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Four-class ASME BCI:
investigation of the feasibility and
comparison of two strategies
for multiclassing

Simon Kojima1* and Shin’ichiro Kanoh1,2

1Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo, Japan,
2College of Engineering, Shibaura Institute of Technology, Tokyo, Japan

Introduction: The ASME (stands for Auditory Stream segregation Multiclass ERP)

paradigm is proposed and used for an auditory brain-computer interface (BCI).

In this paradigm, a sequence of sounds that are perceived as multiple auditory

streams are presented simultaneously, and each stream is an oddball sequence.

The users are requested to focus selectively on deviant stimuli in one of the

streams, and the target of the user attention is detected by decoding event-

related potentials (ERPs). To achieve multiclass ASME BCI, the number of streams

must be increased. However, increasing the number of streams is not easy

because of a person’s limited audible frequency range. One method to achieve

multiclass ASME with a limited number of streams is to increase the target stimuli

in a single stream.

Methods: Two approaches for the ASME paradigm, ASME-4stream (four streams

with a single target stimulus in each stream) and ASME-2stream (two streamswith

two target stimuli in each stream) were investigated. Fifteen healthy subjects with

no neurological disorders participated in this study. An electroencephalogram

was acquired, and ERPs were analyzed. The binary classification and BCI

simulation (detecting the target class of the trial out of four) were conducted

with the help of linear discriminant analysis, and its performance was evaluated

o	ine. Its usability and workload were also evaluated using a questionnaire.

Results: Discriminative ERPs were elicited in both paradigms. The average

accuracies of the BCI simulations were 0.83 (ASME-4stream) and 0.86 (ASME-

2stream). In the ASME-2stream paradigm, the latency and the amplitude of P300

were shorter and larger, the average binary classification accuracy was higher,

and the average weighted workload was smaller.

Discussion: Both four-class ASME paradigms achieved a su�ciently high

accuracy (over 80%). The shorter latency and larger amplitude of P300 and the

smaller workload indicated that subjects could perform the task confidently and

had high usability in ASME-2stream compared to ASME-4stream paradigm. A

paradigm with multiple target stimuli in a single stream could create a multiclass

ASME BCI with limited streams while maintaining task di�culty. These findings

expand the potential for an ASME BCI multiclass extension, o�ering practical

auditory BCI choices for users.

KEYWORDS

brain-computer interface, electroencephalogram, event-related potential, auditory

scene analysis, stream segregation, machine learning, NASA-TLX
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1 Introduction

The brain-computer interface (BCI) allows users to control
external devices without muscle activation by decoding their
intention from neural signals. Numerous studies have been
conducted on BCI for patients who have severemotor impairments,
completely locked-in syndrome (CLIS), amyotrophic lateral
sclerosis (ALS) or spinal cord injury (SCI) (Wolpaw et al., 2000;
King et al., 2013; Guger et al., 2017; Zhang et al., 2017; Guger et al.,
2020) and for healthy people (Holzner et al., 2009; Kosmyna et al.,
2016; Yu et al., 2016; Pan et al., 2017; Gao et al., 2018; Park et al.,
2019). Electroencephalogram (EEG) is widely used to measure
brain activity because they are suitable for measuring signals with
high temporal resolution via portable devices (Vidal, 1973;Wolpaw
et al., 2002; Rao, 2019).

Among EEG-based BCIs, synchronous BCIs detect a
stereotypical brain response generated after the subject is
presented with a stimulus (Rao, 2019). Some synchronous BCIs
that use visual stimuli have been proposed. These visual BCIs have
performed well (Cheng et al., 2002; Gao et al., 2003; Bin et al., 2009;
Thielen et al., 2021; Martínez-Cagigal et al., 2021). However, BCIs
based on visual stimuli occupy the user’s sight, and thus, cannot be
used by patients with visual impairments.

In contrast, auditory BCIs, which use auditory stimuli, do
not require visual modality and can be used without restricting
the user’s visual functions. Hill et al. proposed a famous example
of an early auditory BCI (Hill et al., 2004). They presented
two different oddball sequences to the right and left ears of the
subject. In an oddball paradigm, subjects are presented with a
sequence of frequent tones (i.e., standard or nontarget stimuli).
In contrast, some are infrequently replaced with different stimuli
(i.e., deviant or target stimuli). When a listener focuses on a
sequence (e.g., by counting the number of target stimuli), event-
related potentials, such as P300 and N200, are elicited by the target
stimulus presented (Luck, 2014). In their system, the direction of
the subject’s focus was estimated by detecting ERP responses to the
target stimuli using a support vector machine (SVM). Furdea et al.
(2009) proposed the auditory speller BCI. In this system, a five-by-
fivematrix consisting of alphabet letters was codedwith acoustically
presented numbers. The subjects selected the target character by
focusing selectively on the sound stimuli corresponding to the row
and column numbers in sequence. This system was also tested
on locked-in patients (Kübler et al., 2009). Another system was
proposed by Schreuder et al. (2010). The subjects were surrounded
by eight loudspeakers at the ear level, and the target direction of
the user’s attention was detected. Musso et al. (2022) proposed a
BCI-based language rehabilitation system for poststroke aphasia
patients with this paradigm. Höhne et al. (2011) proposed a 9-class
auditory BCI by presenting sound stimuli with three pitches from
three directions. The target direction and pitch were detected using
Fisher discriminant analysis (FDA).

Despite many proposed auditory BCIs, their performance is
lower than that of visual-based BCIs (Furdea et al., 2009; Belitski
et al., 2011; Oralhan, 2019). However, patients with late-stage ALS
are known to have unreliable gaze control (Choi et al., 2023); thus,
proposing systems that are not dependent on visual modalities is
crucial for these patients.

Furthermore, this approachmay not be themost suitable choice
for some users since it occupies user vision, which is a sensory
modality frequently used in daily life. Therefore, developing a
high-performance and practical auditory BCI is important.

The auditory BCIs mentioned above use relatively simple
paradigms, such as distinguishing between high- and low-pitched
tones or selecting one sound from spatially located sounds.
However, the human auditory system is capable of very complex
processing and can highly discriminate between various sounds,
and high-performance auditory BCIs may be achieved if we can
fully utilize human auditory abilities. Thus, an auditory BCI based
on stream segregation was proposed (Kanoh et al., 2008, 2010;
Kojima and Kanoh, 2024). Hereinafter, this paradigm is referred
to as the auditory stream segregation, Multiclass, ERP (ASME).
Stream segregation is an auditory illusion that makes perceiving
alternately presented sounds as segregated multiple sound streams
possible (Bregman, 1990; Shamma and Micheyl, 2010; Snyder and
Alain, 2007). In the original work (Kanoh et al., 2008, 2010), two
different oddball sequences with different pitches were presented
simultaneously. The user’s target stream was detected by linear
discriminant analysis (LDA), which is a two-class system. The
sound sequence was presented only to the subject’s ear. The
detection accuracy reached 95%, and the information transfer
rate (ITR) was approximately 5 bits/min. This work was novel
compared to that of conventional auditory BCIs in terms of its
utilization of human auditory ability. In addition, a multiclass
auditory BCI can be created with monaural channel sounds, and
it can be used by a user who has an impairment in one ear.

We proposed a three-class ASME paradigm (Kojima and
Kanoh, 2024). However, to realize a four-class ASME paradigm,
the simplest solution is to increase the number of streams, i.e., to
present four streams, each of which is a classic two-stimulus oddball
sequence (see Figure 1A). However, in the ASME paradigm, as the
number of streams increases, it becomes difficult to perceive the
sequence as segregated streams. The spacing in frequency between
streams needs to be wider to make the sequence easier to perceive
as segregated streams (Bregman, 1990); however, a wider spacing
in frequency widens the stimuli bandwidth (see Figure 2). Since
the human audible range is limited to 20 − 20, 000Hz (Rosen and
Howell, 2011), the maximum number of streams is limited. One
method to increase the number of selections without increasing
the number of streams is to include multiple target stimuli in
a single oddball sequence. Halder et al. (2010) tested the three-
stimulus auditory oddball sequence and achieved high accuracy and
ITR. The three-stimulus oddball has two different target stimuli.
The four-class ASME paradigm can be achieved with two streams
utilizing the three-stimulus oddball (see Figure 1B). Thus, we
propose two different strategies for realizing the four-class ASME
paradigm: (1) presenting four streams, each of which is a two-
stimulus oddball (Figure 1A), and (2) presenting two streams, each
of which is a three-stimulus oddball (Figure 1B).

Thus, in this study, two different topics were investigated: (1)
the feasibility of the four-class ASME BCI with each strategy and
(2) comparing two strategies for the four-class ASME paradigm.
The ERP responses were evaluated, and the feasibility of the
BCI application was tested by offline analysis and simulation.
Additionally, the usability of each paradigm was evaluated by the
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FIGURE 1

The concept of an ASME with multiple target stimuli in each stream. (A) A four-class ASME paradigm with four streams in which each stream has one

target stimulus. (B) A four-class ASME paradigm with two streams in which each stream has two target stimuli.

FIGURE 2

The influence of spacing in frequency between streams on stream segregation and bandwidth of stimuli. When the spacing between streams is wide,

perceiving the sequence as segregated multiple streams is easier; however, the bandwidth of the stimuli becomes broader.

NASA-TLX (Hart and Staveland, 1988; Hart, 2006; Ortega-Gijon
and Mezura-Godoy, 2019).

2 Materials and methods

2.1 Stimuli

In this section, two ASME paradigms, (a) four-stream
paradigms with two oddball stimuli and (b) two-stream paradigms
with three oddball stimuli, are described.

2.1.1 (a) ASME consisting of four streams with a
two-stimuli oddball (ASME-4stream)

Figure 3A shows the sequence for the ASME paradigm,
which has four streams with two-stimuli oddballs (ASME-4stream
paradigm). Sn are standard stimuli, and Dn are deviant stimuli
in stream n. Table 1 shows the frequency of each stimulus.
The stimulus onset asynchrony (SOA) was set to 0.15s. In
one trial, 600 stimuli were presented, and the duration was
approximately 90 s. In each stream, the presentation ratio was
Sn :Dn = 9 : 1.

2.1.2 (b) ASME consisting of two streams with a
three-stimuli oddball (ASME-2stream)

Figure 3B shows the sequence for the ASME paradigm, which
has four streams with a two-stimuli oddball (ASME-2stream
paradigm). Sn are standard stimuli, and Dn are deviant stimuli.
Table 2 shows the frequency of each stimulus. In this paradigm,
each stream had two different deviant stimuli: one had a lower
frequency, and the other had a higher frequency. The SOA was set
to 0.3 s. In one trial, 300 stimuli were presented, and the duration
was approximately 90 s. In each stream, the presentation ratio was
Sn :DL :DH = 8 : 1 : 1, whereDL andDH are the number of deviant
stimuli that had lower and higher frequencies, respectively.

2.1.3 Di�erences in SOA and presentation ratio
between the two conditions

In the ASME-4stream and ASME-2stream conditions, the SOA
and presentation ratio were different.

The difference in SOA was made to keep the SOA of the
stimulus sequence within the attended stream consistent when
selective attention was directed to a specific stream while ignoring
others. In a sequence with N streams and an overall SOA of
t seconds, the within stream SOAstm becomes N × t. In both
the ASME-4stream and ASME-2stream conditions, the SOAstm
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FIGURE 3

The sequences used in the experiment. (A) The sequence used in the ASME-4stream paradigm. (B) The sequence used in the ASME-2stream

paradigm.

TABLE 1 Frequencies for stimuli used for ASME-4stream paradigm.

Stream Stimulus Frequency (Hz)

Stream 1 S1 110.00

D1 123.47

Stream 2 S2 415.30

D1 466.16

Stream 3 S3 1,567.98

D3 1,760.00

Stream 4 S4 5,919.91

D4 6,644.86

TABLE 2 Frequencies for the stimuli used for the ASME-2stream

paradigm.

Stream Stimulus Frequency (Hz)

Stream 1 S1 523.3

D1 440.0

D2 622.3

Stream 2 S2 3,136.0

D3 2,637.0

D4 3,729.3

was set to 0.6 seconds. Additionally, It has been shown that
changes in SOAstm can influence the ease of stream segregation
perception (Bregman, 1990), and the SOAstm used in this study
was chosen to ensure that each sound stream could be sufficiently
perceived as a segregated stream.

The difference in presentation ratio was made to keep the
presentation ratio of the target and nontarget stimuli equal when
selective attention was paid to a specific deviant stimulus. In
the ASME-2stream condition, two deviant stimuli are embedded

within each stream. When attention is paid to one of the
deviant stimuli, the attended stimulus becomes the target stimulus,
and the other stimuli can be treated as nontarget stimuli. For
example, in the ASME-2stream condition, the presentation ratio
was S :D1 :D2 = 8 : 1 : 1, however when attention is paid to
either D1 or D2, the ratio between the target (T) and nontarget
stimuli (nT) became nT :T = 1 : 9, which was the same as in the
ASME-4stream condition.

2.2 Experimental design

Figure 4 shows the structure of an experiment. In the
familiarization session, all subjects were presented with both the
ASME-4stream and ASME-2stream paradigms. Next, the simple
auditory oddball paradigm was conducted with the following
parameters in the oddball session. The frequencies of standard and
deviant stimuli were 500Hz and 1, 000Hz, respectively. The SOA
was set to 1.0 s, and the presentation ratio was S :D = 5 : 1,
where S and D were the number of standard and deviant stimuli,
respectively. In the ASME task session, 12 runs of the ASME-
2stream andASME-4stream paradigms were conducted alternately.
In a single run, four trials were conducted. Before starting each trial,
a screen was placed in front of the subjects and they were instructed
on which stream and stimuli to focus on. After the instruction, each
standard stimulus of all streams was presented for one second to
provide pitch information for the subjects to target the streams
better. During the trial, subjects were requested to focus on and
count the target deviant stimuli in the target stream.

After the ASME task session, the NASA-TLX questionnaire
was administered to score the subjective mental workload for
each task. Since all subjects spoke Japanese, the translated NASA-
TLX was used (Haga and Mizukami, 1996). With the NASA-TLX,
the following six indexes were scored: mental demand, physical
demand, temporal demand, performance, effort, and frustration,
and the weighted workload (WWL) was obtained.
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FIGURE 4

The experimental design.

2.3 Subjects

Fifteen subjects (aged between 21 and 24 years, mean =
22.8 years, two females) were recruited for this study. The study
protocol was approved by the Review Board on Bioengineering
Research Ethics of the Shibaura Institute of Technology and
was conducted in accordance with the Declaration of Helsinki.
Before the experiment, the subjects were given information orally
and in writing. Written informed consent was obtained from all
the subjects. No subject had known cranial nerve diseases or
hearing problems.

2.4 EEG and EOG measurement

Sixty-four-channel electroencephalogram (EEG) (Fp1, Fp2,
AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8,
FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, FT10, T7,
C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, CP3, CP1, CPz,
CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8,
PO7, PO3, POz, PO4, PO8, O1, Oz, and O2) and two-channel
(vertical and horizontal) electrooculogram (EOG) were measured
by BrainAmp (Brain Products, Germany) at a 1, 000Hz sampling
frequency with passive Ag/AgCl electrodes (EasyCap, Germany).
The electrodes were placed according to the extended 10-20 system.
The reference and ground electrodes were placed on the right and
left mastoid, respectively. The subjects sat on a comfortable chair in
a soundproofing electromagnetically shielded room.

2.5 EOG artifact removal

EOG artifact removal was conducted as follows. First, the
recorded EEG data from each run were highpass filtered by a
zero-phase 2nd-order Butterworth filter with a cut-off frequency
of 1.0 Hz to remove slow drift and were concatenated along the
time domain.

After filtering, principal component analysis (PCA) was applied
to the EEG data, and 15 principal components (PCs) were selected.

Next, independent component analysis (ICA) with the FastICA
algorithm was applied to the 15 PCs. Two channels of EOG data
(vertical and horizontal) were bandpass filtered by a 2nd-order
Butterworth filter in the range of 1–10 Hz. The Pearson correlation
coefficient between each IC and EOG channel was calculated.
The IC, which had the highest correlation with the vertical and
horizontal EOG, respectively, was set to zero.

Before applying ICA, 15 components were selected using
PCA, as it is known that dimensionality reduction with PCA can

improve the quality of the artifact separation (Winkler et al., 2015;
Hyvarinen et al., 2001).

2.6 ERP analyses

All measured data after EOG artifact removal were bandpass
filtered by a zero-phase 2nd order Butterworth filter in the range
of 1–40 Hz. Responses to each stimulus were epoched in the
range from −0.1s to 1.2s relative to stimulus onset. Then, all
epochs were downsampled to 250Hz. Signed-r2 values (Blankertz
et al., 2011) were obtained to visualize the separability between
the responses to the target and nontarget stimuli. The target
and nontarget stimuli were defined as follows. All analyses were
performed using Python 3.8.18 and MNE-python 1.5.0 (Gramfort
et al., 2013).

• ASME-4stream
The deviant stimuli in the target stream were the target, and
the standard stimuli in the target stream, and all stimuli
in the nontarget stream were nontarget. For example, when
Stream 1 was the target stream, D1 was the target, and
{S1, S2, S3, S4,D2,D3,D4} was the nontarget.

• ASME-2stream
The attended deviant stimuli in the target stream were the
target, and the unattended deviant and standard stimuli in
the target stream and all stimuli in the nontarget stream were
nontarget. For example, when the target stream was Stream 1
andD1 was attended,D1 was the target and {S1, S2,D2,D3,D4}

was the nontarget.

The onset and peak amplitude of P300 responses were
estimated with a bootstrap procedure. For this analysis, the
following five EEG channels (Fz, FCz, Cz, FPz, and Pz) were used, as
it is known that P300 has peak amplitude on these channels (Polich,
2007).

(1) P300 peak amplitude

1. The 80% of the samples of the responses to the target stimuli
were taken randomly and averaged across epochs.

2. The peak amplitude in the range of 0.2–0.5 seconds was obtained
as vi.

3. Procedures 1 and 2 were repeated 1,200 times.
4. v ∈ R1,200 was averaged and determined as the peak amplitude.

(2) P300 onset latency

1. The 80% of the samples of the responses to the target stimuli
(Xtarget) and standard stimuli (Xstandard) were taken randomly.

2. The time sample when the result of the one-sided Welch’s t test
between Xtarget and Xstandard was significant (p < 0.05) for the
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first time and the corresponding time stamp was in between 0.2–
0.5 seconds was taken as ti. If there was no significant difference,
it was excluded from the subsequent analysis as a bootstrap
sample in which P300 was not observed.

3. Procedures 1 and 2 were repeated 250 times.
4. t ∈ R250−Nf was averaged and determined as the P300 onset

latency. Nf is the number of bootstrap samples for which no
significant difference was observed in procedure 2.

2.7 Binary classification

After removing EOG artifacts using ICA, all measured data
were bandpass filtered by a zero-phase 2nd-order Butterworth filter
in the range of 0.1–8 Hz, and responses to each stimulus were
epoched in the range of−0.1–1.2 s relative to stimulus onset. Then,
all epochs were downsampled to 250 Hz. The mean amplitudes
in the ten intervals (0.1 second, non-overlapping intervals from
0 to 1.0 seconds relative to the stimulus onset) were used as the
classification feature. The dimensions of the feature vector were
10 intervals × 64 channels = 640. The classification accuracy
(AUC: area under the receiver operating characteristic curve)
between the responses to the target and nontarget stimuli was
obtained by shrinkage linear discriminant analysis (shrinkage-
LDA) (Blankertz et al., 2011) with 4-fold chronological cross-
validation. For the binary classification, the chance level was
0.5. All analyses were performed with Python 3.8.18, scikit-learn
1.2.0 (Pedregosa et al., 2011). For shrinkage-LDA, implementation
included in open source python package toeplitzlda (Sosulski and
Tangermann, 2022) 0.2.6 was used.

2.8 BCI simulation (four-class
classification)

In the BCI simulation, the target class of each trial out of
four classes was estimated. Since six runs were measured for
each paradigm, 3-fold chronological cross-validation (two runs for
training the machine learning model and four runs for testing) was
conducted. First, for training data from two runs, the unmixing
and mixing matrix of ICA for removing EOG components was
computed by the method described in Section 2.5. Then, the EOG
artifact was removed from the training data, the feature vector
was obtained using the same method described in Section 2.7,
and shrinkage-LDA was trained. The classification output f (xi) =
wTxi+bwas defined as follows, where xi is a feature vector,w is the
weight vector obtained by LDA, and b is a bias. Each feature vector
xi has a corresponding class label yi ∈ {−1, 1}, and it is assumed
that class label +1 is the target and −1 is nontarget. The LDA was
trained as f (x) ≥ 0 if xi was in class +1 and f (x) < 0 if xi was in
class−1. For the testing data of the four runs, the EOG components
were zeroes by the unmixing and mixing matrix of ICA computed
with the training data. The feature vectors for each trial were
computed from the responses to all deviant stimuli in the trial.
Then, the classifier output f (xi) for each feature was computed,
and the class with the largest mean value of classifier output was
estimated as the final classification result. The classification results

were evaluated for accuracy. For the BCI simulation, the theoretical
chance level was 1/4 = 0.25. Due to the limited number of
samples, the statistical significance of classification accuracy using
a binomial cumulative distribution was also evaluated (Combrisson
and Jerbi, 2015). Since we had 24 samples‘ for each condition, it was
a 4-class classification, and the threshold for statistical significance
of the accuracy Pth was Pth = 0.42 at p < 0.05. The detailed method
and equations can be found in Combrisson and Jerbi (2015).

All analyses were performed with Python 3.8.18, scikit-learn
1.2.0 (Pedregosa et al., 2011). For shrinkage-LDA, implementation
included in open source python package toeplitzlda (Sosulski and
Tangermann, 2022) 0.2.6 was used.

The ITR is the amount of information communicated by a
system per unit time (Rao, 2019). The ITR can be expressed as
follows (Schreuder et al., 2010):

R = log2(N)+ Plog2(P)+ (1− P)log2

(

1− P

N − 1

)

(1)

B = VR (2)

where N is the number of classes, P is the classification
accuracy, V is the classification speed in trials/minute, R is the ITR
in bits/trial, and B is the ITR in bits/minute.

3 Results

3.1 ERP analysis

Figure 5 shows the grand average ERP responses to target
and nontarget stimuli and their topographic maps for the ASME-
4stream and ASME-2stream paradigms, respectively. The signed-
r2 value (Blankertz et al., 2011) between the responses to target
and nontarget stimuli was also shown at the bottom of the ERP
time courses. For both paradigms, N200 and P300 responses were
elicited by the target stimuli. The peak amplitude of the N200
component was greater in the ASME-2stream paradigm, and the
peak amplitude of the P300 component was greater in the ASME-
4stream paradigm. In both paradigms, N700 responses were also
elicited to the target stimuli, where the difference between target
and nontarget stimuli is greater in the ASME-4stream paradigm.
The N200 responses were elicited front-central in both paradigms.
However, the discriminability was greater in the right hemisphere.

Figure 6A shows the P300 peak amplitude of three paradigms,
i.e., the ASME-2stream, ASME-4stream, and oddball paradigms,
obtained using the bootstrap procedure. The number of bootstrap
samples for which no significant difference was observed in
the analysis described in the Section 2.6 can be found in
Supplementary Table S1. The average peak amplitudes from all
subjects were 9.80µV (oddball), 3.47µV (ASME-2stream), and
3.17µV (ASME-4stream). There was no significant difference
between the ASME-2stream and ASME-4stream groups (p = 0.25,
two-sided Wilcoxon signed-rank test). Figure 6B shows the P300
onset latency in the three paradigms. The average latencies from
all subjects were 0.23 s (oddball), 0.30 s (ASME-4stream), and 0.24
s (ASME-2stream), and the latencies were significantly greater in
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FIGURE 5

The grand average ERP responses in channels Cz and Fz for the ASME-4stream (A) and the ASME-2stream (B). The colormap below the ERP plot

shows the signed-r2 value at each time point. Each topography map shows the responses to the target, nontarget stimuli, and signed-r2 values. The

time ranges used for the topography map are shown in the ERP plot in colored mesh.

the ASME-2stream paradigm than in the ASME-4stream paradigm
(p = 0.61× 10−4, two-sided Wilcoxon signed-rank test).

3.2 Classification

The average binary classification scores for all subjects were
0.87 (ASME-2stream) and 0.82 (ASME-4stream). The score in the
ASME-2stream was significantly greater (p = 0.67 × 10−3, two-
sided Wilcoxon signed-rank test). The highest scores were 0.96
(ASME-2stream) and 0.94 (ASME-4 stream).

Figure 7 shows the accuracy scores and ITR from the BCI
simulation results. The average accuracies were 0.86 (ASME-
2stream) and 0.83 (ASME-4stream). However, this difference was
not significant (p = 0.40, two-sided Wilcoxon signed-rank test).
The accuracies for both ASME-2stream and ASME-4stream were
higher than statistically significant classification accuracy (0.42).

The maximum accuracies were 0.96 (ASME-2stream) and 1.0
(ASME-4stream). The ITRs were 0.87 (ASME-2stream) and 0.82
(ASME-4 stream), which were not significant (p = 0.49, two-
sided Wilcoxon signed-rank test). The maximum ITRs were 1.16
(ASME-2stream) and 1.32 (ASME-4stream).

3.3 Workload

Figure 8 shows the weighted workload (WWL) obtained by the
NASA-TLX questionnaire. The average WLLs of all the subjects

were 61.6 (ASME-2stream) and 71.4 (ASME-4 stram), and these
differences were significant (p = 0.015, two-sided Wilcoxon
signed-rank test). This means that the users’ subjective workload
was significantly greater in the ASME-4stream paradigm than in the
ASME-2stream paradigm. Moreover, negative correlations existed
between the classification scores and the performance index of
NASA-TLX (see Table 3). Note that the performance index of the
NASA-TLX is on the axis, in which a higher value indicates a lower
subjective rating of performance. Among the fifteen subjects, the
WWL was lower in the ASME-4stream for two subjects. For these
two users, the accuracy of the ASME-4stream BCI simulation was
also greater than that of the ASME-2stream BCI simulation.

4 Discussion

4.1 Feasibility of the four-class ASME
paradigm

The results of the ASME-4stream paradigm show that it is
possible to perceive the presented sequence as four segregated
streams and to focus on the target stimuli in the target stream. In
addition, the results of the ASME-2stream paradigm show that it
is possible to focus on the segregated stream out of two streams
and to focus on the target stimulus out of two deviant stimuli.
In both paradigms, the accuracy of the BCI simulation (over 0.8
against theoretical chance level = 0.25 and threshold for statistically
significant classification accuracy Pth = 0.42) was high enough
for the BCI applications. The ITR in both paradigms was less than
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FIGURE 6

The P300 peak amplitudes (A) and onset latencies (B) for each subject obtained by the bootstrap procedure. Each error bar shown in an averaged bar

plot is the standard error mean.

1.0 bits/min and lower than that in other proposed methods (Hill
et al., 2004; Furdea et al., 2009; Schreuder et al., 2010; Höhne et al.,
2011); however, the trial length was long (90 s) in this study, and it
can be further improved by optimizing the trial length by applying
dynamic stopping methods (Verschore et al., 2012; Schreuder et al.,
2013) or other sophisticated methods. It can be concluded that a
four-class BCI system can be used; however, only offline analysis
was conducted in this study. Hence, online implementation and
evaluation are needed for future work.

4.2 Comparison of two di�erent four-class
ASME approaches

ERP analysis with the bootstrapping procedure showed that
the average P300 peak amplitude and its onset latency were
greater and shorter, respectively, in the ASME-2stream paradigm.
Figure 5 shows that the P300 peak amplitude readout was greater
in the ASME-4stream paradigm compared to that in the ASME-
2stream paradigm. However, the results from P300 peak amplitude
estimation obtained by the bootstrap procedure (Section 2.6)

showed larger peak amplitude in ASME-2stream (3.47µV vs.
3.17µV , see Section 3.1). The grand average ERP response
waveform in Figure 5 simply shows the average waveform from
each subject per EEG channels Cz and Fz. In contrast, with the
bootstrap procedure, the peak amplitude of the spatiotemporal
feature can be assessed, and it may more accurately reflect the
characteristics of ERP peaks. Thus, it can be assumed that the
P300 peak amplitude was greater in the ASME-2stream paradigm.
Comparing the amplitude and onset latency from the ASME
paradigm with those from the simple auditory oddball paradigm,
the P300 amplitudes in the oddball paradigm were much larger
than those in the two ASME paradigms. However, the P300 onset
latency in the ASME-2stream paradigm was on the same level
as that in the oddball paradigm, where the P300 latency in the
ASME-4stream was significantly greater. According to previous
studies (Ghani et al., 2020), the P300 latency was consistently
prolonged as task difficulty increased; however, the P300 amplitude
was not consistent. Some reported that the P300 increased with
increased task difficulty (Combs and Polich, 2006; Muller-Gass and
Schröger, 2007); others reported the opposite (Dyke et al., 2015;
Horat et al., 2016; Causse et al., 2015; Frank et al., 2012). Hillyard
et al. hypothesized that P300 was maximized when “resolution of
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FIGURE 7

The accuracy (A) and ITR (B) for each subject obtained by the BCI simulation.

FIGURE 8

The WWL for each subject was obtained via the NASA-TLX questionnaire.

uncertainty” or “delivery of information” was maximized (Hillyard
et al., 1971), which means that tasks that were too clear or
too challenging decreased P300 amplitudes; however, the optimal
task difficulty maximized the P300 amplitudes. Aggregating these

results and findings, it can be concluded that the task difficulty
of the ASME-2stream paradigm is lower and more appropriate
than that of the ASME-4stream paradigm for eliciting larger
P300 amplitudes.

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1461960
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Kojima and Kanoh 10.3389/fnhum.2024.1461960

TABLE 3 The correlations between the NASA-TLX performance index and

classification performance.

Paradigm Classification Correlation p-value

ASME-
4stream

BCI simulation –0.52 0.046

Binary classification –0.48 0.073

ASME-
2stream

BCI simulation –0.64 0.010

Binary classification –0.54 0.039

The peak N200 responses were greater in the ASME-2stream
paradigm, as shown in Figure 5. However, the average response
was broad in the ASME-4stream, suggesting that the latency of the
N200 varied across subjects and trials. It was implied that the N200
contributed to the classification due to its large signed-r2 value.

Frontal-central dominant N700 was also observed in
both paradigms; however, the difference between target and
nontarget individuals was detected only in the ASME-4stream
paradigm. Bender et al. (2010) reported that the amplitude of N700
was enhanced by active short-term memory maintenance
compared to attention to current perceptions or passive
stimulation. This indicates that more short-term memory
maintenance tasks are required in the ASME-4stream paradigm
than in the ASME-2stream paradigm. In the ASME-4stream
paradigm, the signed-r2 value for N700 was large, and this
component may have contributed to the classification.

The average binary classification and BCI simulation results
were better in the ASME-2stream paradigm; however, statistical
difference was only observed in the binary classification results.
Although the performance is considered comparable for both
paradigms, the highest accuracy in this study (accuracy = 1.0
for BCI simulation) was achieved in the ASME-4stream for two
subjects, and it was indicated that the ASME-4stream is more
suitable for some users to achieve the best performance.

The NASA-TLX results revealed that the subjects’ subjective
workload was significantly greater in the ASME-4stream paradigm.
This suggests that increasing the number of streams increases the
user’s workload. The classification score and subject’s subjective
rating of performance were also correlated. These results showed
that subjective ratings from NASA-TLX can be reflected in
quantitative electrophysiological signals and prove the validity of
its use in measuring the workload in BCIs. Additionally, this index
could indicate which paradigm is the best for the user.

In summary, it can be concluded that the performance is at
the same level for both paradigms; however, the user’s workload is
lower in the ASME-2stream paradigm. Additionally, considering
that the best performance was achieved in the ASME-4stream
paradigm, using the ASME-4stream paradigm for some users may
be adequate to achieve the best performance.

4.3 Conclusion

In this study, it was shown that both paradigms, ASME-
2stream and ASME-4stream, can be used as BCI systems with high
accuracy. From the results of the ASME-4stream, it was shown that
focusing on a single stream out of four segregated streams can be

possible. The results of the ASME-2stream showed that the ASME
paradigm involving multiple deviant stimuli in a single streammay
be possible. The average performance across subjects was slightly
better in the ASME-2stream paradigm (not significant). According
to the WWL of the NASA-TLX, the user’s workload is lower in
the ASME-2stream, and usability is superior in this paradigm. It
was shown that the subjects could carry out the task confidently,
and the task difficulty was optimal in the ASME-2stream paradigm.
However, it was also suggested that determining which paradigm is
the best for the subject is encouraged since some subjects achieved
greater performance in the ASME-4stream paradigm. It was also
shown that sequences with multiple target stimuli in a single
stream can be extended to multiple classes with appropriate task
difficulty compared to sequences with a single target stimulus in a
single stream in the ASME paradigm. These findings expand the
possibility of a multiclass extension of the ASME BCI, providing
users with choices of practical auditory BCIs.
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