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for EEG emotion recognition
based on inter-domain sample
hybridization
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College of Intelligence Science and Technology, National University of Defense Technology,

Changsha, China

Background: Electroencephalogram (EEG) is widely used in emotion recognition

due to its precision and reliability. However, the nonstationarity of EEG

signals causes significant di�erences between individuals or sessions, making

it challenging to construct a robust model. Recently, domain adaptation (DA)

methods have shown excellent results in cross-subject EEG emotion recognition

by aligning marginal distributions. Nevertheless, these methods do not consider

emotion category labels, which can lead to label confusion during alignment.

Our study aims to alleviate this problem by promoting conditional distribution

alignment during domain adaptation to improve cross-subject and cross-session

emotion recognition performance.

Method: This study introduces a multi-source domain adaptation common-

branch network for EEG emotion recognition and proposes a novel sample

hybridization method. This method enables the introduction of target domain

data information by directionally hybridizing source and target domain samples

without increasing the overall sample size, thereby enhancing the e�ectiveness

of conditional distribution alignment in domain adaptation. Cross-subject and

cross-session experiments were conducted on two publicly available datasets,

SEED and SEED-IV, to validate the proposed model.

Result: In cross-subject emotion recognition, our method achieved an average

accuracy of 90.27% on the SEED dataset, with eight out of 15 subjects attaining a

recognition accuracy higher than 90%. For the SEED-IV dataset, the recognition

accuracy also reached 73.21%. Additionally, in the cross-session experiment,

we sequentially used two out of the three session data as source domains

and the remaining session as the target domain for emotion recognition. The

proposed model yielded average accuracies of 94.16 and 75.05% on the two

datasets, respectively.

Conclusion: Our proposed method aims to alleviate the di�culties of emotion

recognition from the limited generalization ability of EEG features across subjects

and sessions. Though adapting the multi-source domain adaptation and the

sample hybridization method, the proposed method can e�ectively transfer the

emotion-related knowledge of known subjects and achieve accurate emotion

recognition on unlabeled subjects.

KEYWORDS

electroencephalogram, emotion recognition, multi-source domain adaptation, sample

hybridization, brain computer interaction
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1 Introduction

Emotion, as a complex subjective expression of humans, plays

a crucial role in daily life, affecting work, learning, memory,

and decision-making (Tyng et al., 2017; Alarcao and Fonseca,

2017; Yu et al., 2023). The generation of emotions involves

intricate interactions among multiple brain regions, primarily

including the prefrontal cortex, temporal lobe, and others, which

are essential for the perception, expression, and regulation of

emotions (AlShorman et al., 2020). However, emotions can

be intentionally or unintentionally suppressed, leading many

individuals to struggle with accurately describing their emotional

states. This presents significant challenges for analyzing and

assessing emotions (Guo et al., 2024).

These challenges highlight the need for accurate and objective

emotion recognition, particularly in fields such as human-

computer interaction (HCI), healthcare, mental health monitoring,

and security. In these domains, utilizing physiological signals

for emotion recognition has become an important area of

research (Fiorini et al., 2020; Khare et al., 2024). Recent

advancements in AI-enabled detection methods have further

enhanced the ability to assess emotional states. For instance, AI

techniques have been successfully applied to detect anxiety and

psychological stress, showcasing their potential to improve emotion

recognition performance (Pal et al., 2022; Heyat et al., 2022).

Moreover, research has demonstrated a strong correlation between

the generation of emotions and the electrical signals produced by

cerebral cortex activity, allowing for the distinction of emotional

states through signal decoding (Liu et al., 2017; Venkatraman et al.,

2017; Malfliet et al., 2017). Electroencephalography (EEG), as a

non-invasive physiological signal detection tool, objectively reflects

the electrical activity of different brain regions (Parveen et al.,

2023). Consequently, numerous studies have employed EEG-based

methods for emotion recognition (Ran et al., 2023; Niu et al., 2023).

Nonetheless, the inherent nonstationarity of EEG signals poses

significant challenges in EEG-based emotion recognition (Prabowo

et al., 2023; Wu et al., 2020). This non-stationarity can cause

significant variations in the EEG patterns between different

subjects from the same emotional category and even between the

same subject at different times, which increases the difficulty of

designing effective and robust recognition models. In addition,

when traditional machine learning-based methods are used for

emotion analysis, the collection and precise annotation of a large

amount of EEG data are required. However, limitations of low

spatial resolution of the EEG, high noise interference ratio, and

long calibration time during data collection make it particularly

challenging to train models effectively using large-scale datasets.

Therefore, to alleviate the requirement for large-scale data

collection and tedious annotation, an increasing number of studies

have leveraged the concept of domain adaptation (DA) to optimize

the EEG-based emotion recognition methods (Li W. et al., 2021;

Wan et al., 2021). The DA method enables the utilization of

labeled data from a source domain to empower predictions in an

unlabeled target domain, thereby significantly enhancing learning

performance in the target domain. Zheng et al. (2017) have found

that there are consistent and stable patterns between different

subjects and sessions, which has provided support for the DA

implementation into emotion recognition tasks. The application of

the DAmethods has effectively reduced the need for a large number

of labeled samples (Li Y. et al., 2019), pushing the field of EEG

emotion recognition toward more efficient and practical directions.

However, in DA-based emotion recognition, the existing

methods primarily focus on aligning the marginal distributions of

target- and source-domain data, which neglects the risk that the

target-domain data of unknown categories might be adapted to

incorrect emotional categories, thus preventing effective matching

of data with the same emotional category between the source

and target domains. Therefore, a more reasonable approach is to

reduce the conditional distribution discrepancy between the source

domain and the target domain while considering the alignment of

the marginal distributions. This will bring the joint distributions of

the source and target domains closer together, thus improving the

model’s decoding performance on target domain data. However,

promoting the alignment of conditional distributions between the

source and target domains, and achieving effective adaptation for

data with the same labels is a challenge.

In order to solve the above problem, guide the target-domain

samples to transfer to the correct category, this study constructs

the so-called hybrid sample sets and uses it to replace the

source domain. The hybrid sample set consists of half the source

domain samples and half the hybrid samples, with hybrid samples

constructed by linear combination source domain samples with

target domain samples that have the highest cosine similarity.

These hybrid samples inherit information from both the source and

target domain samples and retain the same category labels as the

source-domain samples. During the training process, this method

allows the model to naturally learn the features of target domain

samples. Meanwhile, since the hybrid samples share labels with the

source domain samples, they can guide target samples to transfer

to their corresponding source-domain samples, which potentially

belong to the same category as the target-domain samples. As a

result, samples from the same category in both the source and

target domains will exhibit similar feature distributions, increasing

the probability that the target-domain samples are classified

into the correct category, thus effectively achieving conditional

distribution alignment between the target and source domains.

Additionally, the hybrid sample set retains half of the source

domain samples as stable references to help the model maintain a

baseline performance.

This study applies this idea to EEG emotion recognition and

constructs a sample hybridization-based multi-source DA method,

which can achieve excellent performance in different tasks.

The primary contributions of this study can be condensed

as follows:

(1) A sample hybridization method is proposed, where each

hybrid sample is constructed by hybridizing a sample from the

source domain with its most similar sample in the target domain.

Hybrid samples incorporate the information from the source and

target domain. As training progresses, the model can gradually

adapt to the data distribution of the target domain;

(2) A multi-source DA network is designed. The proposed

network takes into account the difference in marginal distribution

between different domains, and achieves the marginal distribution

alignment by using the maximum mean discrepancy (MMD) loss.
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In addition, a conditional entropy loss is introduced to adapt the

feature distribution of the target domain;

(3) The experiments for cross-subject and cross-session

emotion recognition are conducted on two publicly available

emotion datasets, the SEED and SEED-IV datasets. The

experimental results demonstrate the excellent performance

of the proposed model.

The subsequent sections of this paper are structured as follows:

Section 2 introduces some related works on domain adaptation

based emotion recognition. Section 3 describes the details of

the materials and methods proposed in this paper. Section 4

presents the results and compares the results with existingmethods.

Section 5 discusses the proposed method. Finally, Section 6

summarizes this work.

2 Related work

In recent years, with the deepening of the analysis and

processing of brain electrophysiological signals, the field of affective

computing has demonstrated great feasibility, sparking widespread

research interest among researchers (Pan et al., 2023). Recent

studies aimed to answer the question of the representation of

emotions. Currently, there are two widely accepted representation

models: the discrete model and the continuous model. Separately,

in the discrete model, emotions are categorized into basic

emotional states, such as happiness, neutrality, and sadness (Ekman

and Friesen, 1971). In the continuous model, emotions are

expressed continuously within a three-dimensional space, which is

defined by arousal, valence, and dominance (Mehrabian, 1996). In

this context, numerous studies have achieved remarkable progress

in the field of affective computing using the domain adaptation

(DA) method.

For instance, Chai et al. (2016) introduced an innovative

subspace-aligned autoencoder (SAAE) that adopts an autoencoder

structure capable of performing feature alignment between the

source and target domains, enabling the trained classifier to classify

emotions in unlabeled data from the target domain effectively. Sun

and Saenko (2016) presented an unsupervised DA method to

align linear transformations that correspond to the second-order

statistics between the target and source distributions, thereby

enhancing the generalization capabilities across domains. Wang

Y. et al. (2021) designed a prototype-based symmetric positive

definite matrix network architecture that can facilitate feature and

sample adaptation between distributionally indistinguishable and

centroid-aligned subjects. Similarly, Peng et al. (2022) employed

the maximum mean discrepancy (MMD) (Borgwardt et al., 2006)

method for joint distribution alignment and used graph-based

adaptive label propagation for estimating target labels.

With the advancing progress and widespread adoption of deep

learning, utilizing deep neural networks for decoding emotion-

related EEG signals has emerged as the predominant approach. Li

et al. (2018) presented the deep adaptation network (DAN)

to address the challenge of generalization in cross-individual

emotion recognition. By optimizing the effects of variations across

individuals in EEG signals, the DAN can achieve significant

performance improvement compared to baseline methods and

other DA techniques. Later, Li et al. (2018) proposed a method that

integrates adversarial training with associated domain adaptation

(ADA) (Li J. et al., 2019) to address domain distribution

discrepancy across domains. By enforcing similarity in feature

representations between the target and source domains, this

approach reduces the impact of domain shift and improves the

model’s effectiveness when applied to the target domain. Haeusser

et al. (2017) introduced a multi-source collaborative adaptation

framework, which considers the correlation between domains and

features. The authors focused on achieving automatic emotion

recognition across topics or datasets using the EEG features. Zhu

et al. (2022) incorporated wasserstein adversarial training into

the ADA framework within an autoencoder network, aiming

to increase the resemblance between marginal and conditional

distributions of different domains, ultimately leading to improved

performance in domain adaptation tasks. More recently, Wang F.

et al. (2021) developed a domain selection method, which could

screen the most similar data from the source domain to the new

subjects, thereby mitigating the overfitting issue and enhancing the

network’s generalization capabilities.

Although the above studies have achieved significant results,

most of them have primarily concentrated on the overall adaptation

between the target domain and multiple source domains while

overlooking the potential differences in distributions between

various source domains, contributing to the poor generalization

ability of the model.

Therefore, many recent studies have attempted to perform

differentiated DA between the target domain and multiple

source domains, using a common-branch network architecture

to achieve one-to-one adaptation between different domains. For

instance, Chen et al. (2021) developed a domain adaptation

network with a common branch to extract domain-shared, low-

level invariant features. In the branch network, they employed the

MMD to reduce the differences in marginal distributions between

different domains. Similarly, Cao et al. (2022) categorized the EEG

data collected from diverse subjects into multiple source domains

and incorporated various domain-specific feature extraction

modules of differing dimensions within the branch network,

thus enabling the extraction of richer and more diverse domain-

specific feature representations. She et al. (2023) introduced a joint

DA method in the branch network and improved recognition

results by calculating domain similarity weights. Although the

aforementioned methods are more comprehensive than merging

multiple source domains for adaptation, they still lack an efficient

method to mitigate the differences in conditional distributions

between the target domain and multiple source domains, which

can result in poor recognition performance when applied to the

target domain.

Aiming to address the mentioned limitation, this paper

proposes a sample hybridization-based multi-source DA (SH-

MDA) network for EEG emotion recognition. A common-branch

network architecture is adopted to achieve one-to-one DA between

the target and source domains, and the MMD loss is utilized to

measure the marginal distribution differences between different

domains. Besides, to reduce the conditional distribution differences

between the source and target domains, and considering the

significant individual differences between subjects in different

source domains, which make it challenging to construct a universal

hybrid sample set applicable to all individual’s feature distribution,
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The flowchart of this study.

the hybrid sample set is constructed for each source domain and

replaces the source domain in model training.

For the construction of hybrid samples within the hybrid

sample set, in the field of data augmentation, some data

augmentationmethods can serve as references. For instance, Zhang

et al. (2017) introduced theMixupmethod to generatemore diverse

samples by randomly combining two different samples in each

training batch; Zhou et al. (2023) proposed the EEGmixup, which

combines EEG data from the same trial to increase the number of

samples in both the source and target domains; and, Wang et al.

(2024) utilized prior knowledge on the channel distributions and

generated new samples by exchanging the left and right hemisphere

channels to achieve data augmentation. For simplicity, in our

method, we construct hybrid samples by linearly combining the

samples with the highest cosine similarity from the source and

target domains.

Moreover, to improve the recognition performance of the

model on the unlabeled samples of the target domain, this study

introduces conditional entropy to make the model’s decision

boundary more adaptive to the target-domain feature distribution

after model processing.

3 Materials and methods

This study was completed in several steps, as illustrated in

Figure 1. These steps include the EEG datasets (utilizing publicly

available EEG emotional datasets), data preprocessing, and model

design, which details the proposed SH-MDA model. Finally, the

proposed model is applied for emotion recognition in cross-subject

and cross-session tasks.

3.1 Datasets

In this study, the the Shanghai Jiao Tong University (SJTU)

emotional EEG dataset (SEED) and its extended version SEED-IV

are selected to validate the effectiveness of our proposed method,

which are widely used in the field of EEG emotion recognition. The

data acquisition and ethical considerations can be seen in Zheng

and Lu (2015) and Zheng et al. (2018), all EEG data used in this

paper are licensed, and for privacy protection, only numbers are

TABLE 1 The summary of the SEED and SEED-IV datasets.

SEED SEED-IV

Number of subjects 15 15

Number of experiment

trials

15 24

The length of EEG

data in a trial

4 min 2 min

Emotion category Positive, neural, negative Happy, neural, fear, sad

Number of channels 62 62

used to represent different subjects. The brief description of the

datasets are shown in Table 1.

3.1.1 SEED dataset
The SEED dataset comprises EEG recordings from 15

individuals, consisting of seven males and eight females. It

employs video stimuli to evoke corresponding emotions. The video

materials were derived from 15 emotional clips selected from

movies, each ∼4 min in length, with five clips representing each

emotion. All subjects participated in three separate experiments

conducted at one-week intervals. During each experiment,

participants viewed the 15 emotional clips while their brain activity

was recorded via EEG. After each video segment, participants

had 45 s for self-assessment to ensure the effectiveness of the

emotional induction.

3.1.2 SEED-IV dataset
The SEED-IV dataset contains the EEG data of four emotion

categories: neutral, sad, fear, and happy. Its structure is similar to

that of the SEED dataset; it also includes data from 15 subjects who

completed three trials, each comprising 24 experimental trials. In

each trial, participants were first presented with a 5-s cue intended

to prime their emotional state. Following this cue, they watched a

2-min film segment specifically chosen to evoke the target emotion.

After the film, a 45-s self-assessment period was included during

which participants rated their emotional experiences.
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3.2 Data preprocessing

3.2.1 Preprocessing
For the SEED dataset, the downsampling rate for raw EEG

signals was set to 200 Hz, and the signals underwent preprocessing

using band-pass filtering from 0 to 70 Hz. Subsequently, the EEG

data was segmented using non-overlapping time windows, each

1 s in length. Finally, the number of samples per subject per

experiment was 3,394.

The SEED-IV dataset utilizes a preprocessing approach similar

to that of the SEED dataset, which initially employs a band-

pass filtering step to isolate frequencies ranging from 1 to 75 Hz.

Subsequently, the EEG data is segmented using a non-overlapping

time window of 4-s length. Finally, the sample size for each subject

across the three sessions is 851, 832, and 822, respectively.

3.2.2 Feature extraction
In the selection of input features for the model, recent

studies have revealed that differential entropy (DE) features can

effectively extract emotional information fromEEG signals, thereby

enhancing the classification performance of a model (Ju et al., 2024;

Lu et al., 2023; Li et al., 2023; Liang et al., 2021). For a segment pre-

processed time series EEG data X, which approximates a Gaussian

distribution N(µ, σ 2), DE features can be calculated as follows

f (X) =
∫ +∞

−∞

1√
2πσ 2

e
− (x−µ)2

2σ2 log

(

1√
2πσ 2

e
− (x−µ)2

2σ2

)

dx

= 1

2
log

(

2πeσ 2
)

.

(1)

The differential entropy is a simple measure of the time series

complexity in a specific frequency band. In this study, for both the

SEED and SEED-IV datasets, after dividing samples using different

time windows, we extracted DE features for each sample across

the δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz), and

γ (31–50 Hz) frequency bands and normalize them by different

channels. Finally, the feature dimension is 62 × 5 (channels ×
frequency bands).

3.3 Model design

3.3.1 The framework of SH-MDA
This study aims to construct an emotion recognition model

using the DA method. The training procedure of the proposed

SH-MDA model is shown in Figure 2. Suppose there are multiple

labeled EEG data from source subjects (domains) and unlabeled

EEG data from a target subject (domain), defined as XS =
{Xi}Ni=1 = {{xij , yij}

Mi
j=1}Ni=1 and XT = {xtj }

Mt
j=1, where the N denotes

the number of domains, Mi represents the number of samples in

the i-th domain. Firstly, after preprocessing, the hybrid sample sets

{Hi}Ni=1 are constructed and replace the N source domains. Each

hybrid sample set consist of half source domain samples and half

hybrid samples. Then, the common domain-invariant features of

the samples are extracted using the common feature extractor in

the common network and reinforced through adversarial training

with a domain discriminator. Subsequently, these extracted features

are passed to different branch networks, which comprise branch

feature extractors (BFEs) and branch task classifiers (BTCs). The

BFEs extract domain-specific features for each domain and forward

them to the BTCs that compute their respective prediction results.

Finally, the loss functions are calculated to update the model.

In addition, in the stage of model prediction, the domain-

invariant features of target domain samples extracted by common

feature extractor are sent to N branch networks to obtain

N probability distributions of emotion categories, and the

final emotion recognition result is output by averaging these

probability distributions.

3.3.2 Sample hybridization
Aiming to minimize the conditional distribution difference

between source domains and the target domain, this study

introduces a conditional alignment method that utilizes sample

hybridization, as briefly illustrated in Figure 3.

Specifically, the sample hybridization can be divided into two

steps. In the first step, the cosine similarity is used as ameasurement

to compute the similarity between samples in a given source

domain and samples in the target domain. In a training batch, for

the sample xij ∈ R
m×d from the i-th source domain Xi,b =

{

xij

}Mb

j=1
,

whereMb denotes the batch size, m and d represent the number of

channels and feature dimension per channel, the sj,k is defined as

the cosine similarity between xij and the sample xt
k
∈ R

m×d in the

target domain XT,b =
{

xt
k

}Mb

k=1
, the sj,k can be calculated as

sj,k =
xij · xtk

‖ xij ‖‖ xt
k
‖
, (2)

where ‖ · ‖ denotes the Euclidean norm. Next, the normalized

cosine similarity between xij andMb samples of the target domain in

the training batch can be represented by a vector Dj =
(

s̃j,k
)Mb

k=1
∈

R
Mb , and s̃j,k is calculated by

s̃j,k =
esj,k

∑Mb

k′=1
esj,k′

. (3)

Furthermore, for the sample xij in Xi,b, by calculating the

normalized similarity Dj, there is a target domain sample x̃tj with

the highest similarity. Theoretically, compared with the other

samples in the target domain, sample x̃tj is most likely to belong

to the same emotional category as sample xij . However, due to

the difference between the target and source domains (subject),

there exists a significant risk that if the label of the source domain

sample is directly utilized as the pseudo label for its most similar

target domain sample to conduct domain adaptation, which might

cause irreversible negative transfer and subsequently affect the

effectiveness of domain adaptation.

Therefore, in the second step, we construct the hybrid

samples through a linear combination of the source-domain

samples and their most similar samples in the target domain,

while sharing labels with the source-domain samples. This

way, during training, these hybrid samples can provide feature

information of the target domain samples and be classified into

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1464431
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnhum.2024.1464431

XT

Target domain

Common Network

Branch 

Network1

Source domain

X1

X2

XN

Branch 

NetworkN

DE feature 

extraction

DE feature 

extraction

XT

Sample Hybridization

XN

X1

X2

H1

HN

H2

Hybrid

Hybrid G

R

L ...

X1 X2 XN

0.1
0.15

0.25

Domain 

Discriminator

Replace

FIGURE 2
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Illustration of sample hybridization, di�erent graphs are used to represent di�erent labels. The symbol “→" represent the highest similarity among the

source sample and the target sample. The sample hybridization can be divided into two steps. STEP 1: Compute the cosine similarity between the

source domain samples and the target domain samples. STEP 2: Linearly combine the source domain samples with their most similar samples in the

target domain to construct hybrid samples, which share the same labels as the source domain samples.

corresponding emotion categories based on the shared labels,

enabling the model to gradually adapt to the data distribution of the

target domain.

In the above, we introduced the construction process of hybrid

samples. Finally, to ensure that the target domain data in the hybrid

samples does not overly affect the source domain data and to

maintain the dominance of the source domain data, we retain half

of the source domain samples when constructing the hybrid sample

set. These source domain samples will serve as a stable reference to

help the model maintain baseline performance. For the i-th source

domain, the hybrid sample set Hi,b = {hij}
Mb
j=1 in a training batch

can be defined as

Hi,b =
{

hij, j = 1, 2, . . . ,Mb

}

hij =
{

xij if j ≤ Mb/2,

λxij + (1− λ)x̃tj if j > Mb/2.

, (4)
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where λ is the hybrid parameter, x̃tj represents the sample with

the highest cosine similarity to source domain sample xij in the

target domain within the current training batch. Since a hybrid

sample set Hi,b is composed of samples from the source and

target domains with the highest similarity, which can be considered

that samples from the source domain and samples obtained after

hybridizing the source-domain samples have a high probability of

belonging to the same emotional category. Therefore, the source-

domain labels can as the pseudo labels of the hybrid sample set

and the hybrid sample sets are defined as H = {Hi}Ni=1 =
{{hij, yij}

Mi
j=1}Ni=1.

3.3.3 Common network
In the common network, this study designs a simple three-layer

multilayer perceptron (MLP) common feature extractor EI , which

aims to extract the domain-invariant features by mapping the input

features from the original space to the common feature space, for

the samples hi ∈ R
m×d from i-th hybrid sample set Hi and the

samples xt ∈ R
m×d from target domain XT , the domain-invariant

features f iI and f tI can be formulated as follows

f iI = EI(h
i; θI)

f tI = EI(x
t; θI)

, (5)

where EI(·) represents the common feature extractor in the

common network, and θI denotes its parameters. To enhance the

capability of the model to extract domain-invariant features, the

domain discriminator Ddis is introduced. Ddis consists of a fully

connected layer, a softmax layer, and a gradient reversal layer

(GRL), and the domain discrimination loss Ldis can be expressed as

Ldis =
N

∑

i=1

Ehi∼Hi

[

Di log(Ddis(f
i
I , θD))

]

, (6)

where θD represents the parameter of Ddis, f
i
I and Di denote

the domain-invariant features and the domain label of i-th hybrid

sample set. The optimization objective of the domain discriminator

is to induce the common feature extractor to more effectively

extract domain-invariant features through adversarial training, by

minimizing the value of Ldis, the parameters of the common

feature extractor are updated by the gradient reversal layer in the

direction of the opposite gradient. Thismakes the extracted features

more general.

3.3.4 Branch networks
In this paper, we design different branch networks to achieve

one-to-one distribution alignment by mapping the features of each

source domain and target domain into specific feature spaces. As

shown in Figure 4, each branch network consists of a branch feature

extractor (BFE) and a branch task classifier (BTC).

Specifically, after extracting domain-invariant features {f iI }Ni=1

and f tI , the features of different hybrid sample set and target domain

are fed into the corresponding branch network. In the branch

network, the BFE employs a fully connected layer to map data into
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FIGURE 4

Details of the i-th branch network, which can achieve an e�ective

alignment of the distribution between a specific hybrid sample set

and the target domain by minimizing the loss functions.

an individual latent space and obtains domain-specific features. In

i-th BFE EiS, the domain-specific features f iS and f
t,i
S are extracted by

f iS = EiS(f
i
I ; θ iS)

f t,iS = EiS(f
t
I ; θ iS)

, (7)

in which θ iS denotes the parameters of EiS. In addition, the

MaximumMean Discrepancy (MMD) loss is calculated to measure

the differences in marginal distributions across domains. The

formula of LMMD can be expressed as

LMMD =
N

∑

i=1

Ehi ,xt∼Hi ,XT
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 , (8)

where f iS,j represents the domain-specific feature of the sample

in the i-th hybrid sample set, f t,i
S,k

denotes the domain-specific

feature of the sample in the i-th branch network of the target

domain, and Mi and Mt are the numbers of samples in the

source domain and target domain, respectively. Then, the extracted

domain-specific features of hybrid sample sets {f iS}Ni=1 and target

domain {f t,iS }Ni=1 are sent to corresponding BTC to reduce feature

dimensions to the number of emotion categories, and the

softmax layer translates the output as probability distribution. The

prediction of i-th BTC can be expressed as

ŷi = EiC(f
i
S; θ iC)

ŷit = EiC(f
t,i
S ; θ iC)

, (9)

Where EiC represents the i-th branch task classifier, ŷi and

ŷit denote the prediction results in i-th BTC. Furthermore, the

classification loss is used to measure the difference between the

predictions and the truth labels. During the training process, the
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calculation of classification loss Lcls can be expressed by cross-

entropy as follows:

Lcls =
N

∑

i=1

Ehi∼Hi

[

−
C

∑

c=1

p(c = yi) log(ŷi,c)

]

, (10)

where p(·) is the indicator function, ŷi,c is the prediction of i-

th hybrid sample set in c-th emotion category, yi represents the

truth label of i-th source domain, C denotes the number of emotion

categories. By minimizing the Lcls, the hybrid samples will exhibit

a similar conditional distribution to that of the source domain

samples. Since the hybrid samples incorporate information from

the target domain samples, they can serve as a guide to align these

target samples with the source domain samples, enhancing the

model’s adaptation effect, and improving the classification accuracy

on the target domain.

3.3.5 Conditional entropy
In this study, the target domain data are unlabeled. Therefore,

after training the classifiers using the data from source domain,

the classifier might align more closely with the data distribution of

the source domain while paying less attention to that of the target

domain. Consequently, the decision boundary of classifier in the

target domain could be inaccurate. To address this issue, this study

introduces the conditional entropy loss Lce, which is defined by Shu

et al. (2018):

Lce = −
N

∑

i=1

Ext∼XT [
(

ŷit
)

ln ŷit], (11)

where ŷit = {ŷit,j}
Mt
j=1 denotes the prediction result of the target-

domain data output from i-th branch network. The conditional

entropy loss measures the classification uncertainty of classifier. A

high value of conditional entropy loss indicates that the classifier

has a large uncertainty about the category belonging to input data.

Therefore, byminimizing the conditional entropy loss, the classifier

can be forced to make more certain predictions in the target

domain, even though those predictions might not be completely

accurate. In this way, the classifier’s decision boundary will be

pushed away from the high-density regions of the target domain

data, reducing the probability of making uncertain predictions in

these regions.

In summary, in the training stage, the proposed SH-MDA

receives samples from source and target domains, and achieves

distribution alignment between the source and target domains. The

parameters of SH-MDA can be updated by minimizing the Ltotal :

Ltotal = Lcls + λ1Ldis + λ2Lmmd + λ3Lce, (12)

where the λ1 ∼ λ3 is the balance parameters. The training

procedure of SH-MDAmodel is presented in Algorithm 1.

3.4 Experiments

The proposed SH-MDA is implemented on PyTorch

framework version 1.8.1 with the CUDA toolkit version 10.1,

Input: batch size Mb, Iteration T, source domain data

{Xi}Ni=1 = {{xij , yij}
Mi
j=1}Ni=1, unlabelled target domain data

XT = {Xt
j }
Mt
j=1

Output: The trained model of SH-MDA.

1: for t = 1, ..., T do

2: for i = 1, ..., N do

3: Take Mb samples {(xij , yij)}
Mb
j=1 from the source

domain and {xtj }
Mb
j=1 from the target domain

4: Construct hybrid sample set {(hij , yij)}
Mb
j=1

by Equations 2–4

5: Replace {(xij , yij)}
Mb
j=1 with {(hij , yij)}

Mb
j=1

6: Obtain domain-invariant feature {f iI,j}
Mb
j=1 and

{f tI,j}
Mb
j=1 by the common feature extractor

7: Compute Ldis by Equation 6

8: Obtain domain-specific feature {f iS,j}
Mb
j=1 and

{f t,iS,j }
Mb
j=1 using BFEi in branch networki

9: Compute LMMD by Equation 8

10: Obtain the prediction results {ŷij}
Mb
j=1 and

{ŷt,ij }
Mb
j=1 by Equation 9

11: Compute Lcls and Lce by Equations 10, 11

12: Update the model parameters by Equation 12

13: end for

14: end for

15: return The trained model of SH-MDA.

Algorithm 1. The training procedure of SH-MDA.

conducted cross-subject and cross-session experiments and

compared with several state-of-the-art methods on two public

emotion datasets. All the experiments were performed on a PC

with an Intel (R) Core (TM) i9-10900X CPU, an NVIDIA GTX

2080Ti GPU, running theWindows 10 operating system. The codes

of SH-MDA are available at https://github.com/Xitsuka/SH-MDA.

In the experiment, two validation paradigms were adopted:

cross-subject and cross-session. In the common feature extractor,

the extracted DE features were fed as the model input, and the

feature dimension was reduced from 310 (62 × 5) to 64 after

three layers of the MLP. In the three-layer MLP, a LeakyRelu

(Xu et al., 2015) layer was used after each linear layer. In the

domain discriminator, domain-invariant features pass through two

fully connected layers, with the dimensionality reduced from 64 to

the number of source domains. Next, in the BFE and BTC, only

one fully connected layer was used; the BFE reduced the features

from 64-D to 32-D, and then the BTC reduced the 32-D features

to the number of categories. The Table 2 describes the network

hyperparameters of SH-MDA.

In the training process of SH-MDA, the Adam optimizer

(Kingma and Ba, 2014) was used to update the network parameters.

The balance parameter λ1 for Ldis was set to 0.1, selected from

{0.01, 0.1, 0.5, 1.0} based on optimal performance. The LMMD used

a dynamic parameter λ2 = 2
1+e−10∗i/ epoch − 1, as utilized in many

studies (Chen et al., 2021; She et al., 2023), with its value increasing

with the number of iterations. As the number of iterations

progressed, themarginal distribution alignment between the source

and target domains was gradually achieved. For λ3, we followed

the setting from Shu et al. (2018); Jiménez-Guarneros and Fuentes-

Pineda (2023), using a balance parameter of 0.1. The hybrid
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TABLE 2 Hyperparameters of proposed SH-MDA.

Layer Hyperparameters

Common feature

extractor

Flatten –

Fully connected 25,612,864

LeakyRelu Negative slope = 0.01

Domain

discriminator

Fully connected 32, number of source domain

LeakyRelu Negative slope = 0.01

Gradient reversal layer λ = 0.8

Softmax –

Branch feature

extractor

Fully connected 32

Batch normalization 32, eps = 1e-05

LeakyRelu Negative slope = 0.01

Branch task

classifier

Fully connected Number of category

Softmax -

TABLE 3 The parameters setting for the experiments on SEED and

SEED-IV datasets.

SEED SEED-IV

Batch size 64 64

Number of categories 3 4

Learning rate

-Common network 5e-4 5e-4

-Else 5e-3 5e-3

Optimizer Adam Adam

Number of epoch 50 200

parameter λ was searched within the range of {0.4, 0.5, ..., 1.0}, and
the optimal value is 0.8 in the cross-subject experiments and 0.6 in

the cross-session experiments.

In addition, since the common feature extractor was updated

by different domains, and the BFE and BTC received data only

from the specific domains, the learning rate of the common

feature extractor was set to a small value to ensure model stability.

Particularly, the learning rate was set to 5e-4 for the common

feature extractor, and 5e-3 for the domain discriminator and branch

networks. The hyperparameters setting of experiments is described

in Table 3 .

4 Results

4.1 Results of cross-subject experiments

In the cross-subject experiment, the leave-one-subject-out

(LOSO) cross-validation strategy was used to evaluate the

effectiveness of the model. In one session, a specific subject served

as the target-domain data, while the data from that same session

but originating from the other subjects was utilized as the source

domain. The process of training and validation was repeated until

each subject’s sessions had been designated as the target once.

For instance, in the SEED dataset, which contains data from

15 subjects, the data from one subject was designated as target-

domain data, while the data from the other 14 subjects served as

source-domain data, thus, there were 15 tasks in a single session.

In this study, the average recognition accuracy of three sessions

for each subject was used as the recognition accuracy of that

subject, and the average accuracy of all the subjects was used

as the final result of the cross-subject experiment of the model.

The experiments on the SEED-IV dataset were conducted in the

same way.

The accuracy for each subject is shown in Figure 5. The

average recognition accuracy of the proposed model for each

subject in the SEED dataset exceeded 80%, with a minimum

of 80.37% and a maximum of 99.94%. Additionally, the

recognition accuracy for eight out of the 15 subjects was higher

than 90%. On the SEED-IV dataset, the proposed algorithm

achieved a lowest average accuracy of 53.36%, a highest accuracy

of 87.19%, and exceeded 70% accuracy for 11 subjects. In

addition to accuracy, we analyzed the sensitivity, specificity,

and F1 score of the model in cross-subject experiments. The

results are presented in Table 4. On the SEED dataset, the

sensitivity, specificity, and F1 score were 90.49, 95.71, and 90.24%,

respectively; on the SEED-IV dataset, they were 74.29, 91.74

and 73.32%.

4.2 Results of cross-session experiments

In the SEED and SEED-IV datasets, each subject conducted

the experiment with three sessions. For each subject, in the cross-

session experiments, the three sessions were used as the target

domain in sequence, with each session serving as the target domain

once while the other two served as the source domain. Finally,

the average classification accuracy of the three sessions of all

subjects was denoted as cross-session experimental result of the

model.

The performance of the proposed model in the three sessions

for each subject in the two datasets is shown in Figures 6, 7. The

results demonstrated that in the cross-session experiment, where

both the source and target domain were from the same subject’s

data, the difficulty of DA was reduced, and thus, the performance

was better than that of the cross-subject experiment. On the SEED

data set, the average accuracy of the three sessions was higher

than 90%, and the accuracy of most sessions was higher than

80%. Meanwhile, the experiment results on the SEED-IV dataset

also indicated good performance of the proposed model. The

accuracy of the algorithm when the second and third sessions

were used as a target domain was significantly higher than that

when the first session was used, reaching 80.78 and 76.18%,

respectively. Furthermore, as shown in Table 5, we also calculated

the performance metrics of the model in cross-session experiments,

including sensitivity, specificity, and F1 score. On the SEED dataset,

these metrics were 94.18, 96.98, and 94.15%, while on the SEED-IV

dataset, they were 75.69, 92.59, and 75.21%.
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FIGURE 5

The recognition accuracy in the cross-subject experiment on the SEED and SEED-IV datasets. the i-th bar represents the average accuracy when i-th

subject is selected as target domain.

TABLE 4 Performance of the propose method in cross-subject experiments.

Performance measure

Dataset ACC ± STD (%) Sensitivity (%) Specificity (%) F1 score (%)

SEED 90.27± 05.56 90.49 95.71 90.24

SEED-IV 73.41± 08.27 74.29 91.74 73.32

4.3 Comparison with the existing methods

To better demonstrate the performance of the model, the

proposed method was compared with other optimal methods

reported in existing studies. Table 6 shows the recognition accuracy

and standard deviation of these methods across subjects in the

SEED and SEED-IV datasets. Since the SEED dataset contained

three emotion categories and the SEED-IV dataset contained

four emotion categories, the classification accuracy of the model

on the SEED-IV dataset was lower than that on the SEED

dataset. For the SEED dataset, the proposed algorithm was

significantly superior to the other algorithms, with an average

accuracy of 90.27% in the three sessions, which was about 2%

higher than that of the currently optimal algorithm. Meanwhile,

the standard deviation of the proposed method was 5.56, which

was also at the level of the existing best-performing method,

demonstrating the stability of the proposed method. On the

SEED-IV dataset, the proposed SH-MDA also showed better

performance than the other methods, with an average accuracy of

73.41%, which was higher than the best accuracy reported in the

related studies.

Table 7 illustrates the results of the proposed SH-MDA

and other advanced methods in the cross-session experiments.

The results indicated that, among all the algorithms, the

proposed model achieved optimal performance on both

public datasets. On the SEED dataset, the average accuracy

of the proposed model stood at 94.16%, surpassing the MS-

ADA model’s accuracy by ∼3%. However, the classification

performance generally decreased due to the increased difficulty in

classification on the SEED-IV dataset. The average accuracy

of the SH-MDA method was 75.05%, which denoted an

obvious performance improvement of 2.67% compared with

the other algorithms.

4.4 Confusion matrix

The confusion matrices of the SH-MDA method for different

datasets are presented in Figure 8. It should be noted that

to ensure that the experimental results were convincing, the

confusion matrix used data from three sessions. Figures 8A, B

correspond to two different tasks on the SEED dataset. Obviously,
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FIGURE 6

The classification accuracy in the cross-session experiment on the SEED dataset.

FIGURE 7

The classification accuracy in the cross-session experiment on the SEED-IV dataset.

in the cross-subject experiments, negative emotion was the most

difficult to recognize, with an accuracy of 86.44%. In the two

tasks, the model could easily confuse in the discrimination

of neutral and negative emotions but maintained a high

accuracy in the discrimination of positive emotions, with 95.36

and 97.02%.
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TABLE 5 Performance of the propose method in cross-session experiments.

Performance measure

Dataset ACC ± STD (%) Sensitivity (%) Specificity (%) F1 score (%)

SEED 94.16± 06.92 94.18 96.98 94.15

SEED-IV 75.05± 08.19 75.69 92.59 75.21

TABLE 6 Comparison of the accuracy in cross-subject experiments.

Method SEED SEED-IV

Mean/STD (%) Mean/STD (%)

DCORAL (Chai

et al., 2016)

62.14/07.98 40.50/10.05

DANN (Ganin et al.,

2016)

72.42/07.04 47.66/08.38

DAN (Li et al., 2018) 68.26/07.47 48.39/06.97

TANN (Li et al.,

2021a)

84.41/09.18 68.00/08.35

BiHDM (Li et al.,

2021b)

85.27/10.84 69.03/08.66

BiDANN (Li et al.,

2021c)

84.14/06.87 65.59/10.39

MS-MDA (Chen

et al., 2021)

80.62/11.03 57.92/10.12

GMSS (Li Y. et al.,

2022)

76.04/11.91 62.13/11.91

UDDA (Li Z. et al.,

2022)

88.10/06.54 73.14/09.43

MSMRA (Cao et al.,

2022)

83.62/09.58 69.77/07.37

MS-ADA (She et al.,

2023)

86.16/07.87 59.29/13.65

MFA-LR

(Jiménez-Guarneros

and Fuentes-Pineda,

2023)

85.27/10.84 69.58/14.10

Ours 90.27/05.56 73.41/08.27

TABLE 7 Comparison of the accuracy in cross-session experiments.

Method SEED SEED-IV

Mean/STD (%) Mean/STD (%)

DCORAL (Chai

et al., 2016)

78.86/07.06 44.63/11.38

DANN (Ganin et al.,

2016)

90.42/09.64 63.07/12.66

DAN (Li et al., 2018) 80.00/08.88 58.36/12.77

MS-MDA (Chen

et al., 2021)

89.60/07.20 65.89/10.12

MSMRA (Cao et al.,

2022)

88.31/06.23 72.38/10.12

MS-ADA (She et al.,

2023)

91.10/07.08 66.68/11.86

Ours 94.16/06.92 75.05/08.19

Figures 8C, D show the confusion matrices on the SEED-

IV dataset. The results indicated that the classification

performance on the SEED-IV degraded compared with the

SEED dataset. However, the model maintained good stability

in recognizing each emotion category. In the two tasks,the

model maintained high accuracy in the discrimination of neutral

emotions, reaching 85.81 and 78.75%. Moreover, the model

performed a high confusion probability in fear and sad emotion

categories, which might indicate the potential relevance of the

two emotions.

5 Discussion

5.1 Visualization

The t-SNE technology was used to visualize the changes

of feature distribution of two dataset, which could reduce the

data dimension while maintaining the data distribution in a

low-dimensional space (Van der Maaten and Hinton, 2008). To

simplify the experiment and enhance the visualization effects, the

experiment was conducted only for the cross-subject task, and

100 EEG samples from each of the five subjects (domains) were

randomly selected.

The changes in feature distribution of the SEED and SEED-

IV datasets through the model are illustrated in Figure 9.

Different colors represent different domains, and different

graphs are used to represent different emotion categories.

Figures 9A–C show the original feature distributions. To

highlight the distribution of target samples, the target domain

samples before model processing are represented in black.

The original feature distribution indicated that there was

a clear difference between the source-domain samples and

the target-domain samples. In addition, category confusion

existed in both target and source domains, which manifested

in the SEED dataset as confusion between negative and neutral

emotions; this was consistent with the confusion mentioned in

the earlier confusion matrix. In the SEED-IV dataset, category

confusion indicates mutual confusion between various emotion

categories, which explained the observed decline in performance

in this dataset.

The feature distributions after processing by the proposed

model are displayed in Figures 9B–D; for better visualization,

the processed target-domain samples are denoted as translucent

while maintaining the same colors as their corresponding

source-domain data for easy distinction. The results indicated

that, the source-domain and target-domain samples exhibited a

concentration of samples from the same category and separation

of those from different categories, exemplifying the excellent
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A B
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FIGURE 8

Confusion matrices of the SH-MDA in the cross-subject and cross-session experiments: (A, B) the results on the SEED dataset; (C, D) the results on

the SEED-IV dataset.

performance of the proposed model in multi-source domain

adaptation tasks.

5.2 Ablation experiment

In this article, the ablation experiments were

conducted on two datasets. In the cross-subject and

cross-session experiments, the average value of the

three sessions was used as the result, as shown in

Table 8.

The last row in Table 8 presents the performance of the

complete proposed model. First, during the training process, the

conditional entropy loss was ablated. With a relatively small

decrease in accuracy of about 1%, it was demonstrated that

pushing the decision boundary away from the high-density regions

in the target domain contributed to the model performance

improvement. Moreover, even without the conditional entropy

loss, the proposed model’s results outperformed most of the

comparative methods.

There was a substantial drop in model accuracy upon ablation

of the hybrid method, with decreases of 3.95 and 3.65% on the

SEED dataset and 3.62 and 2.14% on the SEED-IV dataset. This

decline may stem from the model’s inability to account for the

alignment of inter-domain conditional distributions. Subsequently,

discrimination loss was ablated, which also leads to the decline

of the model performance. Finally, when both the conditional

entropy loss and the hybrid loss were removed, the model was

forced to focus only on the classification and MMD losses, and

there was a significant decrease in performance compared with the

full model. This result further substantiated the superiority of the

proposed model.
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Before Processing After Processing

Before Processing After Processing
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FIGURE 9

Scatter plot of feature distribution with the t-SNE on the SEED and SEED-IV datasets: (A, B) the feature distribution in the SEED dataset; (C, D) the

feature distribution in the SEED-IV dataset.

5.3 Limitations

Although this study has achieved good recognition results,

there are still certain limitations. First, The hybrid sample set

is obtained by hybridizing the samples from the source domain

and the samples from the target domain according to the hybrid

parameter λ, however, this paper only performs global hybridizing

without considering each sample, so the selection of this parameter

may not always be optimal for each sample. Second, by minimizing

the classification loss, the hybrid samples were compelled to be

classified into the category of their associated source-domain

samples, thus indirectly enhancing the likelihood of the target-

domain samples being transferred to the correct category. However,

although most target domain samples could be transferred to the

corresponding categories with the guidance of hybrid samples,

a small number of samples failed to adapt effectively to the

correct categories due to their low similarity with the source-

domain samples. Moreover, although our method was evaluated

on two datasets, its generalization capability maybe needs to

be further studied. The comparisons in this paper were limited

to single-center data with a relatively small scale. Currently, a

substantial amount of data comes from multiple centers. And

due to differences in collection equipment, stimulus materials,

experimental design, and other factors, significant variations exist

among data from different centers. The performance of our

algorithm when dealing with cross-center data has not yet been

validated and requires further study.

Therefore, future work should focus on developing adaptive

sample hybridization methods that allow the weights and targets

of sample hybridization to be adjusted adaptively based on

the differences between different source and target domains.

Additionally, to enhance the model’s ability to recognize emotions

across centers, it is important to actively explore domain

generalization methods and combine them with existing domain

adaptation models to further improve the model’s generalization

capability and practicality.
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TABLE 8 The results of ablation experiments.

Dataset Method ACC (mean ± std)

Cross-
subject

Cross-
session

SEED W/o ce loss 89.01± 6.11 92.87± 5.14

W/o sample hybrid 86.32± 7.80 90.51± 6.71

W/o dis loss 88.69± 8.14 93.1± 7.22

W/o ce loss and

sample hybrid

85.19± 6.97 89.21± 7.73

Full 90.27± 5.56 94.16± 6.92

SEED-IV W/o ce loss 71.64± 7.86 73.54± 11.92

W/o sample hybrid 69.79± 8.86 72.91± 11.38

W/o dis loss 72.46± 9.03 73.97± 10.45

W/o ce loss and

sample hybrid

68.05± 9.45 69.95± 9.91

Full 73.41± 8.27 75.05± 8.19

6 Conclusion

This study proposes a novel multi-source domain adaptation

EEG emotion recognition network model named SH-MDA, which

aims to alleviate the difficulties of emotion recognition from

the limited generalization ability of EEG features across subjects

and sessions. In addition, a sample hybridization method that

can effectively achieve the alignment of conditional distributions

between the source and target domains is introduced. The cross-

subject and cross-session experiment results demonstrate that, in

comparison to other advanced methods, the proposed method

can exhibit superior adaptability to multiple source domains and

achieve optimal results on two different databases. Furthermore,

the results of the ablation experiments validate the effectiveness of

the proposed approach, and the results of the t-SNE visualization

indicate that the SH-MDA can separate target-domain samples

with different labels and cluster samples with the same label, thus

enhancing the recognition performance. We proposed a novel

multi-source domain adaptation method for emotion recognition

tasks across subjects and sessions. This method can also be applied

to other EEG classification tasks based on domain adaptation, such

as motor imagery and fatigue state classification. Although the

proposed method performs well, there are still some limitations.

For instance, the sample hybridization in themodel relies on hybrid

weights and lacks cross-center recognition capability. Therefore,

in future work, the adaptive sample hybridization and domain

generalization methods should be investigated to further improve

the domain adaptation effectiveness and generalization ability of

this model.
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