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In hyperscanning studies, participants perform a joint task while their brain

activation is simultaneously recorded. Evidence of inter-brain coupling is

examined, in these studies, as a predictor of behavioral change. While the field

of hyperscanning has made significant strides in unraveling the associations

between inter-brain coupling and changes in social interactions, drawing

causal conclusions between brain and behavior remains challenging. This

difficulty arises from factors like the inherently different timescales of behavioral

responses and measured cerebral activity, as well as the predominant focus of

existing methods on associations rather than causality. Specifically, a question

remains as to whether inter-brain coupling between specific brain regions

leads to changes in behavioral synchrony, or vice-versa. We propose two

novel approaches to addressing this question. The first method involves using

dyadic neurofeedback, wherein instances of inter-brain coupling are directly

reinforced. Such a system could examine if continuous changes of inter-brain

coupling are the result of deliberate mutual attempts to synchronize. The

second method employs statistical approaches, including Granger causality and

Structural Equation Modeling (SEM). Granger causality assesses the predictive

influence of one time series on another, enabling the identification of directional

neural interactions that drive behavior. SEM allows for detailed modeling of

both direct and indirect effects of inter-brain coupling on behavior. We provide

an example of data analysis with the SEM approach, discuss the advantages

and limitations of each approach and posit that applying these approaches

could provide significant insights into how inter-brain coupling supports crucial

processes that occur in social interactions.

KEYWORDS

hyperscanning, structural equation model, causality - causal modeling, neurofeedback,
functional near infrared spectroscopy (fNIRS)

Introduction

Neuroscience is largely dedicated to studying the brain’s structure and function, with
a primary focus on understanding how neural processes influence behavior, cognition,
and overall mental health. To this aim, traditional neuroimaging studies have relied on
assessing activation estimates within specific regions of interest (ROIs) and examining
their relationship with behavior (e.g., Molenberghs et al., 2016). As cognitive processes
are often the result of complex interactions between multiple regions, not the activity
of single areas in isolation (Bullmore and Sporns, 2009; Damoiseaux et al., 2006;
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Smith et al., 2009), research has shifted toward utilizing network-
level brain variables to explore brain-behavior relationships,
reflecting the interdependent nature of neural processes (Bassett
and Sporns, 2017).

A recent approach in the field of social neuroscience has
extended the network approach to social interactions, suggesting
that brain activity is not only coupled within an individual brain
but is also coupled between brains during social communication.
According to the hyper-brain cell assembly hypothesis, neural
cell assemblies may form not only within individual brains
but also across brains, operating under principles similar to
Hebbian learning within a single brain (Müller, 2022). Within
this framework, inter-brain coupling refers to the correlation
of time series of brain signals originating from regions of two
or more interacting brains (Dikker et al., 2021). The technique
of measuring inter-brain coupling is called hyperscanning, an
approach that allows simultaneous scanning of multiple brains
(Montague et al., 2002). Hyperscanning employs neuroimaging
techniques such as Electroencephalography (EEG), functional
Magnetic Resonance Imaging (fMRI), and functional Near-Infrared
Spectroscopy (fNIRS) and it is increasingly used to examine joint
brain activity in individuals within social interactions in various
social paradigms. For example, in typical hyperscanning fNIRS
studies participants are assigned into dyads or groups and are asked
to perform a joint task, while inter-brain coupling in fNIRS signals
are taken from all participants. Given the relatively mobile, robust
and unintrusive nature of the available portable fNIRS systems, a
wide range of interactive tasks can be used in ecologically valid
environments, including motor, emotional and cognitive tasks, as
well as creativity and problem-solving tasks. Inter-brain coupling
values from the obtained fNIRS data are calculated post-recording,
and often compared against other, concurrently obtained, task-
related data, such as synchrony in speech, eye-movements or motor
activity.

The findings of inter-brain coupling during social interactions
have greatly advanced neuroscience by demonstrating that multiple
brains of interacting individuals can be viewed as components of
an extended network (Shamay-Tsoory, 2022). With this approach
studies have shown for example that inter-brain coupling in
the inferior frontal gyrus (IFG) is increased during face-to-face
interaction compared to no-interaction (Jiang et al., 2012), during
synchronized movement (Gamliel et al., 2021) and during song
learning (Pan et al., 2018). Other brain regions including the
dorsolateral prefrontal cortex and the temporoparietal regions
were shown to be highly coupled during tasks of group creativity
(Mayseless et al., 2019; Pick et al., 2024) and group collaboration
(Xie et al., 2020).

However, the initial enthusiasm from hyperscanning was
tempered by concerns that inter-brain coupling might merely be
an epiphenomenon of performing the same activity simultaneously
(Hamilton, 2021). To address this issue, new statistical approaches
have been developed, including demonstrating that inter-brain
coupling is stronger in real interacting pairs compared to pseudo-
pairs [non-interacting pairs performing the same task (Marton-
Alper et al., 2023)] or showing that inter-brain coupling is not
entirely explained by motor synchrony (Pérez et al., 2017). In a
study with dyads of rodents, it was demonstrated that inter-brain
coupling emerges from two neuronal populations that separately
encode one’s own behaviors and those of the interaction partner,

providing evidence that inter-brain coupling arises from ongoing
exchange of social signals (Kingsbury et al., 2019). Furthermore,
inter-brain coupling has been shown to yield higher predictive
power for learning outcomes during social learning compared to
single-brain measures (Davidesco et al., 2023), emphasizing the
importance of incorporating these measures into models of social
behavior.

Despite these exciting developments, a critical question remains
regarding the causal relationship between inter-brain coupling
and behavioral change. While hyperscanning studies to date
have examined the association between inter-brain coupling
and behavior, it is not yet clear whether inter-brain coupling
triggers behavioral changes or if dyadic behavior creates inter-
brain coupling (Hamilton, 2021). It could be the case that
during coordinated activities (e.g., joint actions), individuals
are exposed to the same sensory stimuli, such as visual or
auditory cues. These shared inputs can result in similar neural
responses in the brains of the individuals involved, leading to
coupled neural activity. Furthermore, during coordinated behavior,
individuals often predict each other’s actions and adjust their own
actions accordingly. This anticipatory mechanism involves neural
processes that align the timing of neural activity between brains
and could lead to inter-brain coupling. Yet, another possibility
is that inter-brain coupling modulates behavior, with fluctuations
in coupling levels driving the dynamics of communication
during social interactions. Given that social interactions inherently
involve a continuous feedback loop of reciprocal exchanges, this
bidirectional interaction may underlie the causal relationship
between inter-brain coupling and behavioral outcomes. Here, we
emphasize the importance of examining the causal pathways
between brain activity and behavior, as understanding this
relationship is crucial for elucidating the neural mechanisms
underpinning inter-brain coupling. Such an investigation could
reveal how neural coupling promotes effective communication and
facilitates social coordination. We propose here two approaches
for testing causality: The first approach relates to manipulating
the brain with neurofeedback and involves providing real-time
feedback to participants based on their inter-brain coupling. The
second approach offers statistical methods for assessing causality.
We discuss these two options including the advantages and
limitations of each approach and their feasibility in addressing
mechanistic explanation of social behavior.

Dyadic neurofeedback

While emerging studies with brain stimulation targeting the
IFG show a causal relationship between simultaneous dyadic IFG
stimulation and increased coupling (Novembre et al., 2017), it is
unclear whether inter-brain coupling could be trained and to what
extent training is translated into behavioral change.

Neurofeedback is a technique that provides real-time
information about the current level of brain activity, to which we
otherwise do not have conscious access. Such information can be
used to learn volitional regulation of brain activity. The feedback
is visual or auditory (e.g., an animated fish swimming in the sea),
in which changes in certain parameters (e.g., the fish’s movement)
reflect changes in certain features of the measured brain activity.

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1497034
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1497034 November 9, 2024 Time: 17:23 # 3

Markus and Shamay-Tsoory 10.3389/fnhum.2024.1497034

Neurofeedback leverages the brain’s ability to reorganize itself
following operant conditioning (Paret et al., 2019) and Hebbian-
like plasticity (Coscia et al., 2019) by selectively reinforcing specific
neuronal changes.

In the same manner that neurofeedback can regulate
the activity of specific brain regions, training with a dyadic
neurofeedback platform may allow participants to control their
inter-brain coupling by providing feedback on this coupling.
Such a setup could involve reinforcement via a visual signal
following increased inter-brain coupling between selected regions
(see Figure 1). Initial attempts have demonstrated the feasibility of
connecting two participants in a single feedback loop. For example,
using EEG, Chen et al. (2021) showed an association between
social closeness and inter-brain coupling in a dyadic neurofeedback
protocol. While no study to date has demonstrated long-term
behavioral changes following dyadic neurofeedback training, the
growing efforts to develop such protocols demonstrate significant
potential.

A dyadic neurofeedback setup may include simultaneous
synchronized fNIRS data collection from two participants. The
data obtained from each participant are pre-processed in real-
time by application of frequency filtering, motion artifact removal,
and common component removal using Short Separation channels
(Gagnon et al., 2012) or other statistical methods (e.g., Zhang et al.,
2016). The filtered data is then separated into temporal windows
of 30 s or more, and inter-brain coupling values are extracted
from each window using the Wavelet Transform Coherence (WTC)
technique (Grinsted et al., 2004) that enables transforming a time
series into a function of time and frequency. This process repeats in
intervals of approximately 1 s, with each output value representing
the brain synchrony within the preceding window, with a large
degree of overlap. These values may be used to adjust the motion
speed of an animated fish on a screen, which the participants in the
study can observe. Participants are randomly assigned to dyads and
instructed to observe a computer screen displaying a virtual task
involving a swimming fish (Figure 1). Their goal is to increase the
speed of the fish’s movement. The speed of the fish is contingent
upon the participants’ ability to enhance their inter-brain coupling,
providing real-time reinforcement of their increasing interbrain
coupling. This feedback loop is designed to promote enhanced
synchronization between the participants’ brain activity, thereby
facilitating functional inter-brain connectivity. If indeed it will
be possible to measure noticeable behavioral change following
training in dyadic neurofeedback, it will provide initial evidence
that indeed inter-brain coupling supports behavioral change. The
changes could be observed at the individual level, for example
increased empathic capacities of a participant following dyadic
training, or changes at the level of the dyad, such as improved motor
synchronization or enhanced cooperation.

The application of dyadic neurofeedback offers several distinct
advantages. Unlike neurostimulation, neurofeedback is a non-
invasive technique, making it a safer and more accessible option
for modulating brain activity. In addition to its potential for testing
causal inferences in neural circuits, successful implementation
of dyadic neurofeedback could lead to a wide range of
clinical applications aimed at enhancing social behavior in
various populations.

Despite the potential of dyadic neurofeedback for establishing
causal links between inter-brain coupling and behavioral changes,

significant challenges remain in developing appropriate control
conditions to effectively rule out placebo effects and expectation
biases. Additionally, there are unresolved questions regarding the
specific brain regions that are most relevant for these dyadic
neurofeedback protocols. While a recent meta-analysis found the
largest effects size for inter-brain coupling in the frontal cortex
and temporoparietal junction (Czeszumski et al., 2022), it is
possible that other brain regions may also have potential for
training inter-brain coupling. In addition, the process of learning
to control brain activity within dyadic neurofeedback is inherently
slow and complex. Finally, variability in individual learning
abilities within the dyad can significantly influence the overall
effectiveness of achieving and maintaining enhancements in inter-
brain coupling. Nonetheless, demonstrating that modifications in
inter-brain coupling can lead to measurable behavioral changes
would provide compelling evidence of causality, reinforcing the
potential impact of such interventions on social and cognitive
processes.

Statistical approach for testing
causality

Various statistical tools have been employed to address
the challenge of causality in neuroimaging studies, including
Granger causality and structural equation modeling (SEM). These
methodologies can be applied to explore the causal dynamics
of inter-brain coupling and its impact on social interactions,
thereby providing insights into the neural mechanisms underlying
social behavior.

The Granger causality approach relies on the principle of
comparing the predictive power of a past value of a variable
Y on its current value (autoregression) to the predictive power
of autoregression and the values of a second variable X. If the
latter is significantly higher than the former, X can be said
to be G-causing Y (Seth et al., 2015). Importantly, Granger
causality tests can be performed in the opposite direction –
i.e., whether Y is G-causing X. Significance in both cases is
not mutually exclusive. If changes in the neural activity of
one brain can be shown to G-cause changes in another brain’s
activity, and this neural interaction correlates with specific social
behaviors, it becomes possible to predict how changes in inter-
brain coupling may influence or correspond to future behaviors
in social interactions. G-causality has been extensively utilized
in neuroimaging studies, particularly within the framework of
ordinary linear autoregressive (AR) models of stochastic processes
(Goebel et al., 2003; Roebroeck et al., 2005), and it may therefore
become valuable in understanding and forecasting the dynamics
of social behavior based on inter-brain coupling. One possibility
is employing Granger causality to investigate the directionality
between inter-brain and intra-brain coupling. Indeed, Müller and
Lindenberger (2024) showed that the dynamics of both inter-
brain and intra-brain connections are critical for understanding
interpersonally coordinated actions. If it is found that inter-
brain coupling influences intra-brain connectivity, this would
suggest that changes in inter-brain dynamics may drive alterations
in individual neural processes, ultimately leading to behavioral
modifications.
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FIGURE 1

Neurofeedback loop in dyadic interaction using fNIRS. Two participants observe a swimming fish that and its velocity represents their levels of
inter-brain coupling. fNIRS data is collected from both participants in real-time as they perform the task. The recorded fNIRS data undergo
preprocessing to remove artifacts and noise. Interbrain coupling is then calculated and the real-time inter-brain coupling information is presented
back to the participants through updated movement of the fish, thus completing the neurofeedback loop.

FIGURE 2

Example SEM model. Predicting behavioral synchrony by the measured activity of several ROI couplings and the computed combined activity of the
interbrain network as a whole (allbrain). Here, only couplings including r.IFG and dmPFC were used to predict behavior, according to previous
findings. The loading values are indicated by the numbers, while significance is indicated by the asterisk. Only the r.IFG-dmPFC coupling was shown
to significantly positively predict behavioral synchrony.

To establish causal link between inter-brain coupling and
behavior, Koul et al. (2023) used synchronized EEG recordings
from dyads engaged in a nonverbal task. The authors applied
G-causality explore the directional relations between inter-brain
coupling and behavioral measures (e.g., synchrony in facial

expressions). To this end, participants were placed at either a
short (1 m) or long (3 m) distances from each-other under
conditions where they could or could not see each-other, under
no specific instructions to interact. During each block, EEG,
movements and eye-tracking recordings were obtained. Inter-brain
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coupling emerged spontaneously when participants were looking
at each-other regardless of distance. The authors first analyzed
the power spectra across several EEG frequency bands. They then
used computational model, which relied on contemporaneous
power increase in these frequency bands within dyads, to
identify instances of inter-brain coupling. Behavioral recordings
were analyzed to produce a matching timeline, representing
synchronous behavior. These timelines were then used to construct
a Bayesian model, which was then fitted to a vector autoregressive
(VAR) model, which, in turn, was used to calculate multivariate
G-causality values. G-causality was found significant in both
directions, although the predictive effects of behavioral synchrony
on inter-brain coupling were reported to be stronger than the
opposite (Koul et al., 2023). The latter finding raises questions about
the specific mechanism of this reciprocity. It may be hypothesized,
for example, that inter-brain coupling between specific ROIs may
causally affect behavioral coupling, and vice-versa for other ROI
pairs. Exploration of this topic is somewhat hampered by the
difficulty in source localization inherent in EEG recordings (e.g.,
Bradley et al., 2016; Jatoi et al., 2014). In contrast, techniques relying
on cerebral haemodynamic response, such as fMRI and fNIRS,
which are relatively accurate in their spatial resolution, may lack the
required temporal resolution for G-causality analyses. For example,
in a typical study using fNIRS for measuring brain activity, the
haemodynamic response may be trailing the underlying neural
activity by several seconds (Cinciute, 2019), thus leading to
the possibility of the resulting behavior taking place before the
haemodynamic response can be recorded. One possibility is to
use simultaneous recordings of fNIRS and EEG data which may
allow identifying causal relationships between specific ROI pair
coactivation and behavioral synchrony in more detail.

Another potential approach toward establishing and testing
network-based models of brain and behavior may be based on
structural equation modeling (SEM). In SEM parameters are
represented by connection strengths or path coefficients between
variables, analogous to effective connectivity in a neural network
model. Each path within the model is directional, reflecting
hypothesized causal influences between variables. The parameters
in SEM are estimated by minimizing the discrepancy between the
observed covariance matrix and the covariance matrix predicted
by the proposed structural model. This estimation process enables
SEM to solve the entire path model simultaneously, providing
insights into the causal directionality among multiple ROIs. In
a study modeling both brain and behavior, Bolt et al. (2018)
conducted a study on data from a large pool of participants,
who performed tasks from three cognitive domains (working
memory, relational processing, and arithmetic processing), with
each task having a respective control condition. fMRI recordings
were taken during the tasks’ completion. The authors then used
SEM to construct a network model, based on the collected data,
which included several ROIs in the brain as well as behavioral
responses. A regression equation was constructed to represent
the activity of each ROI as a function consisting of a network
activation component, an ROI activation component unrelated to
the network, and a residual component. The behavioral outcome
was then estimated as a regression function including the activity
within the network, the network-independent activity in each
ROI, and a random component. The resulting model was then
pruned to remove ROIs with low loadings. Using this method,

only individual ROIs were shown to affect behavior independently
of the network as a whole. This approach is highly promising
for application in inter-brain coupling. In particular, it allows for
testing of specific hypothetical models, such as models that include
inter-brain coupling between specific regions and behavior.

We tested this approach using an fNIRS dataset published
by Marton-Alper et al. (2023), where we previously found that
interbrain coupling in the right inferior frontal gyrus (r.IFG)
and dorsomedial prefrontal cortex (dmPFC) positively predicted
movement synchronization during a 3D movement task. In this
study, dyad members were handed a RAZER 3D motion sensor
and instructed to move their arms in synchrony. The 3D position
data of the participants’ arms were recorded, and fNIRS inter-
brain coupling data were obtained from each participant’s dmPFC
and IFG areas, bilaterally. The levels of motion synchrony were
calculated as a timeseries throughout each task block by means
of Cosine Velocity Vector (CVV) calculation (Reiss et al., 2019),
which allows or detection of lagged and unlagged synchronized
3D motion. fNIRS data were preprocessed by frequency filtering,
motion artifact removal, PCA-based spatial filtering (Zhang et al.,
2016), and converting to relative oxygenated and deoxygenated
hemoglobin concentrations. Inter-brain coupling was calculated
on the oxygenated hemoglobin values using the WTC toolbox
for Matlab (Grinsted et al., 2004) between all ROI combinations.
This method of detecting inter-brain coupling is based on a two-
stage process, wherein the hemoglobin concentrations are first
subjected to wavelet transformation (WT) using a seed Morlet
wavelet, which serves the functional purpose of detecting single-
brain activity across time and wavelength. We used the wavelengths
of 6–66 s. In the second stage, coherence between the two WT
series is calculated, to derive WTC values between the two brains.
Whereas in the Marton-Alper et al. (2023) study we used LME-
type analyses, here we constructed an SEM model using the same
data, in which we sought to examine the effects of inter-brain
coupling between all measured pairs of ROIs on motion synchrony.
The simple assumption behind this model, provided as a feasibility
example, was that coupling between some ROIs are likely to be
correlated to behavioral synchrony, while inter-brain coupling
between others might not. For our purposes, we considered two
sets of ROI pairs – each set related to one hemisphere. In our
model, overall interbrain connectivity network was represented
by a latent variable (allbrain), representing joint effect of all
ROI pairs’ activation on behavior, and consisting of the coupling
values of all ROIs (l.IFG-l.IFG, l.IFG-dmPFC, l.IFG-r.IFG, r.IFG-
dmPFC, r.IFG-r.IFG, dmPFC-dmPFC), and the level of behavioral
synchrony (movement synchronization) was predicted by the
computed activity of the allbrain variable, and by each of the ROI
couplings including r.IFG and dmPFC. As shown in Figure 2, the
model indicated that only the r.IFG-dmPFC coupling significantly
(p < 0.05) predicted behavioral synchrony. A similar model
using l.IFG and dmPFC couplings to predict behavioral synchrony
levels was tested and yielded no significant predictions. These
findings not only corroborate the original findings of Marton-Alper
et al. (2023) but also offer a model that includes directionality
interdependencies between multiple observed and latent variables.

While we use this as a simple example of using SEMs to describe
the relationship between inter-brain and behavioral synchrony, it
is possible that data of neural activity as well as social behaviors
collected from multiple individuals could be tested by means of
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multilevel structural equation modeling (mSEM), as proposed by
Rabe-Hesketh et al. (2004). In this type of model, ROIs from each
individual in a group would be treated as clusters on the lower level
of the model, whereas the upper level of the model would represent
the group as a whole. Behavioral outcomes can then be factored into
such a model in two ways: individual behavior can be factored in
as related to the lower-level clusters, respectively; group behavioral
measures, such as motor synchrony levels, can be related to both
levels of the model.

When comparing the two approaches, the advantage of
Granger causality (G-causality) is its ability to provide direct
statistical evidence of causality, including the direction of the causal
relationship, between continuous time series data. Yet, on its own
it provides a fairly narrow view individual connections within the
wider network of ROIs involved in inter-brain coupling and the
concurrent behavior. In contrast, SEM-based models provide an
excellent potential tool for testing the structure of this network as a
whole, albeit somewhat limited in inferring causality, in the sense
that the direction of causality needs to be hypothesized a-priori
in the model being tested. The latter is especially relevant for
social interactions which occur in relatively naturalistic settings, as
opposed to highly structured trial-based fMRI tasks. We propose
that the way forward may be in combining the two approaches.

Conclusion

Overall, the latest literature on hyperscanning is converging
toward the networked approach and much work is being done
to devise statistical and experimental methods to validate an
overall network model of social interaction. An important aspect
of this kind of modeling is the question of causality between
groups of ROIs constituting the inter-brain network, and between
these groups and the concurrent behavior. Although dyadic
neurofeedback studies provide preliminary evidence of causality
in neural coupling and its effects, more robust methods are
required to thoroughly examine the causal link between inter-brain
coupling and behavioral outcomes. Approaches such as Granger
causality and SEM offer powerful tools to test the directional
influence of inter-brain coupling on behavior. Granger causality is
particularly useful for identifying causality of temporal relationship
between inter-brain coupling and subsequent behavioral changes.
On the other hand, SEM enables researchers to model complex
relationships between multiple observed and latent variables,
allowing for the simultaneous testing of neural and behavioral
dynamics. By applying these techniques, future research could
move beyond correlational observations and establish more
definitive causal mechanisms linking inter-brain coupling with
social and cognitive behavior.

While inferring causal relationships between intra- and inter-
brain coupling levels can be achieved using well-established
statistical techniques, such as G-causality and SEM, doing the same
at the brain-behavior level is more challenging. We propose that
application of mSEM modeling together with measures of causality
estimation may be highly beneficial for understanding the brain
and behavioral dynamics of synchronous behavior. Working from
a vantage point of a specific theoretical model of interpersonal
interaction, it should be possible to construct and validate its

structure and components by examining a statistical mSEM model
based on it. Behavioral components may be integrated into this
model on multiple levels by means of attributing specific behavioral
changes to ROIs that are established as causing behavior directly.
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