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Introduction

Poor reproducibility in the psychological sciences is often attributed to systemic factors
such as publication bias and lack of financial support sources for replication studies (Open
Science Collaboration, 2015). While such factors undoubtedly contribute to the problem,
controllable issues such as variability in testing methodology, laboratory environment, and
subject characteristics may serve as other possible sources of non-replication (Van Bavel
et al., 2016; Crabbe et al., 1999; Sorge et al., 2014). One source of variability which is rarely
accounted for in either human or animal studies is social context, i.e., the environment
formed as a result of the behavioral and biological characteristics of the conspecifics
with whom the subject interacts or coexists. Alongside more direct social influences
(e.g., conspecific aggression), social context may also be influenced by broader, indirect
influences arising from trends in conspecific behavior/beliefs (e.g., cultural norms) or the
subject’s place in the broader social order (e.g., dominance status). Here, we will cover some
of the ways in which preventable variations in social context might influence behavioral
measures in human and non-human animal research. We will then discuss strategies to
account for social context in future research.

E�ects of social context on behavior in non-human
animals

(See Figure 1 for section overview).
First, we consider the overall population density of the home cage. It is well-established

that in social species such as mice, rats, and non-human primates, extended periods
of social isolation produce a range of marked behavioral abnormalities (Valzelli, 1973;
McKinney, 1974; Love and Zelikowsky, 2020). Social isolation has been found to impair
various forms of learning (Einon, 1980; Lander et al., 2017), induce abnormal social
behaviors (McKinney, 1974; Koike et al., 2009; Mitchell et al., 1966; Keesom et al., 2017;
Rivera-Irizarry et al., 2020), increase locomotion (Lander et al., 2017; Ieraci et al., 2016),
alter behavioral drug responsivity (Lander et al., 2017; Wongwitdecha andMarsden, 1996),
increase aggressive behavior toward conspecifics (Koike et al., 2009; Mitchell et al., 1966;
Wongwitdecha and Marsden, 1996), and exacerbate behavioral markers of anxiety and
depression (Lander et al., 2017; Koike et al., 2009; Ieraci et al., 2016; Weiss et al., 2004;
Lukkes et al., 2009). These effects vary depending on species, sex, and the age at social
isolation. On the opposite end of the spectrum, overcrowding may also serve as a source of
stress and behavioral abnormalities. In mice, high population density (<8–15 in2 surface
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FIGURE 1

Social contextual factors and some of their influences on behavior in non-human animals.

area in the cage/mouse) [National Research Council (US)
Committee for the Update of the Guide for the Care and Use of
Laboratory Animals, 2011] has been found to increase adiposity,
produce an anxiety-like phenotype, alter behavioral responsivity to
ethanol and ethanol sensitization, and—in some strains—induce
social avoidance (Lin et al., 2015; Delaroque et al., 2021; Lee et al.,
2018; van Ingelgom et al., 2024; Laber et al., 2008).

An unstable social context can also serve as a source
of stress resulting in behavioral changes. For example, mice
subjected to chronic social instability (CSI) stress by having
cage mates repeatedly replaced with novel conspecifics over
the course of multiple weeks display impaired recognition
memory (Featherstone et al., 2022), spatial memory (Schmidt

et al., 2010), and social memory (Saavedra-Rodríguez and Feig,
2013). Additionally, CSI subjugated mice display social avoidance
(Saavedra-Rodríguez and Feig, 2013; dos Santos Guilherme et al.,
2022), increased social aggression (Schmidt et al., 2007), and
behavioral patterns consistent with anhedonia (Featherstone et al.,
2022; Schmidt et al., 2010; Dadomo et al., 2018; Haller et al., 1999;
Koert et al., 2021; de Lima and Massoco, 2017) and increased
anxiety (Schmidt et al., 2010; Saavedra-Rodríguez and Feig, 2013;
dos Santos Guilherme et al., 2022; Koert et al., 2021; Yohn et al.,
2019) (excepting in the open field test, see Featherstone et al., 2022;
Dadomo et al., 2018; de Lima and Massoco, 2017; Sturman et al.,
2021; Díez-Solinska et al., 2022). In rats, CSI produces long-term
spatial and social/object recognition memory deficits (Green and
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McCormick, 2013; McCormick et al., 2010, 2012; Hodges et al.,
2017), impairs fear learning (Morrissey et al., 2011) and extinction
(McCormick et al., 2013b), reduces social approach (Hodges et al.,
2017; Green et al., 2013; Graf et al., 2023; Hodges et al., 2018),
impairs sexual behavior (McCormick et al., 2013a), and increases
defensive social behavior (Graf et al., 2023). As with social isolation,
behavioral effects of CSI vary based on species, sex, and the timing
of the procedure/behavioral testing (see Koert et al., 2021 for
review). Notably, while the vast majority of experiments involve
multiple weeks of CSI, some of the behavioral changes could be
observed as early as 2 days into the CSI procedure (Dadomo
et al., 2018). Furthermore, mice moved to a new social context
after an hour of isolation display higher levels of corticosterone
compared to controls (McCormick et al., 2007; Hodges et al.,
2014). This suggests that some of the behavioral effects observed
following CSI could manifest acutely after even minor shuffling of
research subjects.

The individual experiences of group members also influence
behavior in their cage mates via emotional contagion, i.e., the
psychological phenomenon whereby observing a change in another
individual’s behavior activates this same change in behavior in
the viewer (Panksepp and Lahvis, 2011). In rodents, it is well
established that directly observing a conspecific in distress causes
acute physiological and behavioral changes, such as increases in
fear-related/defensive behavior (Jeon et al., 2010; Bruchey et al.,
2010; Andraka et al., 2021; Keysers and Gazzola, 2021), enhanced
startle responding, and hyperalgesia (Langford, 2006; Li et al.,
2014). Moreover, observing a conspecific in distress can induce
extended effects such as long-term pain sensitization (Raber and
Devor, 2002) and fear responses to stimuli that accompanied
conspecific distress (Jeon et al., 2010; Bruchey et al., 2010; Kavaliers
et al., 2001). Observing pain or distress in familiar or related
conspecifics often produces more potent behavioral effects and
is sometimes necessary for long-term effects to be observed in
both mice and rats (Jeon et al., 2010; Langford, 2006; Li et al.,
2014; Agee et al., 2019; Jones et al., 2014; Kavaliers et al., 2005)
(though see Hernandez-Lallement et al., 2022). This suggests a keen
sensitivity toward the emotional state of cage mates. In this way,
the treatment of a given subject may be sufficient to alter their cage
mates’ behavior either acutely (e.g., if animals within a single cage
are run sequentially and allowed to interact between testing) or over
the long term (e.g., if a cage mate is subjected to surgical or testing
procedures that cause enduring stress/pain).

Finally, we consider the influence of social rank on behavior.
Most socially housed laboratory species are known to maintain
dominance hierarchies to some degree (Williamson et al., 2016,
2019; Varholick et al., 2019; Schuhr, 1987; Blanchard et al.,
1984; Ziporyn and McClintock, 1991; Sterck and Steenbeek, 1997;
Blanchard et al., 1988; Jones and Monfils, 2016; Seese et al., 2024;
Monfils and Agee, 2019), but to simplify our discussion we will
focus on mice. The results of the dominance literature regarding
the effect of social rank on behavior are quite inconsistent. A
recent meta-analysis (Varholick et al., 2021) found no clear effect of
dominance rank across studies in open field exploration, elevated
plus maze open arm time, or immobility during the forced
swim test. Indeed, results were often directly contradictory. One
explanation for this lack of consensus is variability in the type of

dominance hierarchy formed within a group. In triads of mice,
variation is observed both in the stability of a hierarchy (i.e.,
the degree to which rank is maintained) and the linearity of the
hierarchical structure (Varholick et al., 2019). Reports of overall
hierarchical stability vary between studies, with some researchers
finding high stability (Williamson et al., 2016, 2019) and others
reporting frequent reshuffling of rank order (Varholick et al., 2019).
The degree of alpha despotism, i.e., the ability to suppress aggressive
behavior in lower ranked counterparts, also varies (Williamson
et al., 2016). This variance is important to consider, as recent
research has found that the often-inconsistent findings regarding
endocrine function and behavior in dominant vs. subordinate
animals may be explained by interactions between dominance rank
and hierarchical characteristics. For example, while past research
has found contradictory results on the relative testosterone levels
in dominant and subordinate mice (Machida et al., 1981; Ely,
1981; Selmanoff et al., 1977; Barnard et al., 1996; Hilakivi et al.,
1989), recent evidence suggests that high despotism may serve
as the determining factor for this difference (Williamson et al.,
2017). Further research considering hierarchical characteristics
in conjunction with social rank will hopefully resolve some of
these contradictions.

E�ects of social context on participant
behavior in human studies

The social context of human subjects will virtually always
be more complex than that of lab animals confined to a fixed
community of only a few conspecifics. As such, human researchers
can realistically only hope to assess participants based on broad
differences in social context in which individuals can be easily
categorized or scored. We thus restrict this discussion to a few
facets of an individual’s social context that can reasonably be
ascertained from basic participant surveys. Additionally, we discuss
how more immediate aspects of the social context during testing
(e.g., the presence of an experimenter or other subjects) might
affect responding.

As in many lab species, social isolation in human subjects
has been shown to be associated with a variety of physiological
and behavioral effects. For example, individuals reporting high
subjective social isolation display higher levels of depression
(Fiordelli et al., 2020; Steptoe et al., 2013; Layden et al., 2017),
increased mortality (Steptoe et al., 2013; Holt-Lunstad et al., 2015),
and generally interpret social interactions more negatively (Duck
et al., 1994; Anderson and Martin, 1995; Hawkley et al., 2003).
Notably, in humans, perceived social isolation (i.e., loneliness) is
measurable and distinct from objective social isolation (i.e., actual
social network size), and the two measures correlate only weakly
to moderately (Fiordelli et al., 2020; Steptoe et al., 2013; Hawkley
et al., 2008) (see also Layden et al., 2017). Additionally, the quality
of social ties—not the number of ties—appears to exert a greater
protective influence on loneliness levels (Lee and Ko, 2018). As
such, simply gathering demographic data may not be an accurate
gauge of social context.

The immediate social environment during testing also has the
potential to alter participant responding. When studying social
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behavior, lab studies have traditionally used non-participatory
settings, where people observe stimuli of others without being part
of the interaction. While this research is valuable in documenting
human social biases in general, it fails to account for people’s
true social behavior outside the lab (Risko et al., 2016; Pfeiffer
et al., 2012). For example, in the case of social attention, non-
participatory settings tend to overemphasize face gazing as an
information-gathering tool; however, whether we know that our
gaze is available to others has significant consequences on how
much we look at them (Laidlaw et al., 2011; Gobel et al., 2015).
More specifically, non-participatory lab experiments overlook the
effect of gaze as a signaling tool in natural social interactions
(Risko et al., 2016). Crucially, this effect is modulated by cultural
norms, relationships between interactants (e.g., familiar person vs.
stranger), and the nature of their interaction (e.g., cooperative vs.
collaborative), emphasizing the necessity to factor socio-contextual
features in studies (Dalmaso et al., 2020).

This observation has broad implications beyond the study of
social behavior. Human research generally involves interactions
with a human experimenter in some way or another. This is
particularly the case in child development research, since young
children cannot, for example, read instructions off a computer
screen. This makes the experimental outcome partly dependent
on the experimenter-child social dynamics. Take, for example,
the so-called Marshmallow task (Mischel et al., 1972) introduced
to test children’s delayed gratification management. Kidd et al.
(2013) showed that children’s perception of the experimenter’s
trustworthiness influences their strategy. In fact, the experimenter’s
identity alone (e.g., perceived as in-group vs. outgroup) had a
significant impact on the wait time in the task (Pierre et al., 2023;
Strickland, 1972). Furthermore, children’s performance depends on
their cultural background. For instance, societies that emphasize
hierarchy vs. autonomy lead the child to adopt different self-
regulatory strategies (Lamm et al., 2018). Similarly, children tend to
adopt strategies that are consistent with their cultural norms related
to waiting and food (Yanaoka et al., 2022). Failing to consider the
social context (or lack thereof) can impact both the external validity
of behavioral tasks as well as their internal validity, potentially
contributing to the replicability crisis in human research.

Discussion

In the preceding sections we highlighted some of the ways
in which social context influences behavioral and physiological
measures. While we do not have space to cover all components
of social context here, what we have reviewed hopefully makes a
compelling case for the idea that even experiments not focused
on social behavior should be designed with certain aspects of
social context in mind. Controlling all aspects of social context
is not feasible, but some basic measures can be taken to limit
social confounds. In non-human animal studies, social context
can be standardized across experimental groups and between
studies (if replication is the goal) by careful housing practices
aimed at minimizing social stressors. In practice, however, this
is rarely straightforward. For example, emotional contagion can
theoretically be minimized by keeping subjects in single housing,
but this exposes subjects to the behavioral and physiological

changes that accompany social isolation stress. In such cases,
alternative solutions—e.g., ensuring a balanced distribution of
members of each experimental group between cages—should also
be considered. Critically, details on social housing conditions and
experimental group distribution between cages should be explicitly
stated in the methods section and recorded on publicly available
datasheets. Having this information readily available will help
in interpreting inconsistent results and could assist researchers
conducting meta-analyses.

Naturally, controlling for social context in human research is a
more complicated prospect. While experimenters have no control
over the broader aspects of their human participant’s social context,
variability in social context can be at least considered in analyses.
Basic details of participants’ social relationships might be gleamed
via pre-screening or post-testing questionnaires and assessed as
possible response mediators, but more detailed questions about
the quality of these relationships may be necessary to properly
categorize participants. Additionally, careful consideration must
be given to the nature of interactions between participants and
other individuals present during testing. As with animal research,
thorough documentation of these interactions is essential for
later interpretation of inconsistent results. While accounting for
social context in research presents a formidable challenge, it
is essential to consider for improving reproducibility and the
validity of behavioral studies. By prioritizing the standardization
and documentation of social variables, researchers can mitigate
potential confounds and contribute to a more reliable body of
scientific knowledge.
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