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Introduction: In our complex world, the auditory system plays a crucial role in 
perceiving and processing our environment. Humans are able to segment and 
stream concurrent auditory objects, allowing them to focus on specific sounds, 
such as speech, and suppress irrelevant auditory objects. The attentional 
enhancement or suppression of sound processing is evident in neural data 
through a phenomenon called neural speech tracking. Previous studies have 
identified correlates of neural speech tracking in electroencephalography (EEG) 
data, but EEG measures are susceptible to motion artefacts, and the association 
between neural data and auditory objects is vulnerable to distraction.

Methods: The current study investigated EEG-based auditory attention decoding 
in realistic everyday scenarios. N=20 participants were exposed to the sound of 
a busy cafeteria or walked along busy and quiet streets while listening to one 
or two simultaneous speech streams. We also investigated the robustness of 
neural speech tracking estimates within subjects. Linear decoding models were 
used to determine the magnitude of neural speech tracking.

Results: The results confirmed that neural speech tracking was strongest in 
single speaker scenarios. In dual speaker conditions, there was significantly 
stronger neural speech tracking for the attended speaker compared to the 
ignored speaker, even in complex environments such as a busy cafeteria or 
outdoor settings.

Discussion: In conclusion, EEG-based attention decoding is feasible in highly 
complex and realistic everyday conditions while humans behave naturally.
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1 Introduction

We regularly face complex listening challenges when we are on a busy train, walking 
through a crowded city, or having a social gathering with friends. In such situations, people 
are constantly exposed to a number of different, overlapping sound sources such as speech, 
music, or traffic noise. Auditory scene analysis requires separating and identifying different 
auditory objects, suppressing irrelevant information, and advanced processing of relevant 
information (Kaya and Elhilali, 2017). The segmentation and streaming of different auditory 
objects can be very demanding and may require a considerable amount of attentional resources 
(Herrmann and Johnsrude, 2020). Many hearing-impaired individuals have difficulty 
separating auditory objects from each other, making multi-talker settings particularly 
challenging for this population (Shinn-Cunningham and Best, 2008). State-of-the-art hearing 
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aids may not provide benefits in such complex settings (Lesica, 2018). 
It has been proposed that brain electrical activity, as captured by 
electroencephalography (EEG), could be used to assist the auditory 
system in such complex tasks, for example, by continuously adjusting 
hearing aid configurations to enhance the auditory objects to 
be attended (Geirnaert et al., 2021b). Although considerable progress 
has been made, most of the work on combining hearing aids with 
EEG-based attention decoding is at a low technology readiness level.

Low-frequency features of speech streams can be associated with 
simultaneously recorded neural data, a phenomenon that may be best 
described as neural speech tracking. A common finding is that the 
association between EEG and audio signals is modulated by attention 
(Ding and Simon, 2012a, 2012b; O’Sullivan et al., 2015). Accordingly, 
evaluating the correlation between neural data and speech envelopes 
allows for brain data-driven auditory attention decoding, i.e., the 
identification of an attended speaker in a multi-speaker environment 
from the EEG signal (e.g., Jaeger et al., 2020; Mirkovic et al., 2015). 
However, most studies in this area have implemented rather simple, 
stationary listening configurations, where listeners and sound sources 
did not move and the overall listening demands did not fluctuate over 
time. Such scenarios do not capture very well the highly dynamic 
listening demands we face in real life, where sound objects move and 
listeners move as well.

While EEG signals are susceptible to motion artifacts (e.g., 
Jacobsen et  al., 2020), the neural correlates of selective auditory 
attention have been successfully recorded with mobile EEG systems 
in freely outdoors walking individuals (De Vos et al., 2014; Debener 
et al., 2012; Reiser et al., 2020). In stationary settings, the association 
between audio and EEG has been found to be modulated by visual or 
auditory distractions, which may be common in natural environments 
(Holtze et  al., 2021; Kaya and Elhilali, 2017). Indeed, transient 
auditory distractors briefly disrupt auditory attention decoding 
(Holtze et al., 2021; Straetmans et al., 2021). However, continuous 
background noise could also be  stimulating and facilitate the 
allocation of auditory attention (Herrmann and Johnsrude, 2020; 
Shinn-Cunningham and Best, 2008). In any case, cognitive resource 
limits may be  reached earlier when listeners experience frequent 
distraction, high task demands, fatigue, or overstimulation (Herrmann 
and Johnsrude, 2020).

When a listener walks with another person the task at hand is not 
only to carry on a conversation but also to control one’s own gait and 
synchronize gait patterns (e.g., Scanlon et al., 2022). In non-stationary 
conditions, motor demands can be considered a secondary task to 
cognitive processing, which may place a greater burden on capacity-
limited resources available for a cognitive task such as attentive 
listening (Al-Yahya et al., 2011; Leone et al., 2017). However, a listener 
may also disengage if the listening task at hand is not sufficiently 
relevant or inspiring (Herrmann and Johnsrude, 2020).

We recently reported the first evidence for successful EEG-based 
auditory attention decoding in mobile scenarios (Straetmans et al., 2021). 
Participants either sat in a chair or walked freely around a large, quiet, and 
empty university cafeteria while attending to one out of two 
simultaneously presented speech streams. Results confirmed above 
chance auditory attention decoding during free walking, even when 
salient auditory events occasionally distracted listeners from the primary 
task (Straetmans et al., 2021). The current study aimed to replicate the 
main finding of successful EEG auditory attention decoding in freely 
walking listeners. Our primary goal was to test whether auditory attention 

decoding is possible in a complex real-world environment, during natural 
behavior. Specifically, we asked whether EEG-based auditory attention 
decoding is possible when listeners are immersed in a natural, challenging 
listening environment, i.e., a typical city street soundscape or a busy 
cafeteria scene. For this purpose, we  recorded data in two listening 
contexts, hereafter referred to as Lab and Beyond-the-lab conditions. The 
first recording context was a Lab condition and served as a baseline 
(hereafter referred to as Lab 1). Participants were seated in the center of a 
loudspeaker ring while being presented with single and dual speech 
narratives, which were presented with or without background noise. In 
the background noise conditions, the speech streams were embedded in 
a busy cafeteria scene. In the second recording context, participants again 
listened to single and dual speech narratives presented through 
experimental hearing aids. Here, they sat in a corridor outside the 
laboratory and walked freely outdoors, along the calm and busy city 
streets of Oldenburg, Germany. This recording context will be further 
referred to as Beyond-the-Lab (BTL). To investigate whether the outdoor 
condition had a detrimental effect on either EEG signal quality or 
attentional engagement (fatigue), a final recording took place in the 
laboratory speaker ring again (Lab 2), repeating the initial baseline 
context. As noted above, the cognitive strain may modulate the cortical 
tracking of continuously attended speech streams, and gross movements 
such as walking can be harmful to EEG signal quality (Jacobsen et al., 
2020). With this in mind, we expected lower, but above chance, attention 
decoding results in Beyond-the-Lab free walking conditions, especially in 
dual-speaker listening scenarios. Due to the total length of the 
measurement and the complexity of the task, we participants are likely to 
experience fatigue at the end of the experiment. Therefore we  also 
predicted that neural speech tracking will be  less strong in listening 
conditions at the end (Lab 2) than the beginning (Lab 1) of the recording 
protocol, especially in challenging listening conditions.

2 Materials and methods

2.1 Participants

Twenty-eight participants took part in the study. Due to 
participant drop-out (n = 3), acute health problems (n = 1), 
neurological diseases (n = 2), compromised hearing (n = 1), and 
technical difficulties (n = 2) data from 20 participants were available 
for Lab 1 and Lab 2 (10 women) and data from 19 of the same 
participants for the Beyond-the-Lab block (nine women). The age of 
participants ranged between 19 and 31 years (median age: 24.5). 
Participants reported normal hearing and normal or corrected-to-
normal vision. Participants signed an informed consent form and 
were compensated for their participation. The study was approved by 
the University of Oldenburg Ethics Committee (DRS.EK/2021/078).

2.2 Paradigm and measurement protocol

Each participant was invited for two measurement appointments. 
One set-up consisted of a conventional 32-channel EEG cap, whereas 
another set-up included two arrays of the flex-printed cEEGrid electrodes 
attached behind both ears (cEEGrids, Bleichner and Debener, 2017; 
Debener et al., 2015). The second appointment took place approximately 
three weeks after the first. Both appointments took place on weekdays 
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between 09:00 a.m. and 12:30 p.m. During both measurement 
appointments, the same measurement protocol was followed. Participants 
filled out an informed consent form and a questionnaire concerning their 
general wellbeing and their (neurological) health status. In the first 
measurement appointment, a pure tone audiogram measurement was 
conducted. This was followed by equipping the participant with the 
recording technology, including EEG and ECG hardware, the recording 
platform (see section 2.3.2.), and an Android smartphone. The 
measurement protocol consisted of three blocks (Lab 1, Beyond-the-Lab, 
Lab 2), which lasted approximately 60 min each. Lab 1 and Lab 2 took 
place in a laboratory of the Hörzentrum GmbH Oldenburg.1 After Lab 1, 
the Beyond-the-Lab (BTL) block was introduced, which took place 

1 https://www.hz-ol.de/de

outside of the laboratory. In all blocks, a single-speaker and a dual-speaker 
paradigm were employed (e.g., Mirkovic et al., 2016; O’Sullivan et al., 
2015; Straetmans et al., 2021). Participants were instructed to attentively 
listen to one narrative read by a male or female speaker. Any other 
concurrently presented speech or noise should be ignored. In each of the 
three blocks, four consecutive narratives were presented, each lasting 
approximately nine min. After every narrative, participants were asked to 
answer four multiple-choice questions concerning the content of the 
presented story and to rate their level of fatigue and exhaustion on a scale 
from one to seven (1 = not tired at all, 7 = extremely tired; 1 = not 
exhausting at all, and 7 = extremely exhausting). In Lab 1 and Lab 2 blocks, 
participants were seated in the laboratory on a chair in the middle of a 
speaker ring consisting of 16 speakers. The level of acoustic complexity 
increased with each presented narrative as follows: The first story was read 
by one speaker without any further sources of distraction (single speaker). 
The second story was presented simultaneously with another, 
concurrently played narrative read by a speaker of the opposite sex of the 
attended narrative (dual speaker). Then, participants should again focus 
on only one speaker while a cafeteria scene was presented in the 
background (single speaker and background). In the fourth and last story, 
participants were presented with the attended narrative, a concurrently 
running narrative, and the cafeteria scene in the background (dual 
speaker and background). The order of presentation scenarios was kept 
constant across participants because one key objective was to induce 
listening fatigue by steadily increasing the level of acoustic complexity. In 
the Beyond-the-Lab block, participants were presented with one or two 
speaker stimuli while sitting on a chair in a relatively quiet hallway or 
walking a predefined route near the Hörzentrum Oldenburg. The route 
led along quiet (i.e., Küpkersweg) and busy streets (i.e., Ammerländer 
Heerstraße). The order of conditions was randomized across participants 
(see Figure 1).

2.3 Data recording

2.3.1 Portable hearing lab (PHL)
The Portable Hearing Lab (PHL, https://batandcat.com/portable-

hearing-laboratory-phl.html) is a small and lightweight hearing aid 
research platform (PHL, https://batandcat.com/portable-hearing-
laboratory-phl.html) (see Figure 2). It consists of a BeagleBone Black 
wireless single-board computer, a battery, a multi-channel audio 
board, and two binaural behind-the-ear hearing aids as well as 
receivers located in the ear canal. The device has a measurement of 
10 cm × 6.5 cm × 5 cm (hxwxd) and a weight of 166 g. It can be worn 
around the neck (see Figure 2). For the purpose of this study, the PHL 
allowed a mobile, time-synchronous recording of all data streams into 
one file. The device offers a Wi-Fi interface which allows 
communication with other computers or smartphones. The Wi-Fi 
interface enabled the wireless programming of a mobile phone app to 
control the device.

2.3.2 Additional data streams
The study was conducted as part of a larger project2 that required 

the collection of vital signals. Information about the acoustic 

2 https://a2i-med.net/

FIGURE 1

Measurement protocol: single-speaker conditions in red and dual-
speaker conditions in green. Condition order in Lab 1 and Lab 2 
measurement starts with single-speaker condition (red) and ends 
with a dual speaker with background cafeteria noise condition (green 
with grey background). Condition order does not change across 
participants or within measurement (black arrow, order of conditions 
from bottom to top). In the beyond the lab measurement the order 
of movement conditions (sit/walk) and listening conditions (single/
dual) is pseudo-randomized across participants (black arrows). In all 
three measurement contexts, the side of the presentation of the 
attended speaker changes every 1 to 2  min (grey arrows).
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environment was also collected (see Figure  2). To capture 
electrocardiogram (ECG) signals, participants were equipped with a 
chest belt.3 The chest belt captured respiratory rate and accelerometer 
data. The results of the cardiovascular data recorded in this experiment 
will be  presented elsewhere. Furthermore, the entire acoustic 
environment (i.e., presented speech signal and environmental noise) 
during the measurements was recorded via two microphones 

3 https://www.zephyranywhere.com/system/overview

implemented in each behind-the-ear hearing aid. These audio 
recordings were transformed online into a lab streaming layer data 
stream for further synchronization.

2.3.3 Data synchronization and recording
Stream synchronization and data recording were implemented with 

the Lab Streaming Layer software framework. The Lab Streaming Layer 
(LSL, Kothe et al., 2024) is a communication protocol designed to facilitate 
the real-time exchange of time-series data between various devices and 
software applications in a laboratory environment. LSL provides a 
standard to synchronize different data streams. LSL is particularly popular 

FIGURE 2

Study set up. (A) Pictogram of all included sensors and recording devices on the participant. (B) Node Red GUI on the experimenter’s phone to control 
the experiment and monitor LSL data stream availability. (C) Participant in BTL walking condition. (D) Pictogram of technical set-up. LSL streams of 
different devices are streamed via Wi-Fi and recorded on the PHL into an .xdf file.
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in neuroscientific research, where it is often used to stream data from 
different devices such as EEG, eye-tracking systems, motion capture 
systems, and other physiological sensors. Data streams can be received 
and time-synchronized with the LSL Lab Recorder. Lab Recorder is an 
application built on top of LSL that enables researchers to easily record, 
timestamp, and organize data streams from multiple sources during an 
experiment. With Lab Recorder, researchers can create synchronized 
recordings of diverse data modalities, capturing a comprehensive picture 
of experimental events. All collected data streams are saved into one .xdf 
file on the recording platform. Together, LSL and Lab Recorder provide a 
framework for collecting and managing multi-modal data in a 
standardized manner. In the current study, multiple data streams (EEG, 
vital parameters, event markers, and acoustic scenes) from different 
recording devices had to be recorded in a time-synchronous manner 
(Figure 2). For this purpose, data streams were converted to LSL streams 
and recorded on the PHL (see section 2.3.1.) via Lab Recorder (see 
Dasenbrock et al., 2022, for further details). During measurements, the 
experimenter controlled the PHL via a custom-made graphic user 
interface (GUI) implemented via NodeRed4 and running on a second 
smartphone (experimenter phone). This allowed us to set the date, time, 
and participant ID as well as start and save the recording. During data 
recording, the experimenter monitored all relevant data streams via the 
NodeRed GUI.

2.4 Stimuli

2.4.1 Speech
Speech stimuli were edited with the Audacity software (v2.3.0, 

https://www.audacity.de/). The stimuli were pre-processed by 
removing the DC offset and normalizing the maximum amplitude to 
−1,0 dB. The normalization adjusts the peak level of the left and right 
channels in order to ensure comparability of the narratives. 
Additionally, silent moments within the narratives were truncated.

2.4.2 Stimulus presentation
Participants were instructed to follow the narrative read by a male 

or a female speaker over the entire course of the experiment. During 
both appointments, the sex of the speaker the participant should 
should follow remained the same, however, the speaker and the 
content of the narrative differed. Lab 1 and Lab 2 measurements took 
place in a laboratory of the Hörzentrum Oldenburg equipped with a 
speaker ring (16 speakers). A toolbox for acoustic scene creation 
(TASCAR, Grimm et al., 2019) was used to present auditory stimuli. 
Event markers were generated with MATLAB and streamed via 
LSL. The to-be-attended narrative was presented via speakers located 
at an angle of −30° (left-side presentation) or 30° (right-side 
presentation) relative to the participant (see Figure 3). In the dual-
speaker conditions, the to-be-ignored narrative was presented from 
the opposite side (left-side presentation: −30°, right-side presentation: 
30°). In the single-speaker condition, no additional stimuli were 
presented from the opposite side. After varying time intervals of 
between 60 and 120 s, the to-be-attended and the to-be-ignored 
speaker sides of the presentation were switched. In the single-speaker 

4 https://nodered.org/

condition, the to-be-attended speaker simply changed the side of the 
presentation after varying time intervals of between 60 and 120 s. 
Switches occurred at semantically meaningful moments within 
the stories.

In the Beyond-the-Lab block, auditory stimuli were presented via 
behind-the-ear (BTE) hearing aids consisting of two microphones 
placed above each ear. The audio was played via receivers inside the 
ear (see section 1.3.2.). The narratives were spatially separated by 
convolving the raw stimuli with head-related impulse responses 
(Kayser et al., 2009). The to-be-attended narrative was transformed 
to an angle of −30° (left-side presentation) or 30° (right-side 
presentation). In the dual-speaker condition, the to-be-ignored 
narrative was transformed to the opposite side. The presentation 
application from Neurobehavioral Systems Inc. (Albany, CA, 
United States) was used to play audio and stream event markers on 
an Android phone (Participant phone). At the beginning of Lab 1 and 
the BTL measurements participants were presented with a short 
audio snippet and asked to adjust the volume to a comfortable 
listening level. Participants either told the experimenter to adjust the 
volume level (Lab 1) or adjusted it themselves by pressing the volume 
buttons on the participant’s smartphone (BTL).

2.5 EEG acquisition

EEG was recorded with a wireless 32-channel direct current (DC) 
amplifier (SMARTING Pro, mBrainTrain, Belgrade, Serbia). The amplifier 
was attached to the back of the EEG cap (EasyCap GmbH, Herrsching, 
Germany). During the first appointment, the EEG of N = 10 participants 
was recorded with a 32 Ag/AgCI passive electrode montage (international 
10–20 system, EasyCap, Berlin). In the second appointment, the same 
participants were equipped with two mobile electrode arrays called 
cEEGrids. The cEEGrid is a c-shaped array of ten flex-printed electrodes 
(AG/AgCI) (Debener et al., 2015). The other half of the participants 
(N = 10) were equipped with cEEGrids in the first appointment and with 
the 32-channel cap in the second appointment. The current study focuses 
on the cap data, cEEGrid results will be presented elsewhere. For cap 
measurements channel FCz served as a reference electrode. EEG was 
recorded with a sampling rate of 250 Hz. We prepared the electrode sites 
with alcohol and an abrasive electrolyte gel (Abralyt HiCl, EasyCap 
GmbH, Herrsching, Germany). Impedances were maintained below 
10 kΩ. As data acquisition lasted for more than three h impedance was 
regularly checked and, if necessary, corrected during breaks. The EEG 
signal was transmitted wirelessly via Bluetooth to a smartphone 
(participant phone, Samsung S21) with a running Smarting application 
(v2, mBrainTrain, 2016, Fully Mobile EEG Devices). EEG data were 
converted into an LSL stream and sent into the PHL Wi-Fi network (see 
section 2.3.3.).

3 Analysis

3.1 Pre-processing

3.1.1 EEG
Electroencephalography data were pre-processed and analyzed 

offline using MATLAB R2022b (MathWorks, Inc., Natick, 
United States) and EEGLAB v2022.0 (Delorme and Makeig, 2004). In 
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the first step, data for each story were extracted from raw data 
recordings. For each participant and session, we had twelve segments 
consisting of 3 (Lab 1, BTL, Lab 2) × 4 (four stories presented in each 
block) data sets. Each recording lasted approximately nine min. 
Preprocessing and artifact reduction were carried out in two ways: in 
the first preprocessing, pipeline data were high-pass filtered at a cutoff 
frequency of 0.5 Hz (FIR, hamming, filter order 1652) and low-pass 
filtered at a cutoff frequency of 40 Hz (FIR, hamming, filter order 86). 
Then, the root mean square (RMS) of each channel was calculated and 
channels exceeding two standard deviations above the mean RMS were 
removed and interpolated. Additionally, bad data sections were 
identified based on high RMS values across multiple channels. 
Identified sections were removed from the data set (in two participants 
on average 5.1 s). In the second, more elaborate preprocessing pipeline, 
an additional Infomax independent component analysis (ICA) 
(Delorme and Makeig, 2004) was applied. ICA was conducted as 
follows. Data were first high-pass filtered at 1 Hz (FIR, hamming, filter 
order 828, using EEGLAB function pop_eegfiltnew), and noisy 
channels were removed. For each participant, data of all blocks were 
concatenated and cut into consecutive 1-s epochs. Epochs containing 
atypical artifacts were rejected based on probability [standard deviation 
steps (SD) = 3] and kurtosis criteria (SD = 3). ICA components 
reflecting stereotypical artifacts (i.e., eye blinks) were manually 
identified and removed by back-projecting the remaining components 
to the continuous raw data (on average 3.1 components removed). 
After ICA component-based data correction, previously removed 
channels were interpolated. In both pre-processing pipelines, data were 
subsequently low-pass filtered at a cutoff frequency of 15 Hz (FIR, 
hamming, filter order 222, pop_eegfiltnew), re-referenced to common 
average, downsampled to 64 Hz, and normalized by dividing them by 
their standard deviation.

3.1.2 Speech envelopes
Speech envelopes were created using the function mTRFenvelope 

from the mTRF toolbox v2.3 (Crosse et  al., 2016). This function 
extracts the envelope computing the root mean square (RMS) of the 
original audio signal (default window parameter = 1). To model 
human hearing, RMS intensity is logarithmically scaled to a power 
value of 0.3. Finally, the transformed signal is down-sampled to the 
new sampling rate of the EEG (64 Hz).

3.2 Auditory attention decoding

The human brain tracks low-frequency fluctuations of speech. 
As a consequence, features of these stimuli are represented in 
neural activity (Aiken and Picton, 2008; Ding and Simon, 2012a). 
Methods were developed to predict the neural response to known 
stimuli (encoding models) or reconstruct stimuli features from 
neural activity (decoding models). In the realm of cortical speech 
tracking, multivariate linear regression models are employed to 
relate features of speech stimuli to corresponding EEG (for a 
summary of auditory attention identification methods see 
Alickovic et  al., 2019). In the current study, the multivariate 
Temporal Response Function (mTRF) Toolbox (v2.3) was used to 
evaluate the association between neural signals and speech (Crosse 
et al., 2016). A multivariate linear regression decoding model was 
trained on the attended envelope using time lags between 0 and 

500 ms with a 45-ms moving window and 30-ms overlap. Trained 
decoders were applied to reconstruct the attended and ignored 
speech envelopes with no knowledge of the original stream itself. 
The magnitude of neural tracking across different listening 
conditions was evaluated based on the resulting correlation values 
between reconstructed and original speech envelopes (Pearson 
correlation). Decoding performance was quantified by the 
percentage of trials in which the reconstructed stimulus correlated 
more strongly with the original attended than with the original 
ignored stimulus (decoding accuracy). The chance level of 
decoding accuracies was based on a binomial significance threshold 
at an alpha confidence limit of 0.05. As in the current study the 
amount of data per subject and condition was relatively low 
(nine min per subject and condition; cf. Crosse et  al., 2021), 
subject-dependent and subject-independent models were employed 
and evaluated. Subject-dependent models typically result in better 
model performance, yet model generalizability suffers if the sample 
size per subject and condition is small. Alternatively, subject-
independent models can be  designed to improve model 
generalization, yet model performance is typically lower (Crosse 
et al., 2021).

3.2.1 Subject-independent model
For each subject and condition, EEG data and envelopes of 

attended and ignored speech were partitioned into non-overlapping 
60-s data segments (mTRFpartition). For every condition, EEG data 
as well as speech envelopes of all subjects were concatenated into 
three vectors, respectively. A leave-one-out cross-validation was 
performed to determine the optimal regularization parameter 
(lambda) from a given set of seven values ranging from 10^−6 to 
10^+6 (mTRFcrossval). For this purpose, data were partitioned into 
9*20 (in BTL condition 9*19) folds. Each fold contained 1 min of 
data. One of the folds was held out as a test set, while the rest served 
as training set. The lambda corresponding to the maximum 
correlation value was used to train the model on the attended speech 
envelope and the corresponding EEG (mTRFtrain). Finally, the 
model of the attended speech envelopes was tested using the 
held-out test set of attended and ignored speech envelopes, 
respectively (mTRFpredict). This resulted in correlation values 
between the reconstructed and the original attended and ignored 
speech envelope for 34 time lags between 0 and 500 ms for every 
trial. These model statistics were used to assess differences in neural 
tracking across different listening conditions.

3.2.2 Subject-dependent model
Electroencephalography data and envelopes of attended and 

ignored speech were again partitioned into non-overlapping 60-s data 
segments. This resulted in a total of nine data segments per condition. 
An iterative 9-fold cross-validation procedure was performed to 
determine the smoothing parameter lambda. The remaining data 
segment was held out as a test set to validate the model. For cross-
validation, the same set of lambda values as used in the subject-
independent model was applied. Then, a decoder was trained on the 
training set and tested on the left-out test set. Model testing was 
performed on the attended and the ignored speech envelopes, 
respectively. Subject-dependent model results were compared for 
different neural tracking conditions and used to investigate subject-
specific differences in neural tracking estimates.
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3.3 Robustness of neural tracking

We also evaluated the robustness of neural tracking across 
conditions, by analyzing correlations of neural tracking between 
different challenging acoustic scenarios. For this purpose, participants 
were ranked according to neural tracking magnitude within each 
condition. Next rankings between conditions were correlated. High 
correlations between two conditions indicate robust neural tracking 
of the attended speaker within subjects across different listening 
contexts, suggesting a low influence or even absence of detrimental 
effects of listening condition or movement.

3.4 Neural tracking in quiet and busy 
streets

Participants walked along a mostly quiet street (Küpkersweg, 
Oldenburg) leading toward the busier main street (Ammerländer 
Heerstraße, Oldenburg). They walked along the main street for 
approximately two min before turning onto a less busy street again. 
During data collection, the experimenter sent an event marker 
whenever the participant entered and left the main street. The mix of 

environmental noise and the simultaneously presented speech signal 
was recorded via microphones located behind the ears of the 
participants. Based on the manual markers we  extracted two 
two-minute segments of signal + noise audio recording. The first 
segment was extracted from the beginning of the BTL measurement 
where participants walked along the quiet. This segment was labeled 
‘quiet street’. The second segment started when participants turned 
onto the main street was labeled ‘busy street’. Then, neural tracking 
results of the subject-dependent decoding model during these 
segments were extracted. This way it was possible to explore whether 
neural tracking systematically differs in quiet compared to busy streets.

4 Results

4.1 Questionnaire data

After each story, participants answered questions concerning the 
content of the presented audio. Additionally, participants indicated 
their level of tiredness and exhaustion on a scale from one to eight 
(1 = not at all, 7 = extremely tired/exhausted). In the Lab 1 measure, 
average scores of correct answers to content questions ranged from 

FIGURE 3

Subject-independent model, Lab 1 and Lab 2. (A,B) Morphology of neural tracking from 0 to 500 ms relative to the speech envelope. Displayed for single 
(red) and dual (attended: light green, ignored: dark green) speaker conditions in Lab 1 (A) and Lab 2 (B) measurements. Shaded colored areas show +/− 1 
standard error. The shaded gray area represents the time window used for analysis. (C,D) Comparison of neural tracking within and between Lab 1 and Lab 2 
single-and dual-speaker conditions (C: without background cafeteria noise; D: with background cafeteria noise) ***p < 0.001.
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3.15 to 3.55 (Table 1). The lowest scores were obtained for the dual-
speaker condition with cafeteria background noise. Average tiredness 
ranged from 3.15 to 3.85 (3 = a little tired, 4 = medium tired, Table 1) 
and average exhaustion ranged from 1.8 to 4.35 (1 = effortless, Table 1). 
High tiredness and exhaustion were reported for the dual-speaker 
condition with background noise. In the Lab 2 measure, average 
scores on content questions ranged from 2.7 to 3.1. The lowest score 
was observed for the dual-speaker condition without background 
noise. Tiredness ranged on average between 3.4 and 3.9 and average 
exhaustion between 1.7 and 4.15. The highest tiredness scores were 
observed for the single-and dual-speaker conditions with background 
noise. Average exhaustion was highest for the dual-speaker condition 
with background noise. In the BTL block average scores on content 
questions were found between 1.95 and 3.47 with the lowest scores for 
the dual-speaker walking condition. Average tiredness ranged from 
2.21 to 3.05 (2 = very little tired, 3 = a little tired). The highest tiredness 
was observed for the dual-speaker sitting condition. A different 
picture was observed for average exhaustion. Here, scores ranged 
between 1.84 and 6.11 (6 = very exhausting), and the highest score was 
obtained in the dual-speaker walking condition.

4.2 Auditory attention decoding

4.2.1 Subject-independent model
Based on neural tracking morphology, time lags between 120 and 

270 ms after stimulus onset were used for the analysis (Figures 3A,B, 
shaded gray area). Within Lab 1 and Lab 2 measurements, 
we observed significantly higher neural tracking estimates for single-
speaker listening conditions than listening conditions in which two 
speakers were presented simultaneously. This was seen for the easier 
listening conditions and for the more complex scenarios including 
cafeteria background noise (Lab 1: Figure  3C, no cafeteria noise: 
Wilcoxon signed-rank test Z = 4.73, p < 0.001; Figure  3D: with 
cafeteria noise: Wilcoxon signed-rank test Z = 5.55, p < 0.001; Lab 2: 
Figure 3C, no cafeteria noise: Wilcoxon signed-rank test Z = 7.52, 
p < 0.001, Figure 3D: with cafeteria noise: Wilcoxon signed-rank test 

Z = 5.37, p < 0.001). A similar pattern of results was observed for the 
difference in neural tracking between the attended and the ignored 
speaker in the dual-speaker conditions. In both Lab 1 and Lab 2 
measures, significantly higher neural tracking of the attended speaker 
than the ignored speaker was evident. Again, this effect was found for 
the easier and the more complex listening conditions (Lab 1: 
Figure 3C, no cafeteria noise: Wilcoxon signed-rank test Z = 6.83, 
p < 0.001, Figure 3D: with cafeteria noise: Wilcoxon signed-rank test 
Z = 6.86, p < 0.001; Lab 2: Figure 3C, no cafeteria noise: Wilcoxon 
signed-rank test Z = 6.87, p < 0.001, Figure 3D, with cafeteria noise: 
Wilcoxon signed-rank test Z = 7.51, p < 0.001). The difference in 
neural tracking between single-speaker with and without cafeteria 
background noise was not significant in Lab 1 or Lab 2 measures. For 
dual-speaker conditions, we additionally calculated average decoding 
accuracies representing the percentage of correctly reconstructed 
trials. In the laboratory recordings without background noise, 76.1% 
of trials were reconstructed correctly in Lab 1. In Lab 2, decoding 
accuracy was at 78.89%. In conditions with background cafeteria 
noise, the maximum decoding accuracies were at 75 and 78.9%, 
respectively (statistical chance level: 54.4%). Neural tracking in the 
BTL condition was analyzed in the same time lags as for Lab 1 and 
Lab 2 (between 120 and 270 ms after stimulus onset, see Figure 4A). 
When looking into results for the BTL measure, we found significantly 
higher neural tracking estimates for single-speaker conditions than 
dual-speaker conditions. This pattern was evident in sitting and 
walking conditions (Figure  4C, sit: Wilcoxon signed-rank test 
Z = 3.75, p < 0.001; walk: Wilcoxon signed-rank test Z = 2.41, 
p = 0.016). In both movement conditions, neural tracking of the 
attended speaker was systematically higher than tracking of the 
ignored speaker (Figure 4C, sit: Wilcoxon signed-rank test Z = 4.82, 
p < 0.001; walk: Wilcoxon signed-rank test Z = 2.45, p = 0.014). As for 
single-speaker conditions, neural tracking magnitude was higher in 
the sitting than the walking condition (Figure 4B: Wilcoxon signed-
rank test Z = 3.76, p < 0.001). A similar pattern occurred in dual-
speaker conditions. Here, neural tracking of the attended speaker in 
the sitting condition was higher than in the walking condition 
(Figure 4C: Wilcoxon signed-rank test Z = 2.26, p = 0.024). Average 

TABLE 1 Group average results of questionnaires (content of narrative, tiredness, and exhaustion) for different listening conditions in Lab 1, Lab 2, and 
BTL measurements, respectively.

Block Listening condition Content (max 4) Tiredness (1  =  not at all; 
8  =  extreme)

Exhaustion (1  =  not at 
all; 8  =  extreme)

Lab 1 Single 3.35 3.15 1.8

Dual 3.45 3.05 3.6

Single + background 3.55 3.25 3.15

Dual + background 3.15 3.85 4.35

Lab 2 Single 3.65 3.4 1.7

Dual 2.7 3.7 3.1

Single + background 2.95 3.9 3.35

Dual + background 3.1 3.9 4.15

BTL Sit single 3.47 2.58 1.84

Sit dual 2.89 3.05 3.74

Walk single 2.47 2.21 4.21

Walk dual 1.95 2.26 6.11
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decoding accuracies reached up to 71.4% in the sitting condition and 
63.2% in the walking condition (chance level: 54.4%).

4.2.2 Subject-independent model with ICA
When data were cleaned with ICA, we found significantly higher 

levels of neural tracking in single-speaker conditions of Lab 1 than 
Lab 2 single-speaker conditions (without background noise: Wilcoxon 
signed-rank test Z = −2.14, p = 0.03; with background noise: Z = −2.28, 
p = 0.02). A similar pattern was observed for dual-speaker conditions. 
Here, results confirmed significantly higher neural tracking estimates 
for the attended speaker in the dual-speaker condition in Lab 1 than 

Lab 2 (see Supplementary Figures S4, S5). This difference was larger 
in dual-speaker conditions with background noise (with background 
noise: Wilcoxon signed-rank test Z = −3.88, p = 0.0001; without 
background noise: Z = −1.98, p = 0.05). As for the BTL measure, when 
data were cleaned with ICA the difference in neural tracking between 
sitting and walking conditions was more pronounced. This was 
observed for single-and dual-speaker conditions (single speaker: 
Wilcoxon signed-rank test Z = 4.57, p > 0.0001, dual speaker: Z = 5.13, 
p > 0.0001). Within the walking condition, results indicate a stronger 
difference in neural speech tracking between the attended speaker in 
single-and dual-speaker conditions when ICA cleaned data are used 

FIGURE 4

Subject-independent model, BTL. (A) Morphology of neural tracking from 0 to 500  ms relative to the speech envelope. Displayed for single (red) and 
dual speaker (attended: light green, ignored: dark green) conditions in BTL movement conditions (sit and walk). The shaded gray area represents the 
time window used for analysis. (B) Comparison of single-speaker conditions between BTL movement conditions. (C) Comparison of single-and dual-
speaker listening conditions within and between BTL movement conditions. Lines between boxplots show single-subject statistics. Shaded colored 
areas show +/− 1 standard error. * p < 0.05. ** p < 0.01. *** p < 0.001.
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(Wilcoxon signed-rank test Z = 3.38, p > 0.001). As results with the less 
elaborate pre-processing pipeline are still satisfactory and comparable 
to results obtained with ICA-cleaned data, further analyses were 
performed on data cleaned via the less elaborate and quicker 
preprocessing pipeline.

4.2.3 Subject-dependent model
Neural tracking results were generally higher for the subject-

dependent model (see Supplementary Figures S1, S2). For Lab 1 and 
Lab 2, results between subject-dependent and subject-independent 
models were comparable. As for the BTL measure, we found a larger 
difference between attended and ignored speakers in the walking 
condition for the subject-dependent model (Wilcoxon signed-rank 
test Z = 3.46, p < 0.01).

4.3 Robustness of neural tracking

The following within-subject analyses were performed with 
neural tracking results of the subject-dependent model. When 
comparing the robustness of neural tracking for participants across 
listening conditions and contexts, we  obtained mixed results. 
We  observed significant rank correlations between different 
listening conditions within and between Lab 1 and Lab 2 
measurements (Figure  5). In Lab 1, neural tracking between 
different listening conditions seemed to be more robust for more 
complex conditions. Here, rank correlations between the single-
speaker condition with background noise and the dual-speaker 
condition with background noise were significant (r = 0.55, p = 0.02) 
as well as between the dual-speaker condition without background 
noise and the dual-speaker condition with background noise 
(r  = 0.51, p = 0.03). Interestingly, we  also found significant rank 
correlations between less complex listening conditions in Lab 2 
measurements. Correlations between the single-speaker condition 
without and the single-speaker condition with background noise 
were significant (r = 0.71, p = 0.001). Moreover, a significant 

association between ranks in the single-speaker condition without 
background and the dual-speaker condition without background 
was observed. To explore neural tracking robustness over time, 
ranked neural tracking results in conditions of Lab 1 measurements 
were compared to those in the Lab 2 measurement. Here, rank 
correlations between Lab 1 and Lab 2 in single-and dual-speaker 
conditions without background noise were significant (single 
speaker: r = 0.71, p = 0.001; dual speaker r = 0.51, p = 0.03). There was 
no significant rank correlation within the BTL measure or between 
Lab 1 or Lab 2 and the BTL measure.

4.4 Neural tracking in quiet and busy 
streets

We also explored whether neural tracking was different for data 
recorded in busy compared to calm street segments. On a group 
average level, we did not find a significant difference in neural tracking 
between busy and calm street conditions (calm vs. busy street: single-
speaker condition Wilcoxon signed-rank test Z = 0.04, p = 0.97; dual-
speaker condition Z = 0.89, p = 0.38). Then, we also looked into rank 
correlations between busy and calm streets in order to test whether 
neural tracking remains robust across busy and calm street sections in 
single-and dual-speaker conditions for individual participants. Here, 
we also did not find significant associations (calm vs. busy street: 
single-speaker condition r = 0.19, p = 0.43; dual-speaker condition 
r = 0.14, p = 0.57).

5 Discussion

We used a commonly employed single-and dual-speaker 
paradigm to study auditory attention in real-life contexts. Single-and 
dual-speaker scenarios were presented in quiet and noisy situations 
inside and outside of the laboratory, while participants were taking a 
walk along quiet and busy streets. This study aimed to test whether 

FIGURE 5

Within-subject robustness of neural tracking between different listening conditions and measurement context. Grey boxes represent conditions with 
background noise.
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EEG-based auditory attention decoding is feasible under conditions 
with multiple sources of distraction and movement.

In order to ensure that participants followed the to-be-attended 
speaker they were asked to answer multiple-choice questions about 
the content of the most recently presented story. Participants were also 
instructed to rate their subjective level of tiredness and exhaustion. 
The results of the content questions show that in the laboratory blocks 
participants were on average able to answer the majority of questions 
correctly, similar to previous laboratory studies employing this 
paradigm (Jaeger et al., 2020; Mirkovic et al., 2015). In the BTL block, 
the results were mixed. While on average three out of four questions 
were answered correctly in the single-speaker sitting condition, lower 
performance was observed in the single-speaker walking condition. 
The walking condition with two simultaneous speakers resulted in the 
lowest number of correctly answered content questions on average, 
indicating that participants had listening difficulties or were highly 
distracted by real-life events occurring in the walking conditions. 
We suggest that uncontrolled ambient noise may have temporarily 
masked the speech stimuli. Reported tiredness ranged, on average, 
between “a little tired” and “medium tired” for all conditions within 
both laboratory blocks. Despite the length of the recording, 
participants did not feel excessively tired at the end of the 
measurement. Tiredness was rated lowest in the BTL walking 
conditions, most likely due to walking in fresh air. In terms of 
subjective exhaustion, the results show that single-speaker conditions 
in the laboratory and BTL blocks were rated on average less 
exhausting. Participants rated the dual-speaker condition with 
simultaneous background noise as the most exhausting laboratory 
condition. In the BTL measurement, the dual-speaker walking 
condition was perceived as the most exhausting even though it was 
rated as at least tiring. These results clearly indicate that participants 
were challenged by the task context, as intended. The pattern of the 
results suggests multiple influences of complex listening contexts on 
subjective wellbeing. However, despite the high ratings of exhaustion 
reported, we found clear evidence of attention-driven neural speech 
tracking even in the most complex listening conditions.

To investigate neural speech tracking, subject-independent and 
subject-dependent multilinear decoding models have been developed 
(Alickovic et al., 2019). Typically, subject-dependent models perform 
better as they can account for intersubject variability in neural 
responses (Crosse et al., 2021). However, due to the small amount of 
data per subject and condition, the generalizability of model results is 
modest (Crosse et al., 2021). Therefore, a subject-independent model 
was trained using data from all subjects within each listening condition.

In the Lab 1 and Lab 2 measurements, both models showed 
stronger neural tracking for to-be-attended speakers in single-speaker 
than dual-speaker conditions. This was found for conditions with and 
without background noise. Neural tracking estimates of both models 
were on average significantly higher for the to-be-attended than for 
the to-be-ignored speaker in dual-speaker conditions with and 
without background cafeteria noise. No significant differences were 
observed between Lab 1 and Lab 2 conditions. Decoding accuracies, 
as measured by the percentage of trials in which the reconstructed 
stimulus correlated more strongly with the original attended stream 
than with the original ignored stream, were above the chance level for 
both models in all dual-speaker conditions. Taken together, these 
results suggest that processing one instead of two speakers is reflected 
in a decrease in neural tracking of the attended speaker. Even though 

the second speaker was irrelevant to the task. The distraction induced 
by the second speaker as well as the additional load on the auditory 
system to identify and segregate specific features of the to-be-attended 
speaker may have driven this effect (O’Sullivan et al., 2019; Shinn-
Cunningham and Best, 2008). Interestingly, decoding accuracy was 
generally higher in the two-speaker condition with cafeteria 
background noise than in the two-speaker condition without cafeteria 
noise. The mixture of the ignored speaker and the background noise 
as to-be-ignored distractors may have been spectrally less similar to 
the to-be-attended speaker than in the dual-speaker condition with 
just one competing speaker. The to-be-attended speaker may have 
been easier to separate from the background noise as a perceptual 
object and therefore easier to attend to (Shinn-Cunningham and 
Best, 2008).

In the next step, we  investigated the influence of more or less 
extensive preprocessing on the performance of the subject-
independent model. We compared model results based on minimally 
pre-processed data with model results based on data that had 
undergone an ICA. While the results remained similar within Lab 1 
and Lab 2 measurements, we found significant differences between 
Lab 1 and Lab 2 measurements. In both single-and dual-speaker 
conditions, we find higher neural tracking estimates in the Lab 2 
conditions. One explanation could be that as the recordings lasted on 
average approximately 3 h, ICA might reduce some artifacts related to 
the long recording duration. Taken together, our results support 
previous findings in that it is possible to correctly identify an attended 
speaker within a dual-speaker listening condition based on EEG 
(Mirkovic et al., 2015; O’Sullivan et al., 2015). Furthermore, we find 
that even in more complex scenarios with a background scene, 
significantly higher neural tracking of the attended speaker can still 
be shown (Fuglsang et al., 2017). Decoding accuracies even suggest a 
facilitating effect on attention in moderately complex and engaging 
listening contexts (Herrmann and Johnsrude, 2020). On average 
neural tracking seemed to improve from Lab 1 to Lab 2 measurements. 
Participants may have been more engaged and motivated to attentively 
follow the story attentively after being presented with the same 
consecutive narrative throughout the experiment, or they may have 
simply benefitted from taking a walk between Lab1 and Lab2.

In general, the results of the subject-independent and the subject-
dependent models are more mixed and less comparable in the BTL 
measurement than the laboratory measures (Lab 1 and Lab 2). This 
may be explained by the fact that differences between the subject-
dependent and subject-independent models are typically driven by 
inter-subject variability and that mobile EEG recordings outside the 
laboratory are naturally subject to more inter-subject variability due 
to subject-specific motion artifacts and uncontrollable environmental 
distractions. Similar to the results of Lab 1 and Lab 2, in the 
BTL-sitting condition the subject-independent model showed 
significantly higher neural tracking of the single-speaker condition 
than the neural tracking of the to-be-attended speaker in the dual-
speaker condition. We did not find this pattern in the results of the 
subject-dependent model. Interestingly, although the neural tracking 
of the attended speaker was significantly higher than that of the 
ignored speaker in the walking condition, the difference was more 
pronounced in the subject-dependent model.

Confirming and extending our previous study (Straetmans et al., 
2022), neural tracking of the single speaker and attended speaker 
tracking in dual-speaker conditions was higher in the sitting than in 
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the walking conditions. This was found for both the subject-
independent and the subject-dependent model. While decoding 
accuracies were above chance in both conditions, several factors may 
contribute to lower neural tracking in mobile recording conditions. 
First, EEG data in walking conditions may still be contaminated with 
residual motion artifacts (Jacobsen et al., 2020). Second, natural 
walking along city streets may have distracted participants from the 
auditory attention task, resulting in lower neural tracking estimates 
(Straetmans et al., 2021). Finally, the additional cognitive processes 
associated with walking may reduce the resources available for a 
cognitive task such as auditory attention (De Vos et al., 2014; Reiser 
et al., 2020). Along the same lines, Ladouce et al. (2019) suggest that 
the processing of movement-related visual and inertial stimuli may 
play a role. Given limited attentional resources, performing cognitive 
and motor tasks simultaneously may lead to cognitive motor 
interference (Al-Yahya et al., 2011; Leone et al., 2017). In the current 
study, a complex and realistic environment required the walking 
participant to monitor and process additional, potentially relevant 
information, such as bicycles on the path or cars on the road. All of 
these additional tasks may have led to the reduction in neural 
tracking during walking that we see in our data. Although the results 
of the current study are comparable to the results of our previous 
mobile attention decoding study, in the previous study decoding 
accuracies for sitting and walking conditions were generally higher 
and differences between sitting and walking conditions were not as 
pronounced as in the current study. One reason for this may be that 
the previous study took place in a large empty cafeteria hall with a 
level floor and no other sources of uncontrolled visual or auditory 
distraction. An easier movement condition may result in less 
cognitive-motor interference (Reiser et  al., 2020). In addition, 
terrain complexity has been shown to influence gait control 
demands, which may also help to understand the differences 
between our previous and current studies (Jacobsen et al., 2022). 
However, the most likely factor that may have played a role is the 
mode of audio presentation. In the first study, audio was presented 
through noise-shielding in-ear headphones, whereas in the current 
study, small receivers placed in the ear canal with virtually no noise-
shielding capacity were used. Given the goal of robust auditory 
attention tracking in real-life environments, future studies should 
be designed to disentangle the contributions from motor, perceptual, 
and cognitive domains.

We also compared the results obtained for minimally 
pre-processed and more rigorously pre-processed EEG data. While 
several factors could be at play, we conclude that ICA processing does 
not appear to have beneficial effects on neural tracking estimates in 
the walking condition. Similar to previous study (Jaeger et al., 2020; 
Straetmans et al., 2021), it appears that simple processing pipelines 
work well for neural tracking, even in mobile scenarios.

5.1 Robustness of neural tracking

We expected that if participants were able to listen attentively to 
two consecutive stories without disengaging in between, the neural 
tracking estimates between the two stories would be similar within 
this participant. However, if one story captured attention better than 
the second, participants may have been more prone to mind-
wandering or boredom. As a result, neural tracking between these two 

stories may be more variable. In this analysis, we compared the rank 
correlations of different participants across different listening 
conditions in order to explore whether attention is stable across 
listening demands for individual participants. We found that listeners 
showed stable neural tracking performance across the more complex 
listening conditions during Lab 1 measures (i.e., dual speaker–dual 
speaker with background; single speaker with background–dual 
speaker with background). Interestingly, a similar pattern was 
observed in the Lab 2 measure but for the less demanding listening 
conditions (i.e., single speaker–dual speaker, single speaker–single 
speaker with background). We interpret this result as being due to 
resource exhaustion over the course of the long measurement. In Lab 
1, the less complex listening conditions may have not have demanded 
sufficient resources for participants to focus narrowly on the task at 
hand. Due to this under-stimulation, attention may have wandered 
(Herrmann and Johnsrude, 2020) and neural tracking of the attended 
speaker was variable across the less complex listening conditions. This 
may have shifted in Lab 2 where attention resources are lower and may 
only allow for targeted processing of the less complex listening 
conditions. Here, a certain resource limit may have been reached, and 
sustained attention to the attended speaker in more complex listening 
conditions was more difficult and therefore more variable 
across participants.

5.2 Neural tracking in quiet and busy 
streets

We also examined neural tracking estimates during busy and quiet 
background street noise conditions. Contrary to our expectation that 
neural tracking should be lower when participants walked along busy 
streets, we found no clear differences. Note that background noise was not 
manipulated but given in these recording conditions. Due to the 
instantaneous activity on the quiet and busy street segments, they were in 
the end highly similar for some participants. In addition, the duration of 
the recording may have been too short to detect any effects. On a positive 
note, neural tracking was still possible in uncontrolled, qualitatively more 
or less complex auditory environments.

5.3 Conclusion and outlook

This study demonstrates that EEG-based auditory attention 
decoding can be successfully performed on data recorded in mobile, 
uncontrolled real-life situations. Interestingly, this was possible 
without any computationally intensive pre-processing of the EEG 
data. While the acquisition of good quality EEG signals outside the 
laboratory remains a challenge, our results complement other recent 
study reporting the successful acquisition of meaningful brain 
electrical signals during full body movement (e.g., Klapprott and 
Debener, 2024; Papin et al., 2024).

Specifically, our results suggest that neural measures of auditory 
attention can be  identified in several different natural listening 
situations. Compared to previous study on auditory attention in 
mobile situations (e.g., De Vos et al., 2014; Debener et al., 2012; 
Ladouce et  al., 2019), our study extracts neural signatures of 
attention to continuous natural stimuli, rather than discrete, artificial 
stimuli. EEG monitoring of attention to speech in noisy 
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environments could have several applications, such as in educational 
settings, in various workplaces, or through the advancement of 
assistive technologies such as hearing aids. However, to achieve these 
goals, the technological readiness of mobile, motion-tolerant EEG 
systems needs to be improved (cf. Bleichner and Debener, 2017). It 
remains to be shown whether similar results can be achieved with 
unobtrusive ear EEG systems (Bleichner et al., 2017; Holtze et al., 
2022), which could be worn for longer periods of time. Furthermore, 
online, near real-time auditory attention decoding remains a 
challenge (Geirnaert et al., 2022; Jaeger et al., 2020), as is the case 
with self-application of EEG systems (da Silva Souto et al., 2022). 
Finally, alternative, computationally sparse decoding models that do 
not rely on a priori known, clean streams or spatial locations 
(Geirnaert et  al., 2021a) of auditory objects are needed to move 
mobile EEG-based attention for speech decoding from basic 
research to real-world application.
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