
Frontiers in Human Neuroscience 01 frontiersin.org

Heterogeneous appetite patterns 
in depression: computational 
modeling of nutritional 
interoception, reward processing, 
and decision-making
Yuuki Uchida 1,2, Takatoshi Hikida 3, Manabu Honda 1 and 
Yuichi Yamashita 1*
1 Department of Information Medicine, National Institute of Neuroscience, National Center of 
Neurology and Psychiatry, Tokyo, Japan, 2 Graduate School of Medical and Dental Sciences, Institute 
of Science Tokyo, Tokyo, Japan, 3 Laboratory for Advanced Brain Functions, Institute for Protein 
Research, Osaka University, Osaka, Japan

Accurate interoceptive processing in decision-making is essential to maintain 
homeostasis and overall health. Disruptions in this process have been associated 
with various psychiatric conditions, including depression. Recent studies have 
focused on nutrient homeostatic dysregulation in depression for effective subtype 
classification and treatment. Neurophysiological studies have associated changes in 
appetite in depression with altered activation of the mesolimbic dopamine system 
and interoceptive regions, such as the insular cortex, suggesting that disruptions 
in reward processing and interoception drive changes in nutrient homeostasis and 
appetite. This study aimed to explore the potential of computational psychiatry 
in addressing these issues. Using a homeostatic reinforcement learning model 
formalizing the link between internal states and behavioral control, we investigated 
the mechanisms by which altered interoception affects homeostatic behavior and 
reward system activity via simulation experiments. Simulations of altered interoception 
demonstrated behaviors similar to those of depression subtypes, such as appetite 
dysregulation. Specifically, reduced interoception led to decreased reward system 
activity and increased punishment, mirroring the neuroimaging study findings 
of decreased appetite in depression. Conversely, increased interoception was 
associated with heightened reward activity and impaired goal-directed behavior, 
reflecting an increased appetite. Furthermore, effects of interoception manipulation 
were compared with traditional reinforcement learning parameters (e.g., inverse 
temperature β and delay discount γ), which represent cognitive-behavioral features 
of depression. The results suggest that disruptions in these parameters contribute to 
depressive symptoms by affecting the underlying homeostatic regulation. Overall, 
this study findings emphasize the importance of integrating interoception and 
homeostasis into decision-making frameworks to enhance subtype classification 
and facilitate the development of effective therapeutic strategies.
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1 Introduction

Interoception that is appropriately integrated into decision-
making is essential for maintaining homeostasis and overall health 
(Cannon, 1929; Friston, 2013; Stephan et  al., 2016). Maladaptive 
homeostasis is associated with eating disorders (Brown et al., 2017; 
Khalsa et al., 2022), unbalanced feeding in autism spectrum disorder 
(Fiene and Brownlow, 2015), and depression (Paulus and Stein, 2010; 
Avery et al., 2014; Stephan et al., 2016). Among these conditions, 
nutritional homeostasis dysregulation could be a primary diagnostic 
marker of depression, which is characterized by symptoms of 
maladaptive appetite and is used as a criterion for classification 
(Weissenburger et  al., 1986; Zimmerman et  al., 2011; American 
Psychiatric Association, 2022). Maladaptive appetite in depression is 
heterogeneous, either increasing or decreasing in different cases 
(Maxwell and Cole, 2009; Simmons et al., 2013, 2016, 2020).

Nutrient homeostatic dysregulation underlying depression has 
been actively studied in recent years as it is crucial for effective subtype 
classification of depression and development of appropriate treatments 
(Konttinen et al., 2010; Privitera et al., 2013; Cosgrove et al., 2020). For 
example, from a neurophysiological perspective, research has revealed 
that changes in appetite in individuals with depression are related to 
altered activation of the mesolimbic dopamine system and areas that 
are strongly associated with interoceptive processing, such as the 
insular cortex (Simmons et al., 2016, 2020). These findings suggest 
that alterations in reward processing and the complex interplay 
between nutrient interoceptive processing are involved in changes in 
nutrient homeostasis and altered appetite in depression. However, 
system-level mechanisms, including those affecting brain activity and 
behavior, remain largely unclear (Young et al., 2021).

To address these challenges a neurocomputational theory-based 
methods to reveal the pathophysiology of neuropsychiatric conditions 
(i.e., “computational psychiatry”) is expected to make important 
contributions (Montague et al., 2012; Friston et al., 2014; Yamashita, 
2021; Takahashi et al., 2023). In the field of depression research, there 
has been growing interest in using the reinforcement learning (RL) 
theory in combination with behavioral experiments to test hypotheses 
and further our understanding of the underlying mechanisms 
(Takahashi et al., 2008; Kunisato et al., 2012; Toyama et al., 2019). 
However, the integration of interoception and homeostasis into the 
theoretical frameworks of decision-making has not progressed 
sufficiently (Paulus, 2007; Rangel, 2013; Morville et al., 2018).

Therefore, in this study, we  aimed to provide a systems-level 
explanation for the dysregulation of nutrient homeostasis in 
depression using computational psychiatry methods to clarify the 
mechanisms by which changes in interoceptive processing and 
alterations in reward system activity are related. Specifically, 
we  attempted to integrate the mechanisms of homeostasis and 
decision-making and provide a system-level explanation of the 
functions of the reward system and nutritional state. To achieve this, 
we  used the homeostatic RL (HRL) model, which formalizes the 
relationship between internal states and the drive that controls 
behavior as the “homeostatic space” (Keramati and Gutkin, 2014; 
Keramati et al., 2017; Morville et al., 2018; Hulme et al., 2019; Uchida 
et al., 2022). Using the HRL model, we aimed to interpret the changes 
in homeostatic maintenance behaviors and reward system activity 
related to changes in interoceptive sensations by conducting a 
pseudomanipulation experiment (simulation) of reduced and 

exaggerated interoceptive sensations in the HRL model. In addition, 
we aimed to compare the effects of the modulation of RL parameters 
previously associated with depression on decision-making behaviors, 
focusing on the effects of changes in interoceptive processing within 
the HRL model. In particular, delay discounting parameter had not 
been previously examined in detail with the HRL model. This 
approach allows us to discuss the similarities (equifinality) in the 
behavior of the model with modulated delay discounting and other 
parameters of the HRL such as modulation of interoceptive 
information processing. Through this study, we  hope to offer a 
systems-level explanation of the associations among phenomena 
previously considered as changes in RL parameters, changes in 
interoceptive processing, and nutrient homeostasis in depression.

2 Materials and methods

2.1 HRL model

In this study, nutritional homeostasis was modeled using the HRL 
model. This model assumes that homeostasis is an RL process, in 
which the minimization of deviations in internal states from an 
optimal level (i.e., homeostasis) is treated as a computation for 
maximizing the sum of rewards. In the HRL model, a multidimensional 
metric space in which each dimension represents an internal state 
(such as body temperature, blood glucose density, water balance, and 
sodium level) is defined as a “homeostatic space.” In this homeostatic 
space, the drive function D(Ht) is defined as the distance between the 
internal state of the i-th component (e.g., water or sodium) at time t, 
Hi

t, and the ideal internal state H*i (Equation 1):
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1

N ni imt t
i

D H H H∗

=
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(1)

where m and n are free parameters that define the distance and N is 
the total number of dimensions for the internal states (e.g., water and 
sodium). When the internal state approaches the ideal state, the drive 
function decreases. Based on this drive function, the reward rt is 
determined as the change in the values of the drive function from time 
t to time t + 1. Specifically, to implement nutrient intake, the internal 
state at time t + 1 should contain the amount of nutrient intake at time 
t, defined as Kt (Equation 2).

 ( ) ( ) ( )1,t t t tr H K D H D H += −

 ( ) ( )= − +t t tD H D H K
 (2)

As described later, in the HRL model, the intake of taste stimuli 
( ˆ tK ) can be modeled as a predictor of the actual nutrient intake (Kt). 
Under this assumption, the reward is calculated as follows (Equation 3):

 ( ) ( ) ( )ˆ ˆ, = − +t t t t tr H K D H D H K
 (3)
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Q-learning was used to model the RL process. In this model, the 
values of action at (e.g., intake, do nothing…) and Qt(at) are updated 
based on the temporal difference error ( tδ ) (Equation 4):

 ( ) ( ) α δ← + Q
t t tQ a Q a

 
( ) ( )1maxδ

′
+ ′= + γ −t t t t

a
r Q a Q a

 
(4)

where αQ is the learning rate for Qt(a), a’ is the next candidate action, 
tδ  is the TD error, and γ  is the discount rate. Action selection depends 

on the relative magnitudes of the values of each action (Q-value) 
according to the softmax function (Equation 5).
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where Pt (ak) is the probability of an action ak to be selected at time t, 
and β is the inverse temperature, a parameter controlling the 
randomness of an action. The initial values of the Q-values of both 
actions were set to 0. Therefore, the first action is chosen at random. 
When the agent intakes, the internal state increases with Kt, which is 
a constant that defines the amount of intake. When nothing was 
chosen, Kt was set to 0. At t = 0, representing the hungry state, the first 
internal state (H0 = 100) was far lower than the ideal state (H* = 200). 
At this stage, the drive function is large because it corresponds to the 
distance from the internal state at time t (Ht) to the ideal state 
(H* = 200; Equation 1). If an agent performs the intake behavior at this 
moment, the internal state is expected to increase and the drive 
function is anticipated to decrease, resulting in a positive reward 
(Equation 3). In addition, the natural decrease in nutritional balance 
was implemented as follows using the temporal decay constant τ 
(Equation 6):

 
1

11
τ+

 = − 
 

t tH H
 

(6)

The reward value was calculated as follows (Equation 7):

 
( ) ( ) 1 ˆ, 1ˆ

τ
  = − − +  
  

t t t t tr H K D H D H K
 

(7)

After updating the Q-values via Q-learning, the agent selects the 
next action. As previously mentioned, the HRL model assumes that 
ˆ a

tK , the cognition of the stimulus based on the reward from the action 
at, is renewed through learning. In this study, the following equation 
was used to update ˆ a

tK  (Equation 8):

 
( )ˆ

1
ˆ ˆ ˆα+ = + −a a K a a

t t ttK K K K
 

(8)

The detailed values of the simulation parameters are listed in 
Supplementary Table S1. Specifically, as commonly used in previous 
homeostatic reinforcement learning studies, we employed (m, n) = (3, 4) 
(Keramati and Gutkin, 2014). The impact of this choice on the 

modulation of interoception, which is a central theme of this study, is 
addressed in the Discussion section.

2.2 Nutritional homeostasis: 
intake-after-food-restriction task

We performed an intake-after-food-restriction task to investigate the 
applicability of the HRL model to nutritional homeostasis (Figure 1). The 
computational algorithm is illustrated in Figure 1A. For simplicity, only 
one nutritional state is considered. The external state (S0) and two 
actions–do nothing (a0) and intake (a1)–were assessed (Figure 1B).

The following formula was adopted to implement the alteration in 
interoception (Equation 9):

 
( ) ( )

1

N ni imt t
i

D H H Hη ∗

=
= −∑

 
(9)

where η  is a parameter that refers to the modulation of the 
interoception and is a constant over the difference between the ideal 
and actual internal state. The validity of this implementation is 
discussed in the Discussion section.

2.3 Mountain-climbing task

Mountain tasks have been utilized to assess whether individuals 
prioritize short-term, small rewards or long-term, large rewards that 
can only be obtained by enduring sequences of punishments (e.g., 
“Mountain car”) (Sutton and Barto, 2018). In this study, a derived 
form was employed for this task. The mountain-climb task is designed 
to evaluate the balance of sensitivity between short-term and long-
term rewards (Figure 2). In the task, the optimal behavior to maximize 
rewards involves choosing actions that may incur short-term penalties 
but lead to greater rewards over the long term. Assuming an agent that 
demonstrates a balanced approach to rewards as a healthy model, this 
study aims to examine how changes in parameters, such as internal 
states, influence the agent’s behavior and reward system activity. The 
task comprised 8 states (S0-S7; Figure 2A). For each condition (control 
and low interoception), the experiment consisted of 30 trials, and each 
trial included 15 episodes (Figure 2B).

At the beginning of each episode in this task, the agents started at 
S0 with an internal state of 100 (H0 = 100). The agent can only choose 
to intake at two states: the bottom state (S0), where it can choose to 
consume a small amount, and the summit state (S7), where it can 
choose to consume a large amount. At S0, the agents have two options 
for selecting an action: a00 (small intake) or a01 (moving horizontally). 
In S1-S6, the agents have the option to climb or descend (and move 
horizontally only in S1). It is important to note that climb actions (a10, 
a20, …, a60) result in a constant decrease in the internal state, which 
acts as a punishment in the context of nutritional deficiency 
accompanied by climb actions. Other actions, than the climbs, follow 
decrease in internal state derived from only the attenuating rate (τ ), 
but the decreases with climb actions resulted from both τ  and constant 
cost additionally. Once the agent selects a70 (large intake), the episode 
ends, the state-action values (Q) and the prediction of the internal 
state increase (K^) are carried over to the next “episode.” The initial 
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states of the subsequent episodes in the mountain-climbing task were 
consistently set to S0, and the episodes were iterated 15 times. One trial 
of the mountain-climbing task was completed when 15 large-intake 
actions (a70) were performed (Figures 2A,B). Each condition consisted 
of 30 trials (Figure 2B). A different set of free parameters was used in 
the mountain-climbing task than in the intake-after-food-restriction 
task to ensure that the number of time steps in a trial converged within 
rational time steps (Supplementary Tables S1, S2).

3 Results

3.1 Nutritional homeostasis: 
intake-after-food-restriction task

First, we demonstrated the behavior of a healthy control model 
using the intake-after-food restriction task (Figure 1). The detailed 
process is described in the Materials and Methods section.

At the beginning of the simulation, the internal nutritional state 
was set to a value far from the ideal state (corresponding to a fasting 
state), and Q-values for each action were set to 0. After several random 
selections of actions, Q-value of nutrient intake increased, and internal 
nutritional state quickly reached the ideal point, maintaining the 
homeostatic regulation of behavior. The value of do nothing decreased, 
and Q-values of the intake increased and remained relatively high for 
some time, even after exceeding the set point (Ht  > H * = 200). 
Subsequently, frequency of doing nothing increased owing to 
continued punishment from an excess internal state as the value of 
doing nothing became greater than the Q-value of intake. Continued 

do nothing caused the internal state to decline due to natural decay. In 
response to this decline, Q-value of intake was greater than that of 
doing nothing, resulting in the maintenance of homeostatic regulation 
(Figure  1C). This simulation expressed one aspect of nutritional 
homeostatic maintenance behavior: the frequency of intake increased 
after experiencing nutritional deficiency and decreased after achieving 
sufficiency. Starting from an energy-deficient state, individuals restore 
an appropriate energy level through food consumption. Thereafter, in 
line with a natural progression, they consume food if energy levels 
decrease, and stop the consumption after reaching a certain threshold, 
maintaining homeostasis (where a state of low drive over a certain 
period is considered normal). Therefore, in Figure 1C, the behavior 
fluctuating between “do nothing” and “intake” after the internal state 
has converged to the target state represents a model of normal behavior. 
In contrast, under abnormal internal state conditions, the agent 
primarily aims to maintain homeostasis, but deviations in homeostatic 
maintenance or reward system activity from the norm are anticipated.

3.2 Altered interoception in the 
intake-after-food-restriction task

Next, we  investigated the impact of altered interoception on 
feeding behavior and nutritional homeostasis using an intake-after-
food-restriction task. In the simulation, we  assessed the simple 
behavioral characteristics of each model under nutrient deprivation 
at 100 time points (Figure 3) and quantified the changes in feeding 
behavior and nutritional homeostasis induced by altered interoception. 
As shown in Equation 9, altered interoception was simulated by 

FIGURE 1

Nutritional homeostatic maintenance according to the homeostatic reinforcement learning (HRL) model. (A) Schematic of the computational process 
of the HRL model. Herein, η represents the activity of interoceptive processing, β denotes the inverse temperature, and γ signifies delay discounting; η 
reflects the degree to which the difference between the internal state and the ideal state is overestimated or underestimated, characterizing the nature 
of interoceptive information processing until it is conveyed to the reward system. The inverse temperature β indicates the extent to which decision-
making reflects the learning history. The delay discounting parameter γ is used in updating the state-action values. (B) Definition of the state and two 
actions in intake-after-food-restriction simulations. (C) Example of homeostatic behavior. Changes in the internal nutritional state (H), value of each 
action (Q-value), selected actions (a), probability of intake (P(Intake)), and magnitude of reward (R) are plotted. Solid lines indicate the results of a single 
trial. Dotted lines in the panel of the internal state indicate the ideal point (H* = 200) of the nutrient. In the panel related to actions (a), action 1 indicates 
“intake,” and action 0 indicates “do nothing.” At the beginning of the simulation, internal nutritional state was 100, and Q-values for each action were 
set to 0. After several random selections of action, Q-value of nutrient intake was increased, and the internal nutritional state quickly reached the ideal 
point, maintaining homeostatic regulation of behavior.
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FIGURE 2

Altered interoception in the mountain-climbing task. (A) Definitions of eight states and two actions at each state in the mountain-climbing task. 
(B) Time series relationships among variables. In all 15 episodes, the agent started its actions from S0. Upon reaching S7 and performing action a71 
(major feeding), the episode concluded, and the agent moved to S0 to begin the next episode. The external state was reset to S0, and the internal state 
was initialized to 100, while the state-action values and the predicted changes in the internal state due to actions were carried over. Completing 15 
episodes in this manner constituted one agent’s mountain-climbing task, which was conducted across 30 agents (30 trials). Results from performing 
this mountain-climbing task under different conditions, such as variations in interoceptive modulation, were compared across multiple metrics. (C) 
S7-rate of the control, low interoception, and high interoception models. (D) Total timesteps per trial. (E) Total number of minor intakes. (F) Trajectories 
of each variable in the 5th episode of the control, low interoception, and high interoception models. Significance was determined using the Student’s 
t-test (B,C) or Wilcoxon rank-sum test (D) (30 trials). ***p < 0.001; N.S., not significant.

FIGURE 3

Altered interoception in the intake-after-food-restriction task. (A) Average of reward with all intake behavior in a single episode determined from the 
simulations with altered interoception models. (B) Sum of punishments during one episode with altered interoception. (C) Sum of drive in one episode 
determined from the simulated lesion models with altered interoception. (D) Total intake in an episode with altered interoception. (E) Example of 
transition of variable from episodes of the control, low interoception, and high interoception models. In panels (A–D), Student’s t-test or Welch’s t-test 
was used for between-group comparisons after Levene’s test. **p < 0.01 and ***p < 0.001 (N = 40).
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varying the value of parameter η ( :: 0 2.0η η< < ), which is a constant 
parameter manipulating the impact of the difference between the 
setpoint (H* = 200) and actual internal state.

Figure 3A demonstrates the reward properties showing the average 
reward per intake (i.e., total reward obtained for an intake within an 
episode divided by the number of intakes). Figure 3B shows the sum of 
the punishments in an episode. In the HRL, Rt is defined as the change 
in drive resulting from a particular action. If the drive changes toward 
the ideal state, Rt > 0; conversely, if the action results in the drive moving 
away from the ideal state, Rt < 0. Herein, Rt when Rt < 0 is defined as 
“punishment,” and in Figures  3B, 4A,C, the total value of this 
punishment is plotted. In the low η model ( 1.0η < ), average reward per 
intake was decreased (Figure 3A), and the sum of punishment was 
increased (Figure 3B). This occurred because the absolute value of the 
drive (D) obtained by the behavior was smaller (Figure  3E), and 
consequently, the absolute value of reward (R) (i.e., the difference in 
drive (D)), also became smaller (Figure 3E). In addition, the low η 
models reduced the frequency of the normal action selection (i.e., 
intake in the case of nutritional deficiency; Figure 3D) because the input 
of nutritional deficiencies into the model was reduced. In the “Actions” 
of Figure 3E, action a1 represents intake, and it can be observed that the 
frequency of intakes decreased in the low interoception ( 0.3η = ) 
model. Consistent with the decreased intake frequency, the total 
number of drivers per episode increased (Figure 3C).

In contrast to the low η models ( 1.0η < ), the high η model ( 1.0η > ) 
exhibited an increase in the average reward per intake (Figure 3A) and 

a decrease in the sum of punishment (Figure 3B), reflecting opposite 
mechanisms compared to the low η model (Figure 3E).

3.3 Altered interoception: 
mountain-climbing task

To investigate the impact of alterations in interoception on balance 
with regard to minor immediate and major long-term rewards, we used 
a mountain-climbing task (Figures 2A,B). To assess changes in behavior, 
three types of measures were used: (1) S7-rate, which is the number of 
time steps spent in S7 divided by the total number of time steps within a 
single trial; (2) total-time steps, which is the sum of all time steps within 
a single trial; and (3) a00-timesteps, which is the total number of times 
that a small intake (a00) was selected during a single trial. A larger S7-rate 
(Figure  2C), smaller total-timesteps (Figure  2D) and a00-timesteps 
(Figure 2E) characterized the priority for long-term, large rewards. The 
overestimated interoception agent showed a higher S7-rate (Figure 2C), 
fewer total time steps (Figure 2D), and lower a00-timesteps (Figure 2E). 
This suggests that agents prioritize reaching the summit and receiving a 
large reward, even if this means short-term nutritional loss, over 
immediately receiving a small reward. In the underestimated 
interoception condition, the HRL models showed no significant changes 
in S7-rate (Figure 2C) and total-timesteps (Figure 2D), but decreased 
a00-timesteps (Figure 2E), suggesting Q-values of actions that moved 
away from the end of the episode were larger (Figure 2F; Q0-value).

FIGURE 4

Alterations in reinforcement learning (RL) parameters in the intake-after-food-restriction task. (A) Average rewards per intake behavior in single 
episodes and sum of punishment in each episode determined from the simulations with altered inverse temperature (β). (B) Example transitions of 
variables of the altered β models. (C) Average rewards with all intake behavior in single episodes and sum of punishment in each episode determined 
from simulations with altered discount ratio (γ). (D) Example transitions of variables of the altered γ models. (E) Total number of intakes in single 
episodes determined from simulated lesion models with altered β. (F) Total number of intakes in single episodes determined from models with 
altered γ. (G) Sum of drive during single episodes of models with altered β. (H) Sum of drive during single episodes of models with altered γ. 
***p < 0.001 (N = 40); N.S., not significant. In panels (A), (C), and (E–H), Student’s t-test or Welch’s t-test was used after Levene’s test.
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3.4 Altered RL parameters

As mentioned earlier, we endeavored to compare the impact of 
altering RL parameters, namely inverse temperature (β) and discount 
rate (γ), which have been linked to depression, with the effects of 
modifying interoceptive processing in the HRL model (Figure 4). 
First, we  conducted the intake-after-food-restriction task by 
manipulating the inverse temperature parameter β, which is associated 
with effects of Q-values to the action selections (Schweighofer and 
Doya, 2003). As a result of manipulating β in the HRL model, the 
reward gained from a single intake increased, while the cumulative 
punishment also increased significantly (Figures 4A,B). Although this 
outcome may initially appear counterintuitive, it can be explained as 
follows. As the normal behavioral choice in the deficient state (i.e., 
intake behavior) was reduced, the internal state remained far from the 
set point (Figure 4E). This, in turn, reduced the proximity to the ideal 
value of the internal state in the homeostatic space, resulting in greater 
rewards being obtained from a single intake within the homeostatic 
space (i.e., at a position where the change in drive per intake was 
greater; Figure 4B). In fact, when we assessed the total drive within a 
single episode, it was observed to increase as β decreased (i.e., when 
homeostasis was altered; Figure 4G).

We also manipulated γ in the intake-after-food-restriction task. 
When γ was decreased, the subjects made action selections 
emphasizing immediate rewards or punishments rather than future 
ones. This manipulation of the HRL model resulted in a slight increase 
in the average reward for each intake episode (Figure 4C), increase in 
the sum of drives in a single episode (Figure 4H), and decrease in total 
intake (Figure 4F). This is because decreasing γ reduced the absolute 
value of the second term in Equation 4 (δ: TD error), thereby reducing 
the range of possible values for δ and range of possible Q-values. 
Consequently, the differences between 2 actions were reduced as low 
β (Figures 4B,D), impacting the reward and drive similar to that in the 
low β model.

We further examined the effects of changing γ and β of the HRL 
model in the mountain-climbing task. Models with decreased 
discount rate γ consistently showed a lower frequency of summit 
attainment across all metrics compared to the control group 
(Figures 5A–C). Notably, these models experienced an increase in 
short-term rewards and stayed at lower altitudes (Figure  5C), 
underscoring the tendency of smaller γ values to prioritize immediate 
rewards and punishments over distant future rewards. This 
observation confirmed the simulation’s assumption that models with 
lower γ behave more impulsively, thereby validating the rationality of 
the mountain-climbing task. In the low γ group shown in Figure 5D, 
the darkest blue line represents the Q-value for a00, and the second 
darkest line indicates the Q-value for a10, suggesting that the 
differences in state-action values reflect the elevation in short-term 
state-action values. Additionally, increased frequency of stays at states 
S0 and S1 in this group, as shown in Figure 5D, indicates the decreased 
climbing performance due to the relative rise in lower state-action 
values in the low-gamma group. Models with low β also demonstrated 
a reduced frequency of reaching the summit across all measures 
compared to the control group (Figures 5A–C). This can be attributed 
to the increased randomness in behavior caused by low β, leading to 
less frequent selection of the optimal behaviors necessary for 
achieving rewards at the summit, especially during periods of 
nutritional deficiency.

4 Discussion

In this study, we attempted to interpret the changes in homeostatic 
maintenance behaviors and reward system activity by conducting 
pseudo-manipulation simulations of reduced and exaggerated 
interoception using the HRL model. Additionally, we compared the 
effects of modifications in RL parameters associated with depression 
on decision-making behavior with the effects of changes in 
interoceptive processing within the HRL model. Through this 
comparison, we aimed to provide a systems-level explanation of the 
relationship between phenomena previously considered to be changes 
in RL parameters, changes in interoceptive processing, and 
nutrient homeostasis.

In the low η model, the difference between the ideal state and the 
actual internal state was mitigated, resulting in a smaller reward per 
intake behavior (Figure  3A). This suppressed the learning of the 
Q-value for optimal behavior (intake; Figure 3E). As a result, the agent 
spent more time in a state in which the internal conditions deviated 
from the optimal values. Due to this prolonged deviation, the 
accumulated drive remained high, reflecting the failure of the system 
to regulate itself effectively (Figure  3C). However, no significant 
changes were observed during the mountain-climbing task (Figure 2). 
In the high η model, in contrast, the difference between the ideal state 
and the actual internal state was exaggerated, resulting in a larger 
reward per intake behavior (Figure 3A). This made it easier to learn 
the Q-value for optimal behavior, and the total drive decreased quickly 
(Figure  3E). However, this model demonstrated difficulties in 
acquiring large distant rewards (completing the task) in the mountain-
climbing task (Figures  2C–F). This was due to the tendency to 
overestimate immediate punishment before a large reward and the 
small rewards obtained away from the large reward (Figure 2).

The observations in these models were qualitatively similar to 
depressive symptoms. For example, in the reduced interoception 
model, we observed a decrease in the range (R, Q) of reward system 
activity (Figures 3A,E). This can be understood as a pattern of reduced 
activity in the insular cortex, which processes interoceptive 
information, and in the reward system of patients with depression 
with reduced appetite, which is revealed in fMRI-based research 
(Simmons et  al., 2016). Furthermore, the increase in punishment 
across tasks (Figure 3B), decrease in optimal intake behavior in the 
post-dietary intake task (Figure  3D), and increase in total drive 
(Figure 3C) can be understood as corresponding to depressed patients’ 
subjective feelings of inadequate internal state maintenance and 
sustained physical strain. In contrast, in the increased interoception 
(high η) model, increased reward system activity (Figures 3A,E) was 
observed. This can be understood as a pattern similar to the increased 
insular cortex activity and increased reward system activity in patients 
with depression and increased appetite, showed in the same study 
(Simmons et  al., 2016). This increased interoception model 
demonstrated appropriate behavior in the intake-after-food-
restriction task but prevented the completion of the mountain-
climbing task. This can be understood to be similar to the deficits in 
long-term reward-oriented behavior observed in depression. In the 
literature, body mass index (BMI) was comparable between the groups 
of subjects who showed clear contrasts in the activities of the insular 
cortex and reward systems. This is consistent with the fact that the 
internal state (H) did not differ from that of the control model in 
either the increased or decreased interoception models. Thus, these 
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manipulated interoception models may represent an aspect of the 
pathophysiology of a subtype of depression characterized by decreased 
or increased appetite.

In addition, we examined the effects of RL parameters, which are 
often discussed in relation to depression. Previous behavioral 
modeling studies of depression using RL models, such as simple 
learning, have highlighted increased behavioral randomness and low 
β-values (Kunisato et al., 2012; Blanco et al., 2013; Huys et al., 2013; 
Rupprechter et al., 2018), alongside a tendency to overestimate short-
term rewards while underestimating long-term rewards, in association 
with a reduced γ-value (Takahashi et al., 2008; Dombrovski et al., 
2011; Cáceda et  al., 2014; Imhoff et  al., 2014; Mies et  al., 2016). 
Notably, HRL model exhibited trends similar to those of the 
conventional RL model. In the low β model, the tendency for the 
value of intake behavior increased normally (Figure 4B), but when 
calculating the probability of action (P) from the Q-value, the relative 
magnitude of the two behavioral values was underestimated, resulting 
in a lower frequency of the appropriate behavior, intake, being 

selected (Figure 4B). Similarly, the low γ model showed the same 
trend as the conventional RL model. That is, the future value of the 
behavior is underestimated, and the prediction of immediate reward 
or punishment strongly influences decision-making. Consequently, 
the climbing task required more time steps to reach the summit 
(Figure 5).

Behaviors of these RL parameter modulation models have both 
similarities and differences with the results of the interoception 
modulation models. First, low η, low β, and low γ models exhibit 
similarity in increased drive (Supplementary Figure S1). These results 
are due to a decrease in the frequency of optimal behavior, resulting 
from the smaller range of rewards and Q-values (low η and low γ) or 
difficulty in reflecting the relative magnitude in action probabilities. 
For the high η and low γ models, whose performance declined in the 
mountain-climbing task, responses to immediate rewards and 
punishments increased, and the reward for each intake was large. 
However, in the intake-after-food-restriction task, the drive increased 
in the low γ model but decreased in the high η model, where high η 

FIGURE 5

Alterations in RL parameters in the mountain-climbing task. (A) Results of the control, low γ, and low β models referred to the ratios determined from 
the same calculations as those shown in Figure 2C. (B) The same measure of Figure 2D. (C) The same measure of Figure 2E. (D) Trajectories of each 
variable in the final episode of low γ and low β models. N.S., not significant; **p < 0.01 and ***p < 0.001.
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was more adaptive. Although high η, low β, and low γ showed similar 
increased reward per action, two different mechanisms were involved: 
high η overestimated the reward for a change in internal state of a 
certain magnitude, whereas low β and low γ did not alter the 
evaluation of rewards for internal states compared to the control. 
However, in low β and low γ models, more time was spent in regions 
where the internal state had significantly deviated, and the punishment 
for failing to choose intake was high.

These results indicate that individuals showing similar results in 
one task may have different underlying mechanisms and exhibit 
different behaviors in another task. Therefore, influence of homeostasis 
and interoception should be  considered when discussing the 
relationship between RL and depressive symptoms related to nutrition. 
Although the current model focuses on the deterministic modulation 
of interoception, actual eating behavior is possibly influenced by 
various factors, such as hormones and visual stimuli, over different 
time scales. Therefore, further detailed computational modeling is 
warranted to understand the physiological homeostasis and 
mechanisms in psychiatric disorders.

In this simulation, the value of the deficient internal state was 
fixed (H0  = 100); however, in a real organism, this value is not 
constant. For instance, in a model starting from a more deficient 
internal state, the reward from intake in the intake-after-food-
restriction task would be greater, as would be the reward from minor 
feeding in the mountain climbing task.

In this study, we  introduced a deterministic modulation of 
interoception, where the discrepancy between the ideal state and the 
actual internal state is scaled by a constant factor. This modulation is 
likely related to the shape of the homeostatic space defined by the free 
parameters m and n. For example, a model that overestimates the 
discrepancy between the ideal state and the actual state can 
be interpreted as having a steeper gradient in the homeostatic space. 
The relationship and physiological significance of η, m, and n are 
important questions, whose theoretical understanding remains 
insufficient. Therefore, further studies are required, along with the 
accumulation of empirical data.

In this study, we fixed the parameters of the HRL to biased values 
(η) to simplify the investigation of the effects of parameter modulation. 
However, in the real world, such parameter modulation may 
dynamically change in response to environmental pressures. In fact, 
evidence is accumulating in interoception research that supports the 
idea that interoceptive modulation can be  explained in terms of 
prediction uncertainty or communication accuracy, which fluctuate 
due to environmental influences (Smith et al., 2020; Young et al., 2021). 
Similarly, using models that address dynamic interoceptive modulation 
in response to environmental changes could help elucidate the 
workings of biological systems and provide valuable clinical insights.

This study examined changes in decision-making tendencies that 
reflect internal states and may represent an aspect of decision-making 
in other mental disorders. For example, impulsive decision-making 
observed in disorders such as obsessive-compulsive disorder (OCD) 
can be  represented as an increase in delay discounting within 
reinforcement learning (Amlung et al., 2019). However, much remains 
unclear about how homeostatic regulation functions are involved in 
these conditions. Focusing on nutritional homeostasis, there is 
evidence suggesting substantial overlap between OCD and eating 
disorders (Halmi, 2004), highlighting the importance of deepening our 
systemic understanding. In OCD, reinforcement learning modeling has 

progressed, showing that interventions suggested by biologically-based 
model research can be effective (Sakai et al., 2022). Investigating the 
connection between these models and nutritional homeostasis may 
yield practical interventions for impulsive eating behaviors.

Compulsivity has been identified as a transdiagnostic factor across 
various psychiatric disorders, yet many aspects of the underlying 
mechanisms remain unclear (Gillan et al., 2017). This study suggests 
that distinct mechanisms may underlie behaviors viewed as food 
intake actions aimed at obtaining short-term rewards (an “equifinal” 
symptom) and that these mechanisms may stem from factors such as 
interoceptive modulation, inverse temperature, or altered time 
discounting. This insight points to the potential for identifying 
practical, personalized interventions.

The results of the current computational model suggest that 
when individuals make myopic decisions in situations where rational 
calculations of delayed rewards from nutritional intake, such as in 
the mountain-climbing task, two underlying mechanisms may be at 
play: decreased delay discounting or excessive interoception. 
According to previous research, pharmacological interventions such 
as 5-hydroxytryptamine (5-HT) 2A receptor blockade may 
be  effective in addressing behaviors characterized by myopic 
tendencies resulting from decreased delay discounting (Ardayfio et 
al., 2008; Gillan et al., 2017). Thus, if decreased delay discounting is 
the underlying mechanism, such pharmacotherapy could be  a 
promising treatment. However, if excessive interoception is the 
underlying cause, schemes that address sensory hypersensitivity may 
be beneficial, although further evidence is required to substantiate 
this approach for specific discussions.
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