neurophysiological measures of 
cognition, measured as an increase in P300 amplitude with the brain 
vital signs framework. Lastly, both PCF scores and P300 amplitudes 
showed a negative relationship between the magnitude of change and 
age. This may be an important aspect of therapy to investigate as it 
may stress the importance of seeking treatment as soon as possible to 
maximize the potential benefit or adjusting the dose of treatment for 
different ages. Overall, this retrospective, observational study is an 
important initial step for CFDI to work towards a standardized level 
of evidence-based mental and cognitive healthcare.
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