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Introduction: Social ties play a crucial role in determining the health and 
wellbeing of individuals. However, it remains unclear whether the capacity to 
process social information distinguishes well-connected individuals from their 
less-connected peers. This study explored how an individual’s social network 
structure influences the dynamic processing of group norms, utilizing event-
related potentials (ERPs).

Methods: The study involved 43 university students from the same class who 
participated in a social network study measuring metrics such as real-life social 
network size, in-degree, out-degree, and betweenness centrality. Subsequently, 
27 students participated in an EEG study assessing their willingness to engage in 
various exercises after being exposed to peer feedback or in its absence.

Results: The results indicate that an individual’s social network structure is 
significantly associated with the dynamic processing of group norms. Notably, 
well-connected individuals exhibited larger ERP amplitudes linked to feedback 
(e.g., N200, P300, and LPP), greater functional segregation within the brain 
network (e.g., local efficiency and clustering coefficient), and enhanced 
synchronization within frontal area and across different brain areas.

Discussion: These findings highlight that well-connected individuals possess 
enhanced sensitivity and efficiency in processing social information, pointing to 
potential areas for further research on the factors influencing social network evolution.
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1 Introduction

The dynamic and diverse social connections in daily life form our social network. The social 
network structure of an individual, such as network size and complexity, provides insights into 
how an individual navigates within their social world and reflects their role within a social group 
(Baek et al., 2022; Han et al., 2021). Moreover, it is widely recognized as a critical determinant 
influencing individuals’ health and wellbeing (Bryant et al., 2017; Mori and Haruno, 2021).

Can the potential impacts of social network structures on individuals extend to aspects of 
social cognitive processing? Previous studies found that individuals occupying various core-
periphery positions within a social network demonstrate differing cognitive processes or 
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capacities (Brashears et al., 2020). Well-connected Individuals, such 
as those with numerous friends or with many opportunities to connect 
with otherwise isolated individuals, are typically central-positioned in 
their social network and have enhanced opportunities for information 
exchange and complex social scenarios exposure (Han et al., 2021; 
Han et al., 2023). In order to establish and maintain their prominent 
role within the social group, well-connected individuals must process 
social information, such as understanding the thoughts, perspectives, 
and mental states of others, more rapidly and efficiently (Stiller and 
Dunbar, 2007; O’Donnell et al., 2017). Nonetheless, it is less clear how 
the social cognitive processes of individuals vary based on their social 
network structure within a specific group. In-depth explorations of 
social networks and their potential impacts on social cognitive 
processes may yield a more profound comprehension of the 
distinguishing factors that can set well-connected individuals apart 
from other individuals.

Numerous studies have utilized various social tasks to investigate 
how social networks modulate brain activity during social cognition 
processes. Previous research has shown that larger and more complex 
personal social network structures enhance task performance, 
including increased sensitivity to biological motion (Kirby et al., 2018), 
improved accuracy in perspective-taking (Meyer and Lieberman, 
2016), increased consideration of other people’s opinions in social 
influence task (O’Donnell et  al., 2017), enhanced social working 
memory (Krol et al., 2018) and better response inhibition in go/no-go 
tasks (Tompson et al., 2020). Furthermore, social network structure has 
been identified as a positive predictor of neural activity and functional 
connective strength in brain regions associated with social cognition, 
such as the medial prefrontal cortex, orbitofrontal cortex, and 
temporoparietal junction, during the execution of these social tasks 
(Baek et al., 2022; Krol et al., 2018; Meyer and Collier, 2020; O’Donnell 
et al., 2017; Stiller and Dunbar, 2007). However, despite these findings, 
previous studies have yet to deconstruct the social cognition processes. 
Therefore, the current study employed electroencephalography (EEG) 
with high temporal resolution to gain a deeper understanding and 
refine the knowledge of how the dynamic process underlying social 
cognition varies with social network structure.

This study focused on processing group norms as a critical social 
cognitive process. The recognition and adherence to group norms are 
essential for the successful establishment and maintenance of social 
relationships, suggesting that well-connected individuals may exhibit 
greater sensitivity to their peers’ norms, either as a causal factor or as 
a consequence of their network centrality (Baek et al., 2020; Han et al., 
2023). The processing of group norms by individuals may involve the 
detection of the gap between self and others (i.e., self-group conflict), 
the evaluation of whether to approach or avoid the group based on 
these conflicts, and the final decision regarding whether to adjust 
behaviors to align with group norms (Shamay-Tsoory et al., 2019). In 
prior research, group norms are usually presented as feedback. Based 
on these studies, it has been observed that components in event-
related potentials (ERPs) like N200, P300, and LPP exhibit differences 
when individuals encounter group norms as social feedback in 
contrast to conditions where group norms are absent (Chen et al., 
2012; Shestakova et al., 2013; Wang et al., 2019). The N200 component 
is a negative-going wave and peaks around 250–300 ms following the 
stimulus onset. The frontocentral N200 is involved in the anticipation 
of violation, negative feedback, and cognitive conflict, while posterior 
N200 is associated with visual attention to perceptual mismatch 

(Folstein and Petten, 2008; Wang Y. et al., 2020; Xie et al., 2016). The 
P300 wave, a positive-going wave occurring approximately 
300–500 ms post-stimulus onset, has been linked to processing 
feedback information for decision-making processes. Moreover, the 
P300 amplitude is commonly positively correlated with subsequent 
behavioral alterations (Valt et al., 2020; Han et al., 2023). The late 
positive potential (LPP), a continuous positive deflection beginning 
around 300 ms after stimulus presentation, reflects sustained attention 
processes and later phases of emotional evaluation during the 
reevaluation of social feedback. Notably, heightened LPP amplitudes 
are associated with social reward, which may be  induced by 
conforming to group norms (Li et al., 2022; Schindler et al., 2015).

Previous studies have identified the dissociative effects of social 
network structure on EEG components evoked by social feedback. In 
one of our recent studies, we manipulated individuals’ social network 
structures by assigning them to exercise support groups comprising 
either their nominated friends (high network centrality) or 
non-nominated classmates (low network centrality). Our findings 
demonstrated that in comparison to conditions without group norm 
presentation, self-group conflicts triggered a heightened negative-
going feedback-related negativity wave, observed solely in the high 
network centrality group rather than the low network centrality group. 
Interestingly, the effects of self-group conflicts on P300 did not exhibit 
discrepancies between the two groups (Han et  al., 2023). These 
findings suggest that an individual’s position within the social network 
influences their susceptibility to group norms without inducing 
subsequent behavioral alterations. However, it is worth noting that 
this study artificially manipulated individuals’ social network 
structures without utilizing real-life social network metrics.

In the present study, beyond focusing on ERP components, 
we  also investigated the connectivity efficiency of task-related 
functional brain networks constructed based on EEG synchronization 
across different frequency bands (Wang Y. et al., 2020). Brain networks 
exhibit complex structures and topological characteristics that can 
comprehensively depict cognition-related information exchange 
patterns and efficiency (Li et  al., 2020). Numerous studies have 
confirmed that EEG frequency bands are crucial neural indicators for 
various social processes such as social cognition, communication 
interactions, social function, emotional engagement, etc. Notably, the 
low-frequency bands activities, including alpha, delta, beta, and theta, 
are susceptible to negative social feedback (e.g., threats, conflicts) and 
are associated with subsequent reward evaluation and behavior 
adjustment (Balconi et al., 2018; Cavanagh, 2015; Leitner et al., 2014). 
On the other hand, high-frequency bands like gamma are implicated 
in processing feed-forward prediction errors and conceptual/
behavioral synchronization (Chen et al., 2022; van Pelt et al., 2016). 
However, minor muscle artifacts often contain power predominantly 
in the gamma band. Consequently, many ERP studies prefer to apply 
a low-pass filter to EEG signals at 30 Hz to mitigate these artifacts 
(Balconi et al., 2018; Fries et al., 2008). Due to concerns regarding 
motion artifacts, our study excludes the gamma band from analysis. 
Therefore, our study integrated ERP components and brain networks 
to delve deeper into the impact of an individual’s social network 
structure on social cognitive processing.

The present study aims to elucidate the associations between 
social network structure and dynamic neural processing underlying 
social cognition in exercise contexts. Previous studies have found that 
group norm is one of the most important determinants of individual 
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exercise behavior (Chung and Rimal, 2016). Observing peers in social 
networks engaging in leisure-time physical activities can enhance 
one’s motivation and participation in exercise (Ball et al., 2010; Hamari 
and Koivisto, 2015; Okun et al., 2003). Understanding how social 
norms influence individual exercise behaviors is essential for creating 
effective intervention strategies that can promote exercise. This insight 
holds potential value for practical application. To achieve this goal, 
we initially substituting the traditional consumption scenario in the 
classic social influence experiment paradigm with an exercise scenario 
(O’Donnell et al., 2017). Then, we employed multiple social network 
metrics to measure the extent of social connectedness, including an 
individual’s real-life social network size (i.e., the number of friends 
who can provide social support) as well as their social network 
structure within a specific group (e.g., in-degree, out-degree, and 
betweenness; see details below). Moreover, our study incorporated 
event-related potentials (ERPs) and EEG-based functional brain 
networks to comprehensively explore individuals’ dynamic cognitive 
processing during a social influence task. We  hypothesized that 
individuals with stronger connections would exhibit heightened 
sensitivity to self-group conflicts on exercise willingness and 
demonstrate increased efficiency in brain functional connectivity 
when making decisions during conflict situations.

2 Methods

2.1 Participants

A total of 43 university students, comprising 30 females and 13 
males with a mean age of 20.81 years (SD = 0.54), completed the initial 
social network questionnaire. All 43 subjects were from the same class, 
which had a total of 44 members, resulting in a response rate of 
97.72%. Among them, 27 students voluntarily participated in the 
subsequent behavioral and ERP experiment (six males; mean 
age = 20.85 years, SD =  0.53 years), while the remaining did not 
participate in any follow-up experiments. They were all right-handed, 
had normal or corrected vision, and had no history of psychiatric 
illness. All participants provided informed consent in accordance with 
the Institutional Review Board of Beijing Sport University guidelines 
and were treated in accordance with the Declaration of Helsinki.

2.2 Materials

Stimuli: A comprehensive set of 60 color images depicting distinct 
exercise behaviors were used as the experimental stimuli. The exercise 
behaviors included outdoor and indoor sports, such as swimming, 
strength training, etc. None of the pictures depicted explicit affective 
content, such as smiling faces (Han et al., 2023; Schinkoeth et al., 
2019). The development of the experimental stimuli and their 
characteristics are shown in the Supplementary material.

Social network metrics: Social network metrics were assessed 
as follows:

 1 Real-life social network size: The size of an individual’s real-life 
social network was measured by the Social Network 
Questionnaire developed by Lewis et al. (2011). Participants 
were requested to list their friends and family members with 

whom they maintain frequent contact (at least once every 
2 weeks). The real-life social network size was defined as the 
total number of listed individuals;

 2 In-class social network indicators: Participants were requested 
to nominate their particularly close friends within their class 
(Han et al., 2023; Hyon et al., 2020). Participants were asked to 
nominate at least one and no more than five friends to ensure 
that these nominations accurately reflected “particularly close” 
friendships. Based on the nominations provided by the 43 
participants, an in-class social network was constructed. 
Subsequently, we  analyzed three common social network 
indicators based on the in-class social network. For instance, 
degree centrality refers to the number of direct connections to 
an individual, including in-degree (number of received 
connections) and out-degree (number of sent connections). 
Meanwhile, betweenness centrality refers to the frequency with 
which an individual occupies the shortest paths connecting 
pairs of other individuals within the network (Han et al., 2023).

2.3 Procedure

Online survey: One week before the ERP experiment, participants 
enrolled in the same class were tasked with completing the Social 
Network Questionnaire, the nomination of friends, and the 
IPAQ-SF. In addition, these participants were also required to evaluate 
their willingness to engage in the exercise behaviors depicted in 20 
randomly chosen images from the 60-experiment stimulus set 
described above. This assessment was conducted using a 10-point 
scale ranging from 0, indicating very unwilling, to 9, indicating very 
willing (see Figure 1). The purpose of this evaluation was to enhance 
the credibility of the experiment. In the subsequent ERP experiment, 
the participants were informed that group ratings were based on 
this survey.

Behavioral session (initial rating): Participants voluntarily 
participated in the subsequent ERP experiment and arrived at the 
laboratory 1  week later. Before the formal ERP experiment, 
participants were asked to rate their willingness to engage in the 
exercise behaviors presented on the 60-experiment stimulus on a 
10-point scale (ranging from 0 to 9) by clicking the corresponding 
number with a mouse (initial rating). The experimental procedure was 
administered via E-prime 2.0 software, with the stimulus images 
centrally displayed on the screen against a black background and the 
rating scales positioned below. The stimuli were presented in a random 
order. There was no time limit for the participants to make a decision 
(see Figure 1).

ERP session (final rating): Subsequently, participants proceeded to 
engage in the ERP experiment. In the ERP experiment, participants 
were asked to evaluate their willingness to exercise behaviors based on 
the same 60-experiment stimulus as that in the initial rating (final 
rating) again. The 60 trials were divided into two conditions: 30 trials 
in the peer-feedback context and 30 trials in the non-feedback context.

In the peer-feedback trials, participants viewed how their 
classmates rated the 60-experiment stimulus (group rating) before they 
rated. Participants were informed that the group ratings were the 
average rating of their classmates in the online survey. In reality, group 
ratings were experimentally manipulated based on the participants’ 
initial ratings during the behavioral session to induce social influence. 
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Using an adaptive algorithm, the group rating was randomly adjusted 
to be 1, 2, or 3 points above or below the participant’s initial rating. For 
instance, if a participant’s initial rating was 2, and the group rating was 
set to 3 points higher in the predesigned procedure, the presented 
group rating would be 5. We tried evenly distributing the number of 
trials across each condition (± 1, ± 2, ± 3). Nonetheless, there may still 
be some extreme trials. The updating direction was reversed if the 
group rating exceeded nine or dropped below 0 in a trial. For instance, 
if a participant’s initial rating was 2, and the group rating would display 
a difference of 3 points lower in the predesigned procedure, the group 
rating presented to the participant would be 5 (i.e., 2 + 3). Each trial was 
initiated with a fixation cross on the screen for 800–1,000 ms, followed 
by the display of stimulus images for 1,400 ms. Then, a 10-point scale 
ranging from 0 to 9 was shown under the stimulus picture with a 

yellow rectangle indicating the group rating for 4,000 ms. Participants 
were asked to decide within this 4,000 ms. In the non-feedback trials, 
group ratings were not presented (Huang et al., 2014; see Figure 1). All 
60 trials were presented in a random order and intermixed.

2.4 EEG data recording and analysis

The EEG data were acquired by 64-channels Ag/AgCl electrodes 
based on the international 10–20 system (NeuroScan Inc., USA) and 
were recorded online by the Curry 7.0 software platform. The left 
and right mastoids served as reference electrodes, with the forehead 
as grounded. To avoid the interference of eye links and movements, 
electrodes were placed on the lateral side of both eyes to capture 

FIGURE 1

Flowchart of the experiment. (A) A week before the EEG experiment, participants were required to fill out a series of questionnaires online. The in-class 
social network is constructed based on “nomination of friends.” Each node represents an individual student, whereas each connecting line represents a 
reported social tie. Directed edges are illustrated through arrows, where an arrow pointing from node A to node B signifies that student A has 
nominated student B as a friend. The size of a node represents students’ betweenness centrality, with larger nodes indicating higher betweenness 
centralities. Blue nodes denote ERP study participants. (B) In the behavioral session, participants were asked to rate their willingness to engage in the 
exercise behaviors shown on the stimulus images. In the ERP session, participants were asked again to rate the same stimulus images, presented with 
group ratings that differed from participants’ initial ratings (peer-feedback context) or without (non-feedback context). Group ratings are highlighted 
with yellow rectangles, and individuals’ ratings are presented with red circles.
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horizontal electrooculogram (HEOG) and above and below the left 
eye to capture vertical electrooculogram (VEOG). The impedance 
between the scalp electrodes was consistently maintained below 
5kΩ during data acquisition. All electrode recordings were amplified 
using a filter band pass of 0.05–100 Hz and a sampling rate of 500 Hz.

Subsequently, the EEG data underwent offline analysis using 
EEGLAB 19.0. The data were filtered with a high-pass filter set at 
0.1 Hz and a low-pass filter at 30 Hz. The whole-brain average was 
served as a reference. Ocular artifacts were automatically corrected 
through independent component analysis (ICA) to ensure the data’s 
accuracy and reliability.

2.4.1 ERP data processing
The ERP analysis epoch was from 200 ms before the onset of each 

stimulus, serving as the baseline, and ended 1,000 ms after the image 
presentation. The image was presented either with group ratings below 
it in the feedback context or without group ratings in the non-feedback 
context (see Figure 1). Artifact removal using a threshold of ±75 μV.

Based on previous studies and visual inspection (Chen et al., 2012; 
Xie et al., 2016), we analyzed FRN, P3, and LPP amplitude within 
specific time windows (180–280 ms, 300–500 ms, and 600–800 ms) by 
averaging the ERPs’ amplitudes across all trials in both peer-feedback 
and non-feedback contexts for each participant, respectively. 
Additionally, FRNdiff, P3diff, and LPPdiff were calculated as the difference 
in average amplitudes between two conditions (peer-feedback minus 
non-feedback). Nine brain regions were considered: left frontal (F3, 
F5, F7, FC3, FC5, FT7), left central (C3, C5, CP3, CP5, TP7), left 
parietal (P3, P5, P7, PO5, PO7, O1), medial frontal (F1, FZ, F2, FC1, 
FCZ, FC2), medial central (C1, CZ, C2, CP1, CPZ, CP2), medial 
parietal (P1, PZ, P2, PO3, POZ, PO4), right frontal (F4, F6, F8, FC4, 
FC6, FT8), right central (C4, C6, CP4, CP6, TP8) and right parietal 
(P4, P6, P8, PO6, PO8, O2) area (Han et al., 2023) (Figures 2, 3).

We conducted a three-way repeated-measures ANOVA with factors 
of social feedback (peer-feedback and non-feedback), hemisphere (left, 
medial, and right), and region (frontal, central, and parietal) to analyze 
the FRN, P3, and LPP amplitudes. Greenhouse-Geiser correction was 
applied to adjust all p-values. Subsequently, Pearson correlation analysis 
was performed to explore the associations between FRNdiff, P3diff, and 
LPPdiff with individual social network metrics, including real-life social 
network size, in-degree, out-degree, and betweenness centrality. The 
multiple correlations were adjusted with the Benjamin-Hochberg False 
Discovery Rate (FDR) method, a widely preferred and efficient method 
for FDR control (Benjamini and Hochberg, 1995).

Significant differences in ERP responses between the peer-
feedback and non-feedback contexts were further identified using a 
non-parametric cluster-based permutation test, as implemented in the 
FieldTrip toolbox (Maris and Oostenveld, 2007). We performed paired 
sample t-tests to compare the ERP responses elicited by the two 
conditions at each electrode and sampling point. T-values were 
considered significant at a level of 0.05, and significant t-values were 
grouped into clusters based on spatial (electrodes) and temporal 
(sampling points) adjacency. The t-values within each cluster were 
then aggregated, and Monte Carlo p-values were computed based on 
5,000 random partitions for each cluster individually.

2.4.2 Functional brain network analysis
In order to examine the impact of individual social network 

metrics on brain network efficiency, functional brain networks were 

constructed using Hermes (Niso et al., 2013) within both peer-
feedback and non-feedback contexts across various frequency 
bands. These bands included delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz) and beta (14–20 Hz), utilizing pre-processed EEG 
signals. The EEG epoch ranged from the onset of each stimulus to 
1,000 ms after stimulus presentation. Within the brain network, 
EEG channels (excluding CB1, CB2, M1, and M2) were defined as 
nodes, while the connection strength between nodes represented 
the links. The phase lock value (PLV) was used to quantify the 
connection strength between node pairs. Specifically, PLV captures 
the phase synchrony of EEG signals and is calculated as the absolute 
value of the instantaneous phase difference between two EEG 
signals (Lei et al., 2012). PLV ranges from 0 to 1, with higher values 
indicating greater synchronization of EEG signals between the 
two channels.

To assess the general functional characteristics of brain 
networks, we  utilized graph theory to calculate the topological 
characteristics of each brain network using the GRETNA toolbox in 
Matlab.1 The topological characteristics were derived from binarized 
brain networks with sparsity levels ranging from 0.05 to 0.5 in steps 
of 0.05 (Zhang et al., 2021). We analyzed the area under the curve 
(AUC) for global efficiency (GE), clustering coefficient (CC), 
assortativity coefficient (AC), and local efficiency (LE) across two 
experiment conditions within each of the four frequency bands. The 
definitions of the topological characteristics are as follows (Wang 
Z. et al., 2020):

 1 GE is the inverse of the average shortest path lengths among all 
pairs of nodes in the network, indicating the overall efficiency 
of information exchange throughout the brain network.

 2 CC is the average ratio of actual connected edges to all possible 
connected edges between neighboring nodes, indicating the 
capacity for specialized processing within local brain regions.

 3 AC is the correlation between the degrees (number of direct 
connections to other nodes) of the connected node pairs, 
indicating the similarity in connection patterns between 
different brain regions.

 4 LE is the global efficiency of the network consisting of its 
neighbors after removing a specific node, indicating the 
efficiency of information transfer within a local brain region.

We used SPSS (27.0 for Windows; SPSS Inc.) for statistical analyses. 
Firstly, paired t-tests were conducted to compare differences in brain 
network characteristics between the peer-feedback and non-feedback 
conditions across the four frequency bands. Secondly, Pearson 
correlation analyses were conducted to evaluate the associations 
between brain network characteristics and social network metrics.

Additionally, individual functional connectivity strength (i.e., 
PLV) between all pairs of EEG channels in each brain network was 
considered. We  calculated the differences in PLV between two 
experimental conditions (ΔPLV: peer-feedback vs. non-feedback) 
within the four frequency bands. Then, the GRETNA toolbox was 
used to perform the Pearson correlation analysis between ΔPLV 
values and social network metrics.

1 http://www.nitrc.org/projects/gretna/
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3 Results

3.1 Behavioral measures

3.1.1 Social network metrics
The Pearson correlation analysis revealed that individuals’ real-life 

social network size positively correlated with in-class social network 
indicators (e.g., individuals’ in-degree centrality). Individuals with 
high betweenness centrality in their class tended to have higher level 

of popularity (i.e., in-degree centrality) and sociability (i.e., out-degree 
centrality). Additionally, a positive relationship was observed (see 
Table 1).

3.1.2 Reaction time (RT)
The paired t-test results indicated a significant increase in RTs under 

the peer-feedback context (M = 1371.77 ms, SD = 363.02 ms) compared 
to the non-feedback context [M =  1204.46 ms, SD =  250.45 ms; 
t(26) = 3.66, p < 0.001, the effect size of cohen’d = 1.44]. Pearson 

FIGURE 2

ERP grand-average waveforms. Grand-average waveforms at channels F3, FZ, F4, C3, CZ, C4, P3, PZ, and P4 for peer-feedback, non-feedback and 
difference waves (peer-feedback minus non-feedback).

FIGURE 3

ERP topographical maps. Topographical maps of peer-feedback, non-feedback and difference waves (peer-feedback minus non-feedback) at 180–
280  ms (A), 300–500  ms (B) and 600–800  ms (C).

https://doi.org/10.3389/fnhum.2024.1479899
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Han et al. 10.3389/fnhum.2024.1479899

Frontiers in Human Neuroscience 07 frontiersin.org

correlation analyses examined the relationship between RTs and social 
network metrics, including real-life social network size, in-degree 
centrality, out-degree centrality and betweenness centrality. However, 
no statistically significant effects were observed in the correlation analysis.

3.1.3 Influence score
We defined the influence score as the proportion of trials in which 

an individual modified his/her choice in the final rating under the 
peer-feedback context or non-feedback context (Han et al., 2023). The 
influence score was used to evaluate how much the group norm 
influenced the participant. Paired t-test revealed a significantly 
increased influence score in the peer-feedback context (M = 34.57%, 
SD = 19.88%) than non-feedback context [M = 24.32%, SD = 22.41%; 
t(26) = 2.58, p =  0.016, the effect size of cohen’d = 1.01]. Pearson 
correlation analyses examined the relationship between influence 
score and social network metrics. However, no statistically significant 
effects were observed in the correlation analysis.

Furthermore, conforming trials were operationally defined as 
during the ERP session in which participants adjusted their initial 
ratings to align with the group feedback (Han et  al., 2023). The 
percentage of conforming trials observed within the peer-feedback 
context, indicative of participants’ tendency to conform, was 72.60% 
(SD = 26.15%). Pearson correlation analyses revealed a significant 
negative correlation between participants’ tendency to conform and 
betweenness centrality in the social network (r = −0.43, p = 0.026). 
Additional findings regarding the behavior adjustment between initial 
and final ratings can be found in the Supplementary Material.

3.2 ERP results

3.2.1 N2 (180–280  ms)
For the N2 amplitude, the main effect of social influence was 

significant (see Table  2). Specifically, the peer-feedback context 
(M = −1.78, SE = 0.11) evoked a more negative-going wave than the 
non-feedback context (M = −1.47, SE = 0.10). Additionally, a significant 
interaction between social influence and the region was observed. 
Further post-hoc analysis revealed a main effect of social influence in 
the parietal area [F(1,62) = 14.08, p < 0.001, 2

pη  = 0.17; mean ± SE: peer-
feedback, −3.52 ± 0.29 μV; non-feedback, −2.55 ± 0.28 μV], with no 
significant effects observed in the frontal or central area.

Further correlation analyses were conducted to explore the 
relationship between N2diff amplitude and social network metrics 

across all nine brain regions. A negative correlation was observed 
between real-life social network size and N2diff amplitude in the left 
central area (r = −0.42, p = 0.030). In terms of betweenness centrality, 
a positive relationship was found between betweenness centrality and 
N2diff amplitude in the right frontal area (r =  0.41, p = 0.032). 
Conversely, negative correlations were found between betweenness 
centrality and N2diff amplitude in the left central area (r = −0.45, 
p = 0.019) and left parietal area (r = −0.42, p = 0.030). However, after 
FDR correction (p < 0.05), no results retained their statistical 
significance. Increasing the FDR significance threshold to 0.1, however, 
maintains the statistical significance of main findings. For instance, 
there is a notable relationship between betweenness centrality and 
both N2diff amplitude observed in the left central (pFDR = 0.096) and 
parietal areas (pFDR = 0.096). The trends in how brain activities during 
group norm processing are influenced by the individuals’ social 
network structure exist. The trends indicating that brain activities 
during group norm processing are affected by the individuals’ social 
network metrics.

3.2.2 P3 (300–500  ms)
For the P3 amplitude, RT-ANOVA revealed a significant main 

effect of social influence, as outlined in Table  2. An increased P3 
amplitude was observed in the peer-feedback context compared to the 
non-feedback context (mean ± SE: peer-feedback, 1.84 ± 0.09 μV; 
non-feedback, 1.54 ± 0.07 μV). No other effect was statistically 
significant in the analysis. The correlation analysis revealed a positive 
correlation between P3diff amplitude and real-life social network size 
in the left parietal area (r = 0.42, p = 0.030, p = 0.270; see Figure 4). No 
correlations remained significant after FDR correction.

3.2.3 LPP (600–800  ms)
For the LPP amplitude, a significant interaction of social influence 

and region was observed (see Table 2). Post-hoc analysis indicated a 
significant main effect of social influence in the frontal area 
[F(1,62) = 13.46, p < 0.001, 2

pη  = 0.34], with peer-feedback context evoked 
a more positive going LPP wave compared to the non-feedback context 
(mean ± SE: peer-feedback, 1.46 ± 0.16 μV; non-feedback, 0.94 ± 0.09 μV).

Further correlation analyses were conducted on LPPdiff amplitude 
and social network metrics across all nine brain areas. Significant 
positive correlations were observed between LPPdiff amplitude and 
real-life social network size in the right frontal area (r =  0.39, 
p =  0.046), out-degree centrality in the left frontal area (r =  0.39, 
p = 0.044), betweenness centrality in the left frontal area (r = 0.46, 
p =  0.017) and betweenness centrality in the medial frontal area 
(r = 0.50, p = 0.008; see Figure 4). The p-values of correlations between 
betweenness centrality and both LPPdiff amplitude observed in the left 
(pFDR = 0.076) and medial (pFDR = 0.072) frontal areas were <0.1.

3.2.4 Results of the cluster-based permutation 
test

The results of the cluster-based permutation test revealed significant 
differences between peer-feedback and non-feedback context in the 
following time window: 164–246 ms (p = 0.020), 352–430 ms (p < 0.001), 
720–752 ms (p = 0.009) and 784–802 ms (p = 0.027). Based on the ERP 
topographical maps, the ERP responses in the time windows of 
720–752 ms and 784–802 ms indicated the same ERP component. These 
components align with our pre-specified ERP components identified 
through previous studies and visual inspection (see Figure 5).

TABLE 1 Correlation analysis among social network metrics.

Social 
network 
metrics

M (SD) 1 2 3

1
Real life social 

network size
9.33(3.57) 1

2
Out-degree 

centrality
3.07 (1.71) 0.59** 1

3
In-degree 

centrality
3.11 (1.34) 0.20 0.59** 1

4
Betweenness 

centrality
3.33 (3.09) 0.31 0.67*** 0.55**
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3.3 Functional brain network analysis

3.3.1 General functional brain network 
characteristics

As shown in Table 3, the analysis of the general functional brain 
network characteristics revealed significant differences in the AC of 

the brain network between the peer-feedback and non-feedback 
contexts in both the delta and beta bands. Specifically, the brain 
network displayed a higher AC under the peer-feedback context 
compared to that under the non-feedback context in the delta band. 
Similarly, in the beta band, participants exhibited higher AC and lower 
LE of the brain network when exposed to peer-feedback than 

TABLE 2 ERP results of repeated-measures ANOVAs.

df N2 (180–280ms) P3 (300–500ms) LPP (600–800  ms)

F p
2ηp

F p
2ηp

F p
2ηp

S 1,26 12.59 0.001 0.32 32.13 <0.001 0.55 < 1

S × R 2,52 7.76 0.007 0.23 1.92 0.175 0.07 6.89 0.009 0.21

S × H 2,52 3.05 0.076 0.11 1.69 0.20 0.06 1.42 0.252 0.05

S × R × H 4,104 2.37 0.110 0.08 1.20 0.31 0.04 1.58 0.206 0.06

S, social feedback; R, region; H, hemisphere. Significant effects are marked in bold.

FIGURE 4

Correlations between social network metrics and N2diff, P3diff, LPPdiff amplitudes. Only significant relationships were presented. (A) The significant 
correlations between N2diff amplitude and social network metrics in the left central area, right frontal area and left parietal area; (B) The significant 
corrections between P3diff amplitude and social network metrics in the left parietal area; (C) The significant corrections between LPPdiff amplitude and 
social network metrics in the right and left frontal area.
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non-feedback. No significant effects were observed in the other 
frequency bands analyzed.

Subsequent Person correlation analyses were conducted to explore the 
associations between the graph characteristics of brain networks in delta 
and beta bands, which showed significant differences between the peer-
feedback and non-feedback contexts, and individual social network 
metrics. The results indicated significant or marginally significant positive 
correlations between CC (delta band: r = 0.40, p = 0.039; beta band: r = 0.40, 
p = 0.040) and LE (delta band: r = 0.42, p = 0.031; beta band: r = 0.38, 
p =  0.053) of brain networks under the peer-feedback context with 
betweenness centrality. Notably, no statistically significant relationships 
were observed under the non-feedback context (see Figure 6). However, 
no correlations remained significant after FDR correction.

3.3.2 Functional connectivity analysis
Given that only betweenness centrality displayed significant 

correlations with brain network graphic metrics in the beta and delta 
bands, we  focused our further analysis on betweenness centrality. 
Specifically, we conducted Pearson correlation analyses between ΔPLV 
and betweenness centrality in the beta and delta bands, respectively. 
Individuals with high betweenness centrality exhibited enhanced 
ΔPLV values between pairs of EEG channels located within the frontal 
area and across brain areas (such as frontal and parietal area, frontal 
and central area), especially in the delta band (see Figure 7).

4 Discussion

In the present study, we  used EEG technology to investigate 
whether and how the effects of group norms on decision-making are 

modulated by an individual’s social network structure. Well-connected 
individuals with large real-life social network size or high betweenness 
centrality exhibited increased amplitudes on N2diff, P3diff, and LPPdiff 
when learning that others’ opinions differed from theirs, indicating 
heightened sensitivity to self-group conflicts. Increased efficiency in 
functional brain networks in the delta and beta band under the social 
conflict was observed in individuals with high betweenness centrality. 
Moreover, individuals with high betweenness centrality exhibited 
higher synchronization between the frontal and parietal lobes. These 
results indicated that an individual’s role in the social network impacts 
sensitivity and processing efficiency to group norms for 
exercise behaviors.

4.1 ERPs effects: N2, P3, and LPP

Our results revealed N2, P3, and LPP effects for the peer-feedback 
context compared to the non-feedback context. More importantly, the 
amplitudes of N2diff, P3diff, and LPPdiff were modulated by an 
individual’s social network structure, such as real-life social network 
size, out-degree centrality, and betweenness centrality.

Our study has revealed that the differences in N2 amplitude 
between conditions involving peer-feedback and non-feedback are 
primarily localized to the parietal lobe (Aral and Nicolaides, 2017; 
Wang et al., 2019). This posterior-contralateral component (N2pc) is 
commonly associated with allocating additional attention resources to 
automatically manage or monitor conflicts (Liu et al., 2021). In the 
present study, encountering group norms that contradict an individual’s 
expectations can engender a kind of social conflict, given that violating 
these norms may result in punishment such as social exclusion 

FIGURE 5

Results of the cluster-based permutation test. The clusters and corresponding topographical maps revealed significant differences in ERP responses 
between peer-feedback and non-feedback context in the time windows of 164–246  ms, 352–430  ms, 720–752  ms, and 784–802  ms.
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(Klucharev et al., 2009). Previous studies have predominantly linked 
the FRN component, which typically peaks within the anterior 
cingulate cortex (ACC), to monitoring others’ feedback information in 
social domains and detecting social conflicts (Baker and Holroyd, 
2011; Glazer et al., 2018; Qiu et al., 2019). Contrary to existing literature 
focused on FRN, our finding revealed a clear negative deflection in the 
posterior parietal lobe, i.e., N2pc. We believe that this N2pc activation 
is an early neural response preceding the FRN and is associated with 
the mobilization of attention resources caused by social conflicts 
instead of social conflicts and unexpected outcomes detection. 
Previous studies have provided evidence of a more negative-going 
N2pc when individuals are confronted with violations of group norms, 
unexpected stimuli, or perceptual mismatch (Folstein and Petten, 2008; 
Wang Z. et al., 2020; Xie et al., 2016; Liu et al., 2021). We found the 
N2diff amplitude negatively correlated with individuals’ social network 
metrics, indicating that well-connected individuals may allocate more 
attention resources toward socially conflicting information.

A centro-parietal P3 following a feedback stimulus is suggested to 
reflect the attention-driven integration of various aspects of the 
current situation, such as outcome, affective information, and 
motivation, into working memory to make decisions (Glazer et al., 
2018). We found a positive correlation between real-life social network 
size and P3 amplitude. Real-life social network size can better reflect 
the quality of an individual’s social relationship, which is usually 
considered an indicator similar to personality traits (Baek et al., 2020; 
Smith and Christakis, 2008).

Many studies based on the Social Brain Hypothesis have found 
significant correlations between individual social network size and brain 
activities underlying cognitive tasks (Brashears et al., 2020; Stiller and 
Dunbar, 2007). Higher amplitudes of N2diff, P3diff, and LPPdiff for 
individuals with large social network sizes may be due to higher levels of 
individual social function or social cognitive capabilities processing social 
conflicts. In-class social network metrics are calculated using graph 
theory approaches and describe an individual’s structural position within 

a social group, such as whether they occupy a core or peripheral role. 
However, these metrics may only capture a part of an individual’s social 
life. The lack of significant correlation between in-class social network 
metrics and P3diff amplitude may suggest that an individual’s position 
within a social group may not directly influence cognitive processes 
associated with decision-making. Other variables such as social status or 
identification within the group may confound this relationship. Although 
there are positive correlations among real-life social network size and 
in-class social network metrics, they may represent different aspects of an 
individual’s social life. Future research could differentiate the significance 
of these different social network metrics.

In addition, the peer-feedback context evoked a more positive-going 
LPP wave than the non-feedback context in the frontal lobe. The LPPdiff 
amplitude in the frontal lobe further revealed a positive relationship with 
an individual’s social network metrics. The LPP is the final ERP 
component during the processing of group norms, which reflected the 
encoding of social feedback-related emotions with a more positive LPP 
following negative feedback than positive feedback (Glazer et al., 2018; 
Kivity and Huppert, 2019). It is suggesting that individuals at the centre 
of the network, such as those with more real-life friends and higher 
out-degree and betweenness centrality within the group, may experience 
more emotional reactivity and regulation when they violate group norms.

Our research has revealed a connection between social network 
metrics and the dynamic processing of group norms. We  have 
found that well-connected individuals exhibit a heightened 
sensitivity toward group norms by paying more attention, exerting 
more effort in cognitive processing, and experiencing heightened 
emotional responses when confronted with social conflicts. It 
indicates that identifying and processing group norms is essential 
for individuals to maintain their social relationships and status. 
Well-connected individuals may perceive their core position as 
threatened when faced with inconsistent opinions from others. 
Therefore, they may consolidate their positions by carefully 
considering the opinions of others. Interestingly, we have revealed 

TABLE 3 Mean (SD) and t-test results of brain network characteristics.

Brain network 
characteristics

df Peer-feedback Non-feedback t p Cohen’s d

Delta

CC 26 0.28 (0.02) 0.28 (0.02) 0.24 0.814 0.09

AC 26 0.19 (0.05) 0.17 (0.05) 2.65 0.017 1.04

GE 26 0.24 (0.02) 0.24 (0.02) −1.65 0.110 0.65

LE 26 0.34 (0.01) 0.34 (0.01) −1.31 0.202 0.51

Theta

CC 26 0.28 (0.02) 0.28 (0.03) <0.001 1 <0.001

AC 26 0.19 (0.05) 0.17 (0.04) −0.86 0.395 0.34

GE 26 0.24 (0.01) 0.24 (0.01) 0.33 0.746 0.13

LE 26 0.34 (0.01) 0.35 (0.01) −1.14 0.265 0.45

Alpha

CC 26 0.28 (0.03) 0.28 (0.03) −0.36 0.726 0.14

AC 26 0.18 (0.05) 0.18 (0.04) 0.06 0.955 0.02

GE 26 0.24 (0.01) 0.24 (0.01) −0.10 0.923 0.04

LE 26 0.35 (0.01) 0.35 (0.01) −0.39 0.703 0.15

Beta

CC 26 0.28 (0.02) 0.28 (0.03) −1.51 0.144 0.59

AC 26 0.19 (0.05) 0.17 (0.04) 2.64 0.014 1.04

GE 26 0.24 (0.02) 0.24 (0.01) 0.63 0.534 0.25

LE 26 0.34 (0.01) 0.35 (0.01) −2.59 0.016 1.02

CC, clustering coefficient; AC, assortativity coefficient; GE, global efficiency; LE, local efficiency. Significant effects are marked in bold.

https://doi.org/10.3389/fnhum.2024.1479899
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Han et al. 10.3389/fnhum.2024.1479899

Frontiers in Human Neuroscience 11 frontiersin.org

that betweenness centrality was negatively associated with 
conforming behaviors, suggesting that individuals may evaluate the 
pros and cons of their choices about other information, such as 
their status, identity, and social motives. These findings can provide 
valuable insights into the complex nature of social interaction and 
help understand how individuals navigate the challenges of 
group dynamics.

4.2 Social network and functional brain 
network

Our recent study revealed that increased CC and LE of functional 
brain networks constructed based on the phase synchronization of 
brain activity in the delta and beta bands are associated with an 
individual’s betweenness centrality. This association suggests that 

FIGURE 6

Correlations between betweenness centrality and clustering coefficient (CC), local efficiency (LE) of functional brain networks in delta (A) and beta 
bands (B).

FIGURE 7

EEG channel pairs exhibiting significant correlations between ΔPLV values (peer-feedback minus non-feedback) and betweenness centrality. In each 
subfigure, the nodes with different colors represent EEG channels located in different areas. Red nodes, frontal area; orange nodes, central area; green 
nodes, parietal area. Network-based statistics uncorrected p  <  0.01.
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individuals with higher betweenness centrality might possess more 
efficient cognitive processing regarding group norms.

Previous research has established a significant correlation between 
brain and social networks (Bickart et al., 2011, 2012, 2014; Kanai et al., 
2012). However, these studies primarily focused on specific brain 
structures and their functions. Our current work explores brain 
function based on graph theory analysis, offering a comprehensive 
perspective on the brain’s working patterns during cognitive tasks. The 
topological properties of complex networks, mainly CC and LE, 
enable a detailed description of the brain’s functional segregation. This 
segregation reflects the ability to undertake cognitive processes within 
specialized brain regions efficiently. Prior research has associated 
enhanced functional segregation with simple cognitive tasks (Cohen 
and D’Esposito, 2016; Braun et al., 2015; Wang et al., 2019; Shine et al., 
2016). Thus, in the present study, the increased functional segregation 
of brain networks for well-connected individuals may indicate higher 
efficiency and density of specialized brain regions.

We found increased functional segregation of brain networks for 
well-connected individuals, mainly in the delta and theta bands. Delta 
and beta power following feedback are sensitive to performance and 
reward evaluation (Cavanagh, 2015). Several studies suggest that, in 
contrast to negative feedback, such as loss or unexpected stimuli, 
positive feedback could invoke a higher power of delta and a lower 
power of beta, which are associated with subsequent behavioral 
adjustments to improve performance (Bernat et al., 2015; Cavanagh, 
2015; Luft, 2014). While earlier studies have primarily measured delta 
and beta power in the immediate aftermath (approximately 
100–600 ms) of feedback presentation, our research extends these 
findings by highlighting the role of functional connectivity in the theta 
and beta bands in processing group norms more comprehensively.

Our study emphasizes the critical role of functional brain 
networks, especially in the delta and beta bands, in understanding 
how individuals process group norms. While we examined multiple 
social network metrics, only betweenness centrality showed a 
significant link to the characteristics of functional brain networks. 
Betweenness centrality indicates an individual’s potential to 
disseminate information and influence others. Individuals with high 
betweenness centrality often confront more complex social scenarios, 
such as balancing the interests and opinions of diverse groups or 
individuals in their daily lives. Social cognitive skills are well-trained 
in these individuals. Our findings suggest an individual’s betweenness 
centrality may linked more to group norm processing efficiency than 
other social network metrics. However, more empirical studies are 
needed in the future to confirm this.

4.3 Social network and functional 
connectivity

Individuals with high betweenness centrality showed increased 
functional connectivity both within the frontal area and across 
different brain areas, especially between the frontal and parietal areas 
as well as between the frontal and central areas, particularly in the 
delta band. It implies that well-connected individuals might be more 
capable of allocating cognitive resources across different brain regions. 
Previous research has emphasized the significant role of the frontal 
area in social functioning. Notably, an individual’s social network size 

is linked to the strength of functional connectivity among the dorsal 
medial prefrontal cortex, the dorsolateral prefrontal cortex, and the 
orbitofrontal cortex in the resting state (Noonan et al., 2018; Zhang 
et al., 2021; Zhang et al., 2022). Furthermore, the capacity to perceive 
and interpret social signals has been found to strongly correlate with 
the level of functional connectivity between the frontal and parietal 
lobes (Greene et al., 2009; Moratti et al., 2004). Our research indicated 
that synchronization within frontal area and across different brain 
areas may be  vital for an individual’s ability to maintain 
social connections.

Our study demonstrated that the impacts of group norms on 
individuals’ attitudes and behaviors can be  modulated by an 
individual’s position within the group. Specifically, individuals with a 
central position exhibited heightened sensitivity to group norms. 
These findings underscore the importance of considering individuals’ 
social connections within the group if utilizing group norms to 
promote healthy behaviors, such as exercise. Additionally, the 
capability to recognize and understand group norms appears to play 
a crucial role in distinguishing well-connected individuals from 
others. It indicates that enhancing understanding of group norms and 
their importance may improve the social network structure of those 
less-connected individuals.

4.4 Limitation

The present study further clarified the relationship between social 
network structure and neural activities underlying dynamic group 
norm processing. Our findings support those well-connected 
individuals exhibited enhanced sensitivity and efficiency in 
processing group norms. These findings offer a profound insight into 
the causes behind variations in individual social network structures. 
They are valuable for developing intervention strategies to enhance 
people’s social world. However, this study has several limitations. 
Firstly, in the present study, after FDR correction (p < 0.05), no 
correlation results retained their statistical significance. Even though 
the p-values after FDR correction fall short of expectations, as an 
exploratory study, we highlight the discernible tendency in how brain 
activities during group norm processing are influenced by the 
individuals’ social network structure. More research is needed in the 
future to further investigate and verify this hypothesis. Secondly, in 
this study, we used a socio-centric network to depict individuals’ 
social relationships, which required us to gather social relations and 
EEG indicators of all individuals in the group. However, it was a 
challenge for us to ensure that most of the group participated in the 
EEG experiment, which led to a constrained sample size in our study. 
Expanding our participant pool to include more groups might 
introduce group variables such as group cohesion, potentially 
affecting our findings. Future studies with a larger sample size are 
needed to examine our findings. Thirdly, the present study was 
conducted on only one group selected at random. Future studies 
should consider recruiting more groups and incorporating group 
characteristics into the analysis, for example, examining how the 
density of social relationships within a group affects the individual 
processing of social information. Fourthly, our findings further 
suggest that group norms can influence individuals’ willingness to 
exercise. Nonetheless, the effectiveness of social influence in 
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promoting exercise willingness into behaviors needs further 
exploration. Exercise behaviors might stem from personal preferences 
or thoughtful consideration, suggesting that the influence of group 
norms might be limited. To enhance the validity of our findings in a 
broader social norm perception, future studies could explore 
additional social conformity domains, including dietary habits, 
consumer behavior, emotion perception, etc. Fifth, we did not focus 
on the behavioral differences between subgroups and the whole 
group. Such differences could lead to group behavior exerting distinct 
social influences on members of different subgroups. Future studies 
should take this difference into account when investigating group 
norms. Finally, while the principal findings of this research are 
derived from correlational data, introducing studies to establish 
causality could enhance understanding of the relationship between 
social networks and social information processing.

5 Conclusion

This study is one of the first to directly examine the neural basis 
of how an individual’s network structure interacts with the dynamic 
processing of group norms. It reveals that people adjust their exercise 
decisions based on the group’s choice. Furthermore, well-connected 
individuals in the group display enhanced sensitivity and efficiency in 
brain network connectivity across various neurocognitive processes 
when processing social information. These findings have implications 
for further studies concerning the evolution of social network 
structures and their impact on individual behaviors.
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