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Introduction: Emotion and attention regulation significantly influence various

aspects of human functioning and behavior. However, the interaction between

emotion and attention in affecting performance remains underexplored. This

study aims to investigate how individual differences in sustained attention,

influenced by varying emotional states.

Methods: A total of 12 participants underwent emotion induction through Virtual

Reality (VR) videos; completed an AX-CPT (continuous performance test) task

to measure sustained attention, for which task performance is evaluated from

two aspects, task accuracy and task reaction times; and reported their flow

states. EEG and PPG data were collected throughout the sessions, as supporting

evidence for sustained attention.

Results: Our findings suggest that emotional valence and arousal significantly

influence task reaction times and sustained attention, when gender differences

are accounted for, but do not significantly impact task accuracy. Specifically,

males responded faster under high-arousal negative emotions, while females

responded faster under high-arousal positive emotions. Additionally, we find that

flow experience is not significantly impacted by emotions states or sustained

attention.

Discussion: The study underscores the nuanced interplay between emotion,

sustained attention, and task performance, suggesting that emotional states can

differentially impact cognitive processes. Also, it support the use of VR, EEG, and

PPG technologies in future research on related topics. Future research could

expand upon this study by including larger sample sizes and a wider range of

emotional inductions to generalize the findings.
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1 Introduction

Emotion and attention regulation both play important roles in
adaptive functioning and behavior (Pekrun et al., 2002; Westphal
et al., 2018; Whitehill et al., 2014). In daily life, we are constantly
faced by large amounts of information, which we use attention
to filter and process (Brosch et al., 2013); emotions, in turn,
pose effect upon our attention profiles, changing the portion
of information that we attend to, thus modulating behavior
(Mitchell, 2022). Recently, the interaction between emotion and
attention have come into focus in the fields of education and
psychology (Wass et al., 2021; Baykal, 2022), as the specific
process in which they impact performance remains unclear. In
related research, a commonly applied theory of emotion is the
dimensional theory, which distinguishes emotions based on their
positions in a continuous multi-dimensional space, characterized
by two primary dimensions: valence (degree of positivity or
negativity of the emotion) and arousal (physiological activation
of the emotion, high to low) (Russell, 1980). Existing research
have shown that emotional arousal and valence can modulate
attention allocation and selection (Compton, 2003; Phelps et al.,
2006). However, findings on the specific relationship between
different emotional dimensions and attention have yet to concur.
Some studies indicate that high-arousal emotions increase attention
directed to high-priority stimuli, but decrease attention toward
low-priority stimuli (Mather and Sutherland, 2011). Other studies
have identified that negative emotions can lead to global attention,
whereas positive emotions lead to more local attention (Gasper
and Clore, 2002). Further complicating the picture, arousal and
valence also interact to produce varied effects on task performance,
possibly related to their moderation on attention. For instance,
research found that low-arousal negative affect enhances target
recognition accuracy, high-arousal negative affect lower target
accuracy, while positive affect’s influence on target accuracy do not
differ significantly with different level of arousal (Jefferies et al.,
2008).

Hence, it seems necessary to unify these research outcomes
into a more comprehensive picture. In this study, we use
task-specific sustained attention, i.e., the ability to maintain
focus on the experiment task, as a bridging factor between
attention and task performance, while also taking individual
differences into consideration, in hopes for explicating the
influence of different emotional dimensions on attention and
task performance. This is measured through reaction time and
accuracy performance on an AX-CPT (continuous performance
test) task. In order to further clarify the picture, we also take
one step forward from existing research by employing new
methodologies to improve validity. Immersive Virtual Reality
(VR) technology is used to enhance the ecological validity
of emotion induction, in comparison to traditional induction
measures, while sustained attention is additionally assessed through
objective measures including electroencephalogram (EEG) and
photoplethysmography (PPG), which could likely reflect sustained
attention more directly than common subjective/indirect measures.
To this end, we also integrate prior findings on physiological
response to task activation, to form a set of signals that could
be representative of sustained attention. All in all, our primary
goal for this study is to explore how different valence and

arousal of emotions impact sustained attention, as demonstrated
by EEG and PPG data. Along the way, we also validate
the application of VR, EEG and PPG technology in future
related studies.

In line with this, we test a secondary hypothesis as well. The
flow state is a subjective experience of effortless concentration
(Csikszentmihalyi, 1975). Research on its relationship with
attention has yielded inconsistent results: some studies suggested
that people who frequently experience the flow state show more
sustained attention (Swann et al., 2012), while others found no
significant relationship between flow and sustained attention,
since flow is an automatic, unconscious process, while sustained
attention requires effort (Marty-Dugas and Smilek, 2019; Schiefele
and Raabe, 2011; Ullen et al., 2012). These conflicts bring up our
secondary hypothesis: Is experiencing the flow state related to
sustained attention and emotion valence/arousal? If participants
tend to experience flow states more frequently during certain
attention/emotion states, this may also lead to differential task
performance, and thus produce confused results (Harris et al.,
2021). This hypothesis serves to resolve one more factor that may
confound the effect of different emotion states on attention and task
performance.

2 Materials and methods

2.1 Stimuli, paradigms and equipment

This study aims to investigate the impact of different emotional
states on sustained attention, with a side focus on flow. The
necessary instruments are detailed below.

Immersive VR videos were utilized to induce different
emotional states, presented in a HTC Vive Pro HMD. These
were selected from the Stanford Immersive Virtual Reality Video
Database (Li et al., 2017), which contains 73 VR clips categorized
according to emotion valence and arousal (Russell, 1980). In the
end, four videos with scores closest to the quadrant extremes of
the valence and arousal dimensions were chosen to achieve optimal
emotion induction, as shown in Figure 1.

A subjective emotion self-report scale, the Self-Assessment
Manikin (SAM; Bradley and Lang, 1994), was used to evaluate
participants’ emotion arousal and valence. The AX-CPT
(continuous performance test) paradigm was used to assess
sustained attention. In AX-CPT, participants are instructed to
respond to letter sequences, with “X” as the target stimulus, but
only if preceded by the letter “A”. The sequences include four types:
AX (target), AY, BX, and BY, where “B” can be any letter other than
“A,” and “Y” can be any letter other than “X.” The classic AX-CPT
paradigm comprised 70% AX sequences and 10% each of AY,
BX, and BY sequences (Braver et al., 2007). Participants’ accuracy
and reaction times were recorded during the task as performance
criteria. The Flow Short Scale (Engeser and Rheinberg, 2008), a
10-item Likert scale, was used to measure flow experience during
the AX-CPT task.

During the AX-CPT task, a Shimmer3 wearable device was used
for ECG data collection, and an ANT Neuro system was used for
EEG data collection, as shown in Figure 2.
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FIGURE 1

Screenshots of four VR videos used for emotion induction, including “negative-valence, high-arousal,” “positive-valence, high-arousal,”
“negative-valence, low-arousal,” and “positive-valence, low-arousal.” Images reproduced from Li et al. (2017).

FIGURE 2

Experimental equipment.

2.2 Participants

A total of twelve participants were recruited for this study, 6
male and 6 female, aged 21 to 45 years (mean age = 31.2), right-
handed and with normal or corrected-to-normal vision. Fields of
expertise of the participants include computer science, education,
psychology, foreign languages, marketing, and applied chemistry.
All participants had no prior experience with similar experiments.

2.3 Procedure

The experiment was conducted one participant at a time
without time limit, guided by a trained researcher in a quiet

room and under constant screen brightness. Before the experiment,
participants were introduced to the study, asked to sign a consent
form, prepared for EEG and PPG collection, and instructed to fill
out a demographic questionnaire covering gender, age, occupation,
handedness, as well as previous VR experience. Then, participants
were asked to stay stationary for 5 min, where a baseline SAM
score was acquired. The experiment consists of four sessions, each
with five steps, as shown in Figure 3. First, participants were
randomly assigned to one of four conditions, each representing one
of the four emotional dimensions: negative-valence high-arousal,
negative-valence low-arousal, positive-valence high-arousal, or
positive-valence low-arousal, to receive corresponding emotion
induction through a VR video approximately 3 min and 30 s long.
Afterwards, participants filled out the SAM scale, completed the
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Emotion induction 

via VR

SAM test

AX-CPT task

Flow Short Scale

Have a 5-min rest

FIGURE 3

The steps in one session of the experiment.

AX-CPT attention task, and filled out the Flow Short Scale. Finally,
participants take a 5-min rest before the next session.

2.4 Electroencephalogram (EEG)
pre-processing

Before EEG data analysis, preprocessing was performed with
EEGLAB (Delorme and Makeig, 2004), an open-source toolbox
based on MATLAB, during which a band-pass FIR filter from 3 Hz
to 47 Hz was applied.

2.5 Photoplethysmography (PPG) data

This study analyzed Heart Rate Variability (HRV), as calculated
from PPG, to reflect autonomic responses that result from the
sustained attention task. HRV analysis generally consists of two
aspects, time-domain features and frequency-domain features.

Time-domain features reflect heart rate variability and
autonomic regulation, including:

• MEANRR: Mean reciprocal of RR intervals, indicating
heart rate stability, where RR interval is the time interval
between two peaks.
• MEDIANRR: Median RR intervals, providing a robust

measure against outliers.
• MEANHR: Mean heart rate, linked to cardiovascular health

and autonomic function.
• SDNN: Standard deviation of NN intervals, reflecting overall

HRV, where NN interval is the normal heartbeat interval.
• RMSSD: Root mean square of successive differences,

indicating parasympathetic activity.
• pNN50: Percentage of NN intervals with differences over

50 ms, reflecting parasympathetic activity.

Frequency-domain features, which primarily reflects
parasympathetic activity (Kumar et al., 2023), were analyzed
using resampling, interpolation, and Fast Fourier Transform
(FFT), to obtain Power Spectral Density (PSD). The final features
includes:

• VLF: Very low frequency (0.0033–0.04 Hz), associated with
long-term regulatory mechanisms.

TABLE 1 Valence and arousal scores from SAM scale.

Emotion dimension Valence
(M ± SD)

Arousal
(M ± SD)

Negative-valence, low-arousal 3.17± 1.80 4.17± 2.17

Negative-valence, high-arousal 2.25± 1.66 8.75± 1.29

Positive-valence, high-arousal 7.08± 1.62 6.42± 1.83

Positive-valence, low-arousal 7.42± 1.08 5.00± 2.17

TABLE 2 Influence of emotion valence and arousal on AX-CPT
task performance.

Emotion dimension Reaction time
(M ± SD)

Accuracy
(M ± SD)

Positive-valence 30098.58± 5758.64 98.33± 1.14

Negative-valence 28465.17± 5166.93 98.50± 1.19

High-arousal 29061.67± 4897.09 98.29± 1.01

Low-arousal 29502.08± 5712.97 98.54± 1.16

• LF: Low frequency (0.04–0.15 Hz), reflecting sympathetic and
parasympathetic activity.
• HF: High frequency (0.15–0.4 Hz), indicating parasympathetic

(vagal) regulation.
• LF/HF Ratio: Evaluation on the balance between sympathetic

and parasympathetic activity.
• Normalized LF (LF[n.u.]) and HF (HF[n.u.]): Relative power

in their respective ranges, providing comparative importance
via transforming absolute power to normalized units.

Absolute Power VLF (VLF[abs]), LF (LF[abs]), and HF
(HF[abs]): Reflect the energy distribution in their respective
frequency ranges, related to specific physiological mechanisms.

3 Results

3.1 Emotion induction

Due to the small sample size, we choose a non-parametric test,
the Wilcoxon signed-rank test, to analyze differences in accuracy
and reaction times in the AX-CPT task under different emotional
states. Mean SAM scores among 12 participants are calculated
for the four virtual reality videos. Firstly, we check to ensure
that the emotion induction took effect. Results are presented in
Table 1. Wilcoxon signed-rank tests showed significant differences
in valence (Z = 3.07, p = 0.002) and arousal scores (Z = 3.01,
p = 0.003) between corresponding videos. The virtual reality
videos effectively elicited corresponding emotional responses.

3.2 Emotion and AX-CPT task data

Using the Wilcoxon signed-rank test, we analyze accuracy
rates and reaction times during the AX-CPT task under the
four emotional dimensions, and consider the influence of
gender on the results.
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TABLE 3 Influence of emotion on AX-CPT task performance for males.

Emotion dimension Reaction time
(M ± SD)

Accuracy
(M ± SD)

Positive-valence, high-arousal 29183.00± 4295.00 98.33± 1.37

Positive-valence, low-arousal 27844.00± 5833.00 97.83± 1.72

Negative-valence, high-arousal 26449.00± 4047.00 97.67± 1.63

Negative-valence, low-arousal 27511.00± 3594.00 98.17± 1.33

TABLE 4 Influence of emotion on AX-CPT task performance for females.

Emotion dimension Reaction time
(M ± SD)

Accuracy
(M ± SD)

Positive-valence, high-arousal 30362.50± 5326.55 98.00± 1.55

Positive-valence, low-arousal 33004.17± 8145.73 99.17± 0.98

Negative-valence, high-arousal 30251.67± 6598.45 99.17± 1.17

Negative-valence, low-arousal 29648.67± 6490.87 99.00± 1.10

As reported in Table 2, accuracy rates for positive emotions
(M = 98.33, SD = 1.13, Mdn = 98.25) and negative emotions
(M = 98.50, SD = 1.19, Mdn = 98.75) show no significant
difference (Z = 0.49, p = 0.620). Accuracy rates for high-arousal
emotions (M = 98.29, SD = 1.01, Mdn = 98.50) and low-
arousal emotions (M = 98.54, SD = 1.16, Mdn = 98.75)
also show no significant difference (Z = 1.08, p = 10.280).
Also, reaction times for positive emotions (M = 30098.58,
SD = 5758.64, Mdn = 29501.00) and negative emotions
(M = 28465.17, SD = 5166.93, Mdn = 28273.00) show
no significant difference (Z = 1.73, p = 0.084). Similarly,
reaction times for high-arousal (M = 29061.67, SD = 4897.09,
Mdn = 29341.00) and low-arousal emotions (M = 29502.08,
SD = 5712.97, Mdn = 28618.00) show no significant difference
(Z = 0.784, p = 0.433).

Further, as shown in Table 3, analyzing the influence of
emotional valence, arousal, and gender on accuracy using the
Wilcoxon signed-rank test revealed no significant differences
(Z = 0.68, p = 0.500) in accuracy rates between males under
high-arousal negative (M = 97.67, SD = 1.63, Mdn = 97.50)
and high-arousal positive emotions (M = 98.33, SD = 1.37,
Mdn = 98.00). Also, as shown in Table 4, for females,
accuracy rates under high-arousal positive emotions (M = 98.00,
SD = 1.55, Mdn = 98.00) and low-arousal positive emotions
(M = 99.17, SD = 0.98, Mdn = 99.50) show no significant
difference (Z = 1.63, p = 0.100). In comparison, for
reaction time, males exhibit significantly shorter reaction times
(Z = 2.20, p = 0.028, Cohen′s d = 1.16) under high-
arousal negative emotions (M = 26449.17, SD = 4046.69,
Mdn = 26046.00) compared to high-arousal positive emotions
(M = 27511.17, SD = 3594.44, Mdn = 30373.00). For
females, reaction times are significantly shorter (Z = 1.99,
p = 0.046, Cohen′s d = 0.79) under high-arousal positive
emotions (M = 30362.50, SD = 5326.55) compared to low-
arousal positive emotions (M = 33004.17, SD = 8145.73).

There results suggest that emotional valence and arousal do
not significantly affect task accuracy performance across different
genders, but significantly impact reaction time performance. Males
display shorter reaction times, i.e., better sustained attention,

TABLE 5 Influence of emotion on flow experience.

Emotion dimension Flow experience score
(M ± SD)

Positive-valence 52.46± 9.17

Negative-valence 55.71± 9.41

High-arousal 54.58± 8.68

Low-arousal 53.58± 9.33

under high-arousal negative emotions than high-arousal positive
emotions, while females display shorter reaction times under high-
arousal positive emotions than low-arousal positive emotions.
These results correspond with previous studies such as Bradley et al.
(2001), that found males to show greater physiological reactivity
toward negative emotions, and females to show greater reactivity
toward positive emotions.

3.3 Emotion and flow experience data

Flow experience scores are displayed in Table 5. The Wilcoxon
signed-rank test is used to assess differences in flow experience
across the four sessions of emotional dimensions. Results indicate
that emotional valence (positive: M = 52.46, SD = 9.17,
Mdn = 50.75 and negative: M = 55.71, SD = 9.41,
Mdn = 57.50) and arousal (high: M = 54.58, SD = 8.68,
Mdn = 55.25 and low: M = 53.58, SD = 9.34, Mdn = 52.25)
do not pose significant impact on flow experience during the AX-
CPT (valence: Z = 1.49, p = 0.136 and arousal: Z = 0.45,
p = 0.656). When accounting for gender, no significant difference
(Z = 0.32, p = 0.750) in flow experience is found for
males between high-arousal negative emotions (M = 50.67,
SD = 10.29, Mdn = 50.50) and high-arousal positive emotions
(M = 51.50, SD = 3.67, Mdn = 50.00). Neither is significant
differences (Z = 0.68, p = 0.500) found for females between
high-arousal positive emotion (M = 54.67, SD = 12.45,
Mdn = 54.50) and low-arousal positive emotion (M = 56.00,
SD = 11.35, Mdn = 56.00) conditions.

3.4 EEG data analysis

Differential brain activity due to variations in attention are
commonly reflected in the frequency bands (Wang et al., 2011).
Here, we extract and compare frequency domain characteristics,
specifically Power Spectral Density (PSD), to reflect the changes
of sustained attention in relation to emotion. PSD describes the
distribution of signal power across frequencies. We calculate the
PSD of α, β, and γ bands, as well as the sustained attention
formula β

α+θ
, using the Welch method from the Python-MNE

toolkit (Gramfort et al., 2013). In detail, the Welch method divides
the signal into n segments that allow overlap, which improves the
signal’s variance properties (Solomon, 1991), windows the data,
and computes the average PSD of multiple segments. In particular,
the Hanning window is chosen for windowing to mitigate
spectral distortion caused by rectangular windows (Harris, 1978).
Additionally, baseline correction is performed by subtracting PSD
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FIGURE 4

Patterns in EEG data that could represent sustained attention, for EEG power in α, β, γ bands, and β
(α+θ) ratio.

values from the baseline phase, i.e. the first 5 min of each session,
from the PSD values of each session. Finally, these PSD values are
averaged over α (7–13 Hz), β (14–29 Hz), and γ (30–47 Hz) bands,
to be used for analysis.

For the sake of analysis, high and low sustained attention
emotion conditions are divided based on AX-CPT task
performance, where only the groups with significant differences are
retained, resulting in 12 samples with high sustained attention and
12 samples with low sustained attention. Meanwhile, normality
tests are conducted for EEG power in α, β, γ bands, and β

α+θ
ratio,

for all subjects in each channel. The results suggest that the data
does not have normality. Therefore, we use the Mann-Whitney
U test to compare power differences between different sustained
attention levels. We found the following patterns in EEG data
that could represent sustained attention during the task, as shown
in Figure 4, where the red circle represents the channels with
significant differences between groups.

As shown in Table 6 and Figure 4a, the analysis of α band
indicates that power in the C3 channel is significantly lower in
high sustained attention state compared to low sustained attention
state. This concurs with prior research, that found α wave activity
in the C3 to be generally implicated in relaxation (Klimesch, 1999),
meaning that decrease in activity can indicate heightened attention.

As shown in Table 7 and Figure 4b, for β band, analysis indicate
that the power in the F7 and POZ channels is significantly higher in

high sustained attention state compared to low sustained attention
state. Correspondingly, β wave activity has been associated with
attention and alertness (Rouhinen et al., 2013).

As shown in Table 8 and Figure 4c, for γ band, the analysis show
that powers in the AF3, C4, CP2, CZ, F3, F7, FC1, FC2, FC5, P4, and
POZ channels are significantly higher in high sustained attention
state compared to low sustained attention state. In congruence with
prior studies, γ wave activity is closely related to higher cognitive
functions and information processing (Masuda, 2009; Rouhinen
et al., 2013), which may be more active during high sustained
attention.

For β
α+θ

ratio, the analysis indicates that this ratio is
significantly higher in high sustained attention state compared to
low sustained attention state, as shown in Table 9 and Figure 4d.
This is consistent with research, that suggested the β

α+θ
ratio reflects

changes in attention and alertness (Wang et al., 2011).
EEG results from this study indicate significant differences

between high and low sustained attention conditions in the power
of α, β, γ bands, as well as β

α+θ
ratio. In high sustained attention

state, EEG power in α band decreases in the C3 channel, β band
power increases in the F7 and POZ channels, and both γ band
power and β

α+θ
increase in the parietal and frontal regions. These

findings corroborate previous studies that found α wave power
decrease, as well as β and γ wave power increase during high
sustained attention states. This might be due to the increase in
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TABLE 6 Channels with significant differences in α band power by attention state.

Freq. Channel Sample
size

High Low U p Cohen’s d

Mean SD Mean SD

α C3 24 0.0093 0.0017 0.0107 0.0140 38.0 0.050* 0.14

*p < 0.05.

TABLE 7 Channels with significant differences in β band power by attention state.

Freq. Channel Sample
size

High Low U p Cohen’s d

Mean SD Mean SD

β F7 24 0.0068 0.0029 0.0045 0.0004 34.0 0.027* 0.66

POZ 24 0.0070 0.0017 0.0060 0.0049 37.5 0.046* 0.27

*p < 0.05.

TABLE 8 Channels with significant differences in γ band power by attention state.

Freq. Channel Sample
size

High Low U P Cohen’s d

Mean SD Mean SD

γ AF3 24 0.0044 0.0011 0.0034 0.0005 33.0 0.023* 1.17

C4 24 0.0045 0.0011 0.0032 0.0006 36.5 0.040* 1.47

CP2 24 0.0046 0.0009 0.0038 0.0007 37.5 0.045* 0.99

CZ 24 0.0044 0.0009 0.0037 0.0006 36.0 0.037* 0.92

F3 24 0.0043 0.0010 0.0035 0.0005 36.0 0.037* 1.01

F7 24 0.0056 0.0028 0.0031 0.0006 26.5 0.007** 1.23

FC1 24 0.0044 0.0009 0.0036 0.0006 35.0 0.031* 1.05

FC2 24 0.0044 0.0010 0.0036 0.0006 35.5 0.017* 0.97

FC5 24 0.0045 0.0014 0.0034 0.0007 36.5 0.040* 0.99

P4 24 0.0052 0.0011 0.0043 0.0012 36.5 0.020* 0.78

POZ 24 0.0053 0.0016 0.0040 0.0008 34.0 0.027* 1.03

*p < 0.05, **p < 0.01.

cognitive resources required for high sustained attention tasks
(Başar et al., 2001; Klimesch, 1999).

3.5 PPG data analysis

We also examine heart rate variability (HRV) characteristics
in participants under high and low sustained attention states,
calculated from PPG data. Considering the sample size in general
PPG data analysis, we divided each task into two halves, and
HRV features are extracted from each half, resulting in 48
samples. After normality testing, HRV indices VLF[%], LF[%],
HF[%], LF/HF, LF[n.u.], and HF[n.u.] follow a normal distribution,
while MEANRR, MEDIANRR, MEANHR, SDNN, RMSSD, NN50,
pNN50, VLF[abs], LF[abs], and HF[abs] do not.

Indices that adhere to normality are analyzed with t-test.
Among these, HF[%] shows a significant decrease in high
sustained attention state (M = 35.94, SD = 10.03) compared
to low sustained attention state (M = 42.24, SD = 10.80),
t(46) = 2.09, p = 0.042, Cohen′s d = 0.60. Indices that do
not adhere to normality are analyzed with the Mann-Whitney

U test. Among them, VLF[abs] displays a significant increase
in high sustained attention state (Md = 868.66) compared to
low sustained attention state (Md = 500.26), U = 176.50,
p = 0.021, Cohen′s d = 0.82. These findings align with previous
research that found high sustained attention tasks to require more
cognitive resources, which lead to changes in autonomic nervous
system regulation: reduced parasympathetic activity, associated
with decrease in HF[%], and increased sympathetic activity,
associated with increase in VLF[abs] (Krygier et al., 2013; Thayer
et al., 2012).

4 Discussion

As elaborated in previous sections, literature on emotions’
effect on attention has yielded mixed results. This study takes
a step toward resolving existing contradictions by improving
upon methodology: using more ecologically valid VR videos to
induce emotions, and measuring sustained attention directly with
EEG and PPG. Additionally, the study enhances the analysis by
taking gender differences into consideration and using sustained
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TABLE 9 Channels with significant differences in β
α+θ

ratio by attention state.

Freq. Channel Sample
size

High Low U p Cohen’s d

Mean SD Mean SD
β

α+θ
AF3 24 0.2943 0.0260 0.2675 0.0315 32.0 0.021* 0.93

AF4 24 0.3206 0.0493 0.2760 0.0259 28.0 0.010* 1.13

C3 24 0.3018 0.0190 0.2712 0.0377 27.0 0.008** 1.03

C4 24 0.3021 0.0291 0.2665 0.0298 28.0 0.010* 1.21

CP1 24 0.2995 0.0158 0.2687 0.0398 36.0 0.039* 1.02

CP2 24 0.2958 0.0186 0.2634 0.0336 31.0 0.017* 1.19

CP6 24 0.3300 0.0315 0.2943 0.0321 31.0 0.017* 1.12

CZ 24 0.2814 0.0214 0.2565 0.0279 37.0 0.045* 0.99

F3 24 0.2878 0.0214 0.2645 0.0323 28.0 0.010* 0.85

F4 24 0.2973 0.0455 0.2570 0.0266 32.0 0.020* 1.08

FC1 24 0.2792 0.0188 0.2573 0.0257 36.0 0.039* 0.97

FC2 24 0.2810 0.0296 0.2537 0.0278 37.0 0.045* 0.95

FC5 24 0.3039 0.0391 0.2738 0.0499 35.0 0.033* 0.67

FPZ 24 0.3424 0.0921 0.2704 0.0250 25.0 0.003** 1.07

FZ 24 0.2755 0.0251 0.2943 0.0321 37.0 0.043* 0.65

P4 24 0.3249 0.0271 0.2923 0.0482 35.0 0.033* 0.83

P8 24 0.3760 0.0429 0.3316 0.0400 29.0 0.012* 1.07

POZ 24 0.3126 0.0476 0.2581 0.0344 23.0 0.004** 1.31

PO4 24 0.3255 0.0171 0.2996 0.0400 36.0 0.039* 0.84

*p < 0.05, **p < 0.01.

attention as a factor to account for the quality of attention.
Results show that for females, sustained attention levels (i.e.
quality of attention) are significantly higher during high-arousal
positive emotions compared to low-arousal positive emotions,
while for males, sustained attention levels during high-arousal
negative emotions are significantly higher than during high-
arousal positive emotions. In particular, the findings of this study
could be applied to educational settings to enhance learning
outcomes. For example, understanding the impact of emotions on
sustained attention could inform instructional design, suggesting
that educators might tailor learning environments to evoke
positive high-arousal states in students, potentially improving
their engagement and performance. Similarly, in professional
training and workplace settings, creating emotionally positive
and stimulating environments could enhance employees’ focus
and productivity.

Moreover, this study clarifies the relationship between flow
experience and sustained attention, showing that there is no
significant association under the context of timed AX-CPT tasks.
This corresponds with previous research testing flow experience
with timed tasks, such as Ullen et al. (2012), but points toward a
possible link between flow experience and ecological validity of the
experiment task. At the same time, our analysis on EEG and PPG
provide insight into how heightened sustained attention is directly
reflected in brain activity. Results from EEG data enables looking
specifically at frequency bands related to attention and sustained
attention, while raising a concern that may be related to the
mixed results in previous research. That is, in subsequent studies,

it may be worth considering using similar direct measurements
to further distinguish between responses resulting from high
sustained attention versus from emotional arousal.

This study uses a relatively small sample size. Future
studies in related directions should consider using larger
samples, while taking gender differences and quality of
sustained attention into account when analyzing attention
task performance. Potential future research directions can
include exploring the application of these results to other
types of attention tasks with more ecological validity, such
as reading, writing, gaming, as well as untimed tasks. Also,
researchers could investigate the adaptive contexts that brought
forth these gender differences in emotion induction responses.
In doing so, the effects of emotion on attention/engagement
and flow experience in different contexts could be further
explored, to point toward a more systematic, unified theory,
that could be applied to improve performance in complex
real-world contexts. This broader application could guide
the development of more effective strategies in education,
training, and therapy, ultimately enhancing individual
performance and well-being.
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Başar, E., Başar-Eroglu, C., Karakaş, S., and Schürmann, M. (2001). Gamma, alpha,
delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 39,
241–248.

Baykal, B. (2022). Temporal effects of top-down emotion regulation strategies on
affect, working memory load, and attentional deployment. Houston, TX: Faculty of The
University of Houston-Clear Lake.

Bradley, M. M., and Lang, P. J. (1994). Measuring emotion: The self-assessment
manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25,
49–59.

Bradley, M. M., Codispoti, M., Sabatinelli, D., and Lang, P. J. (2001). Emotion and
motivation II: Sex differences in picture processing. Emotion 1, 300–319.

Braver, T. S., Gray, J. R., and Burgess, G. C. (2007). “Explaining the many varieties
of working memory variation: Dual mechanisms of cognitive control,” in Variation in
working memory, eds A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, and J. N.
Towse (Oxford: Oxford University Press), 76–106.

Brosch, T., Scherer, K. R., Grandjean, D., and Sander, D. (2013). The impact of
emotion on perception, attention, memory, and decision-making. Swiss Med. Wkly.
143:w13786.

Compton, R. J. (2003). The interface between emotion and attention: A review of
evidence from psychology and neuroscience. Behav. Cogn. Neurosci. Rev. 2, 115–129.
doi: 10.1177/1534582303255278

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety, 1st Edn. Hoboken, NJ:
Jossey-Bass Publishers.

Delorme, A., and Makeig, S. (2004). EEGLAB: An open-source toolbox for analysis
of single-trial EEG dynamics. J. Neurosci. Methods 134, 9–21.

Engeser, S., and Rheinberg, F. (2008). Flow, performance and moderators of
challenge-skill balance. Motiv. Emot. 32, 158–172.

Gasper, K., and Clore, G. L. (2002). Attending to the big picture: Mood and global
versus local processing of visual information. Psychol. Sci. 13, 34–40. doi: 10.1111/
1467-9280.00406

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267.
doi: 10.3389/fnins.2013.00267

Harris, D. J., Allen, K. L., Vine, S. J., and Wilson, M. R. (2021). A systematic review
and meta-analysis of the relationship between flow states and performance. Int. Rev.
Sport Exerc. Psychol. 16, 693–721.

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete
Fourier transform. Proc. IEEE 66, 51–83.

Jefferies, L. N., Smilek, D., Eich, E., and Enns, J. T. (2008). Emotional valence and
arousal interact in attentional control. Psychol. Sci. 19, 290–295.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory
performance: A review and analysis. Brain Res. Rev. 29, 169–195.

Krygier, J. R., Heathers, J. A. J., Shahrestani, S., Abbott, M., Gross, J. J., and
Kemp, A. H. (2013). Mindfulness meditation, well-being, and heart rate variability:
A preliminary investigation into the impact of intensive Vipassana meditation. Int. J.
Psychophysiol. 89, 305–313. doi: 10.1016/j.ijpsycho.2013.06.017

Kumar, S. M., Vaishali, K., Maiya, G. A., Shivashankar, K. N., and Shashikiran,
U. (2023). Analysis of time-domain indices, frequency domain measures of heart
rate variability derived from ECG waveform and pulse-wave-related HRV among
overweight individuals: An observational study. F1000Research 12:1229. doi: 10.
12688/f1000research.139283.1

Li, B. J., Bailenson, J. N., Pines, A., Greenleaf, W. J., and Williams, L. M. (2017).
A public database of immersive VR videos with corresponding ratings of arousal,
valence, and correlations between head movements and self report measures. Front.
Psychol. 8:2116. doi: 10.3389/fpsyg.2017.02116

Marty-Dugas, J., and Smilek, D. (2019). Deep, effortless concentration:
Re-examining the flow concept and exploring relations with inattention,
absorption, and personality. Psychol. Res. 83, 1760–1777. doi: 10.1007/s00426-018-
1031-6

Masuda, N. (2009). Selective population rate coding: A possible computational
role of gamma oscillations in selective attention. Neural Comput. 21, 3335–3362.
doi: 10.1162/neco.2009.09-08-857

Mather, M., and Sutherland, M. R. (2011). Arousal-biased competition in perception
and memory. Perspect. Psychol. Sci. 6, 114–133.

Mitchell, J. (2022). Emotion and attention. Philos. Stud. 180, 1–27.

Pekrun, R., Goetz, T., Titz, W., and Perry, R. P. (2002). Academic emotions in
students’ self-regulated learning and achievement: A program of qualitative and
quantitative research. Educ. Psychol. 37, 91–105.

Phelps, E. A., Ling, S., and Carrasco, M. (2006). Emotion facilitates perception and
potentiates the perceptual benefits of attention. Psychol. Sci. 17, 292–299.

Rouhinen, S., Panula, J., Palva, J. M., and Palva, S. (2013). Load dependence of
β and γ oscillations predicts individual capacity of visual attention. J. Neurosci. 33,
19023–19033.

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1467403
https://doi.org/10.1177/1534582303255278
https://doi.org/10.1111/1467-9280.00406
https://doi.org/10.1111/1467-9280.00406
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.ijpsycho.2013.06.017
https://doi.org/10.12688/f1000research.139283.1
https://doi.org/10.12688/f1000research.139283.1
https://doi.org/10.3389/fpsyg.2017.02116
https://doi.org/10.1007/s00426-018-1031-6
https://doi.org/10.1007/s00426-018-1031-6
https://doi.org/10.1162/neco.2009.09-08-857
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1467403 October 14, 2024 Time: 17:16 # 10

Shen et al. 10.3389/fnhum.2024.1467403

Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–
1178.

Schiefele, U., and Raabe, A. (2011). Skills-demands compatibility as a determinant
of flow experience in an inductive reasoning task. Psychol. Rep. 109, 428–444. doi:
10.2466/04.22.PR0.109.5.428-444

Solomon, J. O. M. (1991). PSD computations using Welch’s method. [Power spectral
density (PSD)] (SAND-91-1533). Albuquerque, NM: Sandia National Lab.

Swann, C., Keegan, R. J., Piggott, D., and Crust, L. (2012). A systematic review of the
experience, occurrence, and controllability of flow states in elite sport. Psychol. Sport
Exerc. 13, 807–819.

Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., and Wager, T. D. (2012). A meta-
analysis of heart rate variability and neuroimaging studies: Implications for heart rate
variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756.
doi: 10.1016/j.neubiorev.2011.11.009

Ullen, F., de Manzano, O., Almeida, R., Magnusson, P. K. E., Pedersen,
N. L., Nakamura, J., et al. (2012). Proneness for psychological flow in everyday

life: Associations with personality and intelligence. Pers. Individ. Differ. 52,
167–172.

Wang, X.-W., Nie, D., and Lu, B.-L. (2011). “EEG-based emotion recognition
using frequency domain features and support vector machines,” in Neural information
processing, Vol. 7062, eds B.-L. Lu, L. Zhang, and J. Kwok (Berlin Heidelberg:
Springer), 734–743.

Wass, S. V., Smith, C. G., Stubbs, L., Clackson, K., and Mirza, F. U.
(2021). Physiological stress, sustained attention, emotion regulation, and cognitive
engagement in 12-month-old infants from urban environments. Dev. Psychol. 57,
1179–1194. doi: 10.1037/dev0001200

Westphal, A., Kretschmann, J., Gronostaj, A., and Vock, M. (2018). More
enjoyment, less anxiety and boredom: How achievement emotions relate to academic
self-concept and teachers’ diagnostic skills. Learn. Individ. Differ. 62, 108–117.

Whitehill, J., Serpell, Z., Yi-Ching Lin, Foster, A., and Movellan, J. R. (2014).
The faces of engagement: Automatic recognition of student engagement from facial
expressions. IEEE Trans. Affect. Comput. 5, 86–98.

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1467403
https://doi.org/10.2466/04.22.PR0.109.5.428-444
https://doi.org/10.2466/04.22.PR0.109.5.428-444
https://doi.org/10.1016/j.neubiorev.2011.11.009
https://doi.org/10.1037/dev0001200
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	Understanding emotional influences on sustained attention: a study using virtual reality and neurophysiological monitoring
	1 Introduction
	2 Materials and methods
	2.1 Stimuli, paradigms and equipment
	2.2 Participants
	2.3 Procedure
	2.4 Electroencephalogram (EEG) pre-processing
	2.5 Photoplethysmography (PPG) data

	3 Results
	3.1 Emotion induction
	3.2 Emotion and AX-CPT task data
	3.3 Emotion and flow experience data
	3.4 EEG data analysis
	3.5 PPG data analysis

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


